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1  |  INTRODUC TION

In his 1958 popular science book “The ecology of invasions by animals 
and plants” British ecologist Charles S. Elton set the foundation for 
invasion biology as an independent field of science (Elton, 1958). In 

this short book, Elton proposed a number of hypotheses that became 
the subject of intensive research in subsequent decades. Perhaps 
the most prominent of them is the “biotic resistance” or “diversity- 
stability” hypothesis. It posits that more species- rich communities 
are less susceptible to invasion by non- native species. Pertinent 
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Abstract
The assembly of microbial communities through sequential invasions of microbial spe-
cies is challenging to study experimentally. Here, I used genome- scale metabolic mod-
els of multiple species to model community assembly. Each such model represents all 
known biochemical reactions that a species uses to build biomass from nutrients in 
the environment. Species interactions in such models emerge from first biochemical 
principles, either through competition for environmental nutrients, or through cross- 
feeding on metabolic by- products excreted by resident species. I used these models 
to study 250 community assembly sequences. In each such sequence, a community 
changes through successive species invasions. During the 250 assembly sequences, 
communities become more species- rich and invasion- resistant. Resistance against 
both constructive and destructive invasions –  those that entail species extinction –  is 
associated with high community productivity, high biomass, and low concentrations 
of unused carbon. Competition for nutrients outweighs the influence of cross- feeding 
on the growth rate of individual species. In a community assembly network of all 
communities that arise during the 250 assembly sequences, some communities occur 
more often than expected by chance. These include invasion resistant “attractor” 
communities with high biomass that arise late in community assembly and persist 
preferentially because of their invasion resistance. Genome- scale metabolic models 
can reveal generic properties of microbial communities that are independent of the 
resident species and the environment.
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empirical evidence accumulated in the decades since Elton's book 
was published. Some such evidence, including from grasslands, 
subtropical wetlands, riparian and agricultural ecosystems, sup-
ports the hypothesis (Boughton et al., 2011; Brown & Peet, 2003; 
Dukes, 2002; Kennedy et al., 2002; Naeem et al., 2000; Peltzer & 
MacLeod, 2014; Peng et al., 2019; Tilman, 1997). Other evidence 
argues that species- rich communities are not less but more suscep-
tible to invasion (Altieri et al., 2010; Brown & Peet, 2003; Fridley 
et al., 2004; Levine, 2000; Lonsdale, 1999; Stohlgren et al., 2003; 
Stohlgren, Barnett, et al., 2006; Stohlgren, Jarnevich, et al., 2006). To 
resolve this so- called “invasion paradox”, some studies suggest that 
diversity helps reduce invasibility at small spatial scales, but increases 
it at large spatial scales (Brown & Peet, 2003; Fridley et al., 2004, 
2007; Hui & Richardson, 2017; Richardson & Pysek, 2006). Here, I 
studied how species invasions help assemble microbial communities, 
where species invasions have been less well- studied than in macro-
scopic organisms.

Several reasons are responsible for the relative neglect of in-
vasion dynamics in microbial communities. First, such dynamics 
are difficult to observe experimentally through standard microbial 
ecology techniques, such as 16S rDNA sequencing, or bulk mea-
surements of metabolite concentrations (Aguirre de Carcer, 2020; 
Nemergut et al., 2013). In addition, microbes can disperse globally 
and show complex mosaic phylogenies shaped by horizontal gene 
transfer (Nemergut et al., 2013; Soucy et al., 2015), which can blur 
the distinction between native and invading species. Moreover, even 
though microbial community ecology is a very active field, it has de-
veloped independently from invasion biology (Latombe et al., 2021). 
It asks different questions, such as about principles of species co-
existence, convergent assembly trajectories, historical contingency 
(priority effects), and multistable equilibria (Bittleston et al., 2020; 
Blasche et al., 2021; Datta et al., 2016; Estrela et al., 2021; Friedman 
et al., 2017; Furman et al., 2020; Goldford et al., 2018; Gralka 
et al., 2020; Hoek et al., 2016; Jami et al., 2013; Kehe et al., 2021; 
Kelsic et al., 2015; Ratzke et al., 2020; Sanchez- Gorostiaga 
et al., 2019; Wolfe et al., 2014).

Because it is challenging to observe species invasions and com-
munity assembly in microbes, mathematical and computational 
models remain important to identify general assembly principles. 
Such models have a long tradition in studies of community as-
sembly (Drake, 1990; Drossel et al., 2001; Hui et al., 2021; Law & 
Morton, 1996; McKane, 2004; Minoarivelo & Hui, 2016, 2018; Post & 
Pimm, 1983). Pertinent models fall into broad classes, such as (gener-
alized) Lotka- Volterra models (Baiser et al., 2010; Gonze et al., 2018; 
Hofbauer & Sigmund, 1988; Kuntal et al., 2019; Minoarivelo & 
Hui, 2018; Mittelbach & McGill, 2019; Servan et al., 2018), con-
sumer resource models (Cuddington & Hastings, 2016; Goldford 
et al., 2018; Marsland et al., 2019, 2020; Mittelbach & McGill, 2019; 
Valdovinos et al., 2018), and adaptive dynamics models (Hui 
et al., 2021).

Existing models have several limitations when applied to micro-
bial community assembly. First, with notable exceptions (Brunner & 
Chia, 2019; Goldford et al., 2018; Marsland et al., 2019), they are 

designed to understand predator– prey or plant- pollinator commu-
nities, but not microbial communities, which are governed by tro-
phic interactions mediated by the abiotic environment (Bittleston 
et al., 2020). For example, microbial species frequently feed on small 
molecules that other microbial species excrete as by- products of 
their metabolism. Second, existing models usually assume a constant 
environment that is not changed by community members. In con-
trast, microbial species can secrete multiple metabolic by- products 
that change the chemical environment and thus construct new 
ecological niches for other microbes (Basan et al., 2015; Bittleston 
et al., 2020; Pacheco et al., 2019; San Roman & Wagner, 2018). 
Third, existing models generally allow only for pairwise interactions 
among species, whereas higher order interactions can be important 
(Grilli et al., 2017; Mickalide & Kuehn, 2019; Sanchez- Gorostiaga 
et al., 2019). Finally and perhaps most importantly, existing models 
make specific and often ad hoc assumptions about which species 
interact. They are not suited to allow species interactions to emerge 
from first biological principles.

These limitations can be alleviated by the modelling framework 
used here (Khandelwal et al., 2013; Klitgord & Segre, 2010; Levy & 
Borenstein, 2013; Libby et al., 2019; Pacheco et al., 2019; San Roman 
& Wagner, 2021; Stolyar et al., 2007). It is built on genome- scale 
metabolic models of microbial species (Amalric & Dehaene, 2019). 
Each such model represents all known metabolic biochemical reac-
tions that take place in a given species. Its establishment requires a 
combination of genome sequence data and extensive biochemical 
information. Manual curation, together with increasingly advanced 
automatic model construction techniques have made such models 
available for hundreds of species (Devoid et al., 2013; Gu et al., 2019; 
Magnúsdóttir et al., 2017). With the computational method of flux 
balance analysis (FBA, see Methods), a genome- scale model can be 
used to predict the instantaneous biomass growth rate of a species 
in a given chemical environment (Orth et al., 2010), as well as the 
amounts of metabolic by- products that a microbe excretes into the 
environment. The predictions of this method have been experimen-
tally validated in multiple experiments (Edwards et al., 2001; Feist 
et al., 2007; Segre et al., 2002; Varma & Palsson, 1994).

Genome- scale metabolic modelling and FBA allow species in-
teractions to emerge from basic biochemical principles. First, they 
allow species to compete by consuming the same nutrients avail-
able in the environment. Second, they can predict the identity and 
amount of metabolic by- products that a species excretes and that 
can help other species grow. In doing so, they also allow a communi-
ty's species to change their environment and create new ecological 
niches. Finally, they also allow higher order trophic species interac-
tions to emerge naturally, because all species in a community have 
access to the same chemical environment.

Here, I use these methods to study the assembly of two differ-
ent kinds of communities in silico. The first harbour a set of 100 
human gut microbial species, and are assembled in an anaerobic 
chemical environment similar to a Western diet. The second har-
bour a subset of 100 random viable metabolisms (“species”), each 
of which contains a random complement of chemical reactions 
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sampled from a known “universe” of such reactions realized in 
the biosphere, under the sole constraint that each such metabo-
lism must be at least viable on glucose as the sole carbon source. 
I assemble the latter communities in an aerobic environment that 
contains only glucose as a carbon source. The two classes of met-
abolic systems are dramatically different, both in terms of their 
origins (biological/synthetic), and their environments (complex/
simple, anaerobic/aerobic). Thus, any properties they share are 
probably generic properties of microbial communities assembled 
through trophic interactions, and not just peculiarities of a specific 
set of microbial species. For each type of community, I model 250 
community assembly sequences. Each sequence starts out with 
a single species and proceeds through the sequential invasion of 
randomly chosen species from the species pool. I show that over 
time, both types of communities become more species- rich, show 
higher biomass, and become more invasion resistant, largely be-
cause they become occupied by superior competitors. Some com-
munities recur more often than expected by chance alone. They 
represent either recurrent “attractors” of community assembly or 
transient sources of new communities.

2  |  MATERIAL S AND METHODS

2.1  |  Genome- scale metabolic models and flux 
balance analysis

Here, each microbial species is represented by a genome- scale 
metabolic model of bacterial metabolism (Becker et al., 2007; Feist 
et al., 2009; Schellenberger et al., 2010). Such a model comprises a 
set of stoichiometric equations for all known r (enzyme- catalysed) 
chemical reactions that take place inside a living cell, and that in-
volve the transformation of a total of m metabolites. These reactions 
also include a special class of so- called exchange reactions by which 
metabolites such as nutrients are imported into a cell, and by which 
metabolic waste products are exported from a cell. Mathematically, 
a genome- scale model consists of an (mxr) stoichiometry matrix S 
whose entries sij contains the stoichiometric coefficient of the i- th 
metabolite in the j- th reaction.

Genome- scale models are assembled from a combination of bio-
chemical information available through the literature and genome 
sequencing data. For a free- living organism, they typically comprise 
more than 1000 reactions and metabolites. Each of the r reactions 
can proceed at some rate vi –  the metabolic flux through reaction i 
–  that has a lower bound li and an upper bound ui, which are deter-
mined by factors such as the maximal rate at which the respective 
enzyme can catalyse the reaction, as well as by the thermodynam-
ics of the reaction, such as whether the reaction is reversible or 
irreversible. Together, these fluxes define an r- dimensional vector 
�⃗v =

(
v1, … ,vr

)
 of metabolic fluxes.

If a genome- scale model of a specific bacterial species exists, one 
can use the constraint- based modelling technique flux balance anal-
ysis (FBA) to predict the biomass growth of the species in a given 

environment (Orth et al., 2010). To this end, FBA incorporates an 
(artificial) chemical reaction called the biomass growth reaction into 
a genome- scale metabolic model. The substrates of this reaction are 
essential biomass precursors, such as amino acids, nucleotide build-
ing blocks, and lipids. Each of these substrates has a stoichiometric 
coefficient that reflects its proportion in a species' (experimentally 
determined) biomass composition. The biomass growth reaction 
then combines these substrates into biomass at biomass growth flux 
vgro. More specifically, FBA assumes that a metabolism is in a steady 
state at which the concentrations of its internal metabolites do not 
change. This assumption would be met, for example, in a chemical 
environment like a chemostat that provides a continuous nutrient 
supply and continually removes metabolic waste products. FBA 
identifies a vector �⃗v of metabolic fluxes that (i) conforms to the law 
of mass conservation in this steady- state, and that (ii) maximizes the 
biomass growth flux vgro in a given environment, subject to the con-
straints that exist for each metabolic flux vi. This task can be formu-
lated as the dynamic programming problem (Orth et al., 2010).

where the constraint S �⃗v = 0 reflects the steady- state assumption. A 
solution to this optimization problem not only includes the maximally 
possible biomass growth rate, but also the rates at which exchange 
reactions must proceed to achieve this growth rate. These include 
the rates at which nutrients are consumed, and the rates at which by- 
products of metabolisms are excreted into the environment.

In FBA, the environment is represented by the maximal rate at 
which different nutrients can be imported into a cell, that is, by the 
bounds on exchange reactions that represent the import of specific 
nutrients. Because it does not directly represent the concentrations 
of molecules and how they change when cells import nutrients and 
excrete waste products, FBA cannot be directly used to model the 
ecological dynamics of a microbial community over time. For this 
purpose, I use a simple and widely used extension of FBA called 
dynamic FBA (dFBA, Methods S1) (Chiu et al., 2014; Mahadevan 
et al., 2002; San Roman & Wagner, 2018; Varma & Palsson, 1994).

2.2  |  Community dynamics

I used dFBA to study the establishment of stable microbial communi-
ties through successful invasions from a pool of s species 

{
Si
}
i=1,…,n

 , 
each represented by a different genome- scale metabolic model. To 
this end, I first chose a species at random (with equal probability 
for all species) from this pool, and introduced 0.01 g of this species' 
biomass into the chemostat. This choice ensures a sufficiently large 
number of initial cells to avoid the computationally costly compli-
cation of stochastic initial growth. Also, a substantially smaller 

max

subject to

S�⃗v =0

li ≤vi ≤ui

1≤ i≤n

vgro
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inoculum would result in substantially longer amounts of time and 
computational cost for a community to reach equilibrium.

Subsequently, I simulated the population dynamics of this spe-
cies with dFBA and determined every 24 h whether its biomass had 
either reached an equilibrium or whether the species had become 
extinct. (Extinction can take place if a species grows more slowly 
than the dilution rate of the chemostat.) In either case, I introduced 
0.01 g of a new randomly chosen species (different from the res-
ident species if that species had persisted) into the environment. 
Subsequently, I monitored the biomass growth of the resident 
species, and again tested for equilibrium every 24 h. Once such an 
equilibrium had been reached (or all species had gone extinct), I in-
troduced another species, and so on.

I repeated this cycle of attempted invasions and community 
equilibration for 5000 h or for a maximum of 5 days of computa-
tion time on a single CPU, whichever was reached first (this 5 day 
maximum was reached in only 2% of community assemblies, which 
can happen when some communities take a very long time to reach 
equilibrium).

This procedure led to an assembly sequence of successive equi-
librium microbial communities that hosted one or more species. A 
failed invasion led to the extinction of the invader. A successful in-
vasion led to the establishment of the invader and either its coexis-
tence with the resident community, or the extinction of one or more 
resident species. I recorded and analysed all equilibrium communi-
ties after a successful invasion, which are by definition communities 
whose species composition differed from the previous community in 
the assembly sequence.

2.3  |  Gut microbiome species

My starting point for the assembly of gut microbial communities is 
the assembly of gut organisms through reconstruction and analy-
sis (AGORA) resource of metabolic models, which comprises 818 
strains of gut bacteria (Magnúsdóttir et al., 2017). These models 
were reconstructed through a complex pipeline of genome anno-
tation that is integrated with biochemical information and refined 
through comparative genomic data (Magnúsdóttir et al., 2017). FBA 
growth predictions of more than 50 of the models have been vali-
dated with experimental data (Magnúsdóttir et al., 2017; Noronha 
et al., 2019; Tramontano et al., 2018). Because information about 
species- specific biomass composition is not available for most spe-
cies, AGORA models use a general biomass growth reaction that 
yields biomass growth rates consistent with those observed in the 
human gut (Magnúsdóttir et al., 2017).

I downloaded the AGORA models from the Virtual Metabolic 
Human data base at https://www.vmh.life/#micro bes/search on 9 
April 2021 as “AGORA 1.03 without mucin” (Noronha et al., 2019). 
They come from 668 different microbial species and 214 different 
genera. To reduce the complexity of this data set while preserving 
as much of its diversity as possible, I sampled 100 species that can 
grow in the chemical environments I study from the complete set 

of models, such that each species comes from a different genus. 
Table S1 lists the resulting set of species that I used in this analy-
sis. The modest sample size of 100 species also increases the likeli-
hood that at least some species are sampled repeatedly during the 
assembly of different communities, which can help build informative 
assembly networks. The metabolic models for these species have 
1286 ± 300 (1 SD) reactions, 871 ± 254 internal reactions, 415 ± 75 
exchange reactions, and 1107 ± 192 metabolites.

I studied community assembly of these species on a Western 
diet (Magnúsdóttir et al., 2017), which comprises 164 nutrients, 
including many sugars, amino acids, fats, minerals, vitamins, and 
sources of fibre. Throughout, I assume anaerobic growth, to reflect 
the anaerobic or microaerobic nature of the human gut environ-
ment (Espey, 2013). The species I use (Table S1) excrete on aver-
age 12.7 ± 3.2 metabolites on a Western diet. They grow at a rate of 
μ ≈ 0.32 ± 0.2 h−1 and thus have a mean doubling time of ln2∕� = 2.2 
h which is similar to doubling times observed in the mouse intestinal 
tract (Gibbons & Kapsimalis, 1967; Magnúsdóttir et al., 2017).

Continuous metabolic culture experiments that emulate mi-
crobial growth in the gut use a dilution rate D that is the inverse 
of the transit time of food through the human gut (Feria- Gervasio 
et al., 2014; Macfarlane et al., 1998; Tottey et al., 2017). Because the 
median of this transit time is 60 h (Cummings et al., 1992), I chose a 
dilution rate of D = 1/60 ≈ 0.017 h−1. At this dilution rate, individual 
species show a mean growth rate of μ ≈ 0.32 ± 0.2 h−1, and 97 of the 
100 species grow at a sufficient rate on a Western diet to persist on 
their own without being flushed out of the model gut.

2.4  |  Random viable metabolisms

To complement my analysis of communities assembled from human 
gut microbes, I also studied random viable metabolisms. Each 
such metabolism comprises a set of biochemical reactions that 
can produce all of a cell's essential biomass precursors and thus 
support biomass growth in a given environment, but that contain 
an otherwise random set of biochemical reactions samples from a 
“pan- metabolism” or “universe” of such reactions that exists in the 
biosphere (Methods S1). The environment I use here is a minimal 
aerobic environment in which glucose is the only available carbon 
source.

3  |  RESULTS

3.1  |  Species richness increases but unevenness 
does not during community assembly

Following previous experimental work to establish a gut micro-
biome in vitro, I model the gut as a continuous microbial culture, 
that is, a chemostat to which nutrients are continually added 
and from which waste is continually removed (Feria- Gervasio 
et al., 2014; Macfarlane et al., 1998; Tottey et al., 2017). Based on 

https://www.vmh.life/#microbes/search
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the experimentally observed residence time of food in the gut, I use 
a dilution rate of D = 0.017 h−1 for this purpose. I assume that the nu-
trient composition is similar to a previously described Western diet, 
which comprises 164 different nutrients (Methods S1). I assemble 
communities from a “regional” pool of 100 microbial species, each 
of which is represented by a genome- scale metabolic model that 
comprises on average 1286 ± 300 (1 Sd) reactions that interconvert 
1107 ± 192 metabolites.

I begin the assembly process by choosing a species from the pool 
at random, and introduce a small amount of biomass (0.01 g) of the 
species into the chemostat. Subsequently, I simulate the population 
dynamics of this species with dynamic FBA (Methods S1). This ex-
tension of FBA permits simulation of not only the biomass growth 
rate of one or more resident species, but also their consumption 
rate of each nutrient, and their excretion rate of each metabolic by-
product. I determine every 24 h whether the species' biomass has 
reached an equilibrium or whether the species had become extinct. 
In either case, I introduce 0.01 g of a new randomly chosen species, 
monitor the biomass of growth of the (one or two) resident species, 
and again test for equilibrium every 24 h (Methods S1). Such an equi-
librium may again involve extinction of all, one, or none of the res-
ident species. If the invading species is part of the new equilibrium 
community, I call its invasion successful. Once such an equilibrium 
has been reached, I introduce a third species, and so on, repeating 
the cycle of attempted invasions and community equilibration for a 
maximum of 5000 h (Methods S1).

This process leads to an assembly sequence of successive 
equilibrium microbial communities that host one or more species. 
I record for further analysis only equilibrium communities whose 
species composition is different from that of the previous com-
munities, that is, communities in which the most recent invasion 
has been successful. For brevity, I will refer to them simply as 
communities. Figure 1a shows an example of the first 3000 h of 
such an assembly sequence, involving eight invasions numbered 
by integers. Invasions 1 and 2 establish a two- species community. 
However, when a third species invades at approximately 100 h, 
it drives the two resident species to extinction while becoming 
established. I refer to such a successful invasion, which leads to 
the extinction of one or more resident species as a destructive in-
vasion. At approximately 1000 h, a fourth species invades, which 
then coexists with the resident species. I refer to such a success-
ful invasion, which leads to no extinction, as a constructive inva-
sion. The example also illustrates that later communities need not 
necessarily have more species than earlier communities, because 
some species may go extinct after a successful invasion, for exam-
ple, as a result of the third invasion in Figure 1a.

Overall, I created 250 such assembly sequences, each of which 
lasted for a maximum of 5000 h (Methods S1). Some assembly se-
quences lead to many more communities than others, with a mean 
number of 9.5 ± 2.8 communities per assembly sequence (Figure 1b). 
Each of these communities can be ranked according to the order in 
which it appears in the sequence. For most of my analyses, I will pool 
the first, second, etc. community from different assembly sequences 

to analyse their properties jointly. In other words, I will quantify time 
during an assembly sequence not in hours since the beginning of 
the sequence, but through the first, second, third, etc community 
in the assembly sequence. To obtain statistically meaningful results 
below, I will analyse only the first 13 communities produced by my 
assembly sequences, because fewer than 30 assembly sequences 
generated 13 or more communities (Figure 1b).

Although the species richness –  the number S of species per 
community –  need not necessarily increase in consecutive commu-
nities, it increases on average when studied over multiple assembly 
sequences (Figure 1c). That is, whereas the first community in an 
assembly sequence comprises only one species, the last (13th) com-
munity comprises 6.9 ± 1.6 species, and the mean number of spe-
cies per community steadily increases between these values. The 
evenness of the species abundance does not decrease substantially 
during community assembly (Figure 1d), and the dominant species 
accounts for an ever- decreasing fraction of biomass (Figure 1e).

3.2  |  Communities become more resilient to 
invasions over time

Resilience is a system's ability to persist in the face of perturbations 
(Holling, 1973). The perturbations I study are species invasions, and 
I ask how likely it is that a community's species composition remains 
unchanged when it is invaded by a new species. To this end, I first 
quantify the number of unsuccessful invasions between two success-
ful invasions, that is, the number of invasions that are “repelled” by 
a community before another community emerges. Figure 2a shows 
this number, averaged over the 250 assembly sequences I study. 
The establishment of the second community is associated with 0.11 
failed invasions, a number that increases until it reaches a maximum 
at 0.88 failed invasions to establish the sixth community, and levels 
off thereafter. By this measure, invasion resistance increases by a 
factor eight during community assembly. In addition, I also evalu-
ate the time that elapses between successive communities, which 
also increases substantially (Figure 2b). Specifically, while on average 
35 min elapse to get the first (single- species) community established, 
614 min elapse on average between the sixth and the seventh com-
munity, a greater than 17- fold increase. After reaching a maximum at 
the seventh community, this transition time decreases modestly, but 
remains substantially above that for early communities. (Its modest 
decline is caused predominantly by destructive invasions; Results S1, 
Figure S3). Although later communities in an assembly sequence take 
a longer time to reach equilibrium (Spearman's r = 0.32, p < 3 × 10−58; 
n = 2367), this association cannot solely explain the overall time 
increase between successful invasions. The reason is that the time 
between successive communities still increases when controlling for 
this equilibration time (partial Spearman's r = 0.21, p = 9.3 × 10−26; 
n = 2367; controlled for equilibration time). Not surprisingly, the 
greater the number of unsuccessful invasions, the greater is also 
the time needed between two successive communities (Spearman's 
r = 0.57; p = 6.9 × 10−203; n = 2367), and this association also persists 
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when controlling for time to equilibrium (partial Spearman's r = 0.93, 
p < 10−200; n = 2367).

Like all organisms, gut microbes have a unique evolutionary and 
ecological history, and this history may influence the properties of 
their communities. My observations thus far may be a byproduct of 
this history, or they may be generic properties of microbial commu-
nities defined by their metabolic abilities. To find out, I turned to 
a complementary modelling approach that explores the assembly 
of communities from “species” that are defined by random viable 
metabolisms. Each such metabolism comprises a random subset 
of chemical reactions from a much larger reaction “universe” or 
“pan- metabolic” set of reactions that are realized in some organism 
of the biosphere, subject to the requirement that the subset must 
be able to sustain life in a specific well- defined chemical environ-
ment. Specifically, it must be able to synthesize all essential biomass 
precursors of a bacterial cell from the nutrients provided in this 
environment.

I use previously described procedures to create 100 such random 
viable metabolisms (Methods S1), and consider each such metabo-
lism as a “species” for the purpose of community assembly. I created 

each of these species such that it has a number of internal chemical 
reactions that is identical to the average number of reactions of the 
100 gut microbial species (Methods S1). Although communities as-
sembled from such random viable metabolisms are not realized in 
the biosphere, they can help find out whether any community prop-
erty may be a generic property of organisms interacting metaboli-
cally. In addition, they allow one to circumvent the highly complex 
nutrient requirements of gut microbes (Tramontano et al., 2018), 
because random viable metabolisms can be designed to be viable 
in specific nutrient environments. I created the 100 random viable 
metabolisms to be viable in an aerobic glucose minimal environment 
where glucose is the only source of carbon and energy (Methods S1).

With a procedure identical to that I used for the gut microbes, 
I then created 250 community assembly sequences that lasted for 
up to 5000 h. Each assembly sequence led to a number of commu-
nities that varied broadly around an average of 8.4 ± 2.6 communi-
ties (Figure S1A). This number is somewhat lower than the 9.5 ± 2.8 
communities per assembly sequence for gut microbes. The aver-
age number of species in a community increased, albeit to a lower 
number of 4.8 ± 1.9 species in the last community (Figure S1B). The 

F I G U R E  1  Assembly sequences create 
communities with multiple species. (a) 
Example of the first 3000 h (inset: 1000 h) 
of an assembly sequence involving the 
eight species on the left. The vertical 
axis shows the biomass [g] of each of 
species. Numbers inside the plot indicate 
the eight invasions that occur during this 
time period. Invasions 1– 4, 6, and 7 are 
successful, whereas invasions 5 and 8 fail. 
Invasions 1, 2, 4, and 6 are constructive, 
whereas invasions 3 and 7 are destructive. 
Species names are as reported in 
(Magnúsdóttir et al., 2017; Noronha et 
al., 2019). (b) Distribution of the number of 
equilibrium communities that form during 
the 250 assembly sequences I simulate. (c) 
Mean number of species per community, 
(d) richness- adjusted Shannon diversity, 
and (e) Berger- Parker dominance (vertical 
axes, Methods S1), when communities 
are ranked by their order of appearance 
(first, second, etc, horizontal axes) in an 
assembly sequence. Note that Shannon 
diversity in (d) can only be calculated for 
communities of two or more species. Error 
bars in panels (c– e) indicate one standard 
error of the mean, and are often too small 
to be visible

(e)(d)

(c)(b)

(a)

1 2 3
4 5 6 7 8
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fewer communities and smaller number of species are not surpris-
ing, because they assembled in a simpler environment that can sus-
tain fewer species. Similar to the gut microbiota, the unevenness 
of the species distributions did not increase dramatically over time 
(Figure S1C, D).

More importantly, both measures of invasion resistance in-
crease dramatically early during an assembly sequence. Specifically, 
the number of failed invasions increases from an average of 0.25 
between the first and second community by a factor 4.5 to an av-
erage of 1.12 between the fourth and fifth community, and stays 
approximately constant thereafter (Figure 2c). The time elapsed 
between consecutive communities also increases rapidly and early 
during an assembly sequence from 24.7 min to 732.5, that is, by a 
factor 29.7. It then declines modestly for late communities, but still 
remains far above the time needed to establish the first community. 
Once again, the two quantifiers are highly positively associated 
(Spearman's r = 0.49, p < 9 × 10−102; n = 2090), and even more so 
when one controls for the time that individual communities need to 
reach equilibrium (partial Spearman's r = 0.88, p < 10−100; n = 2090). 
Taken together, these observations show that properties such as the 
increase in invasion resistance during early community assembly are 
generic properties of microbes that interact metabolically through 
environmental nutrients and metabolic by- products. They are also 
insensitive to the environment.

3.3  |  Productivity is associated with resistance to 
destructive invasions

I next studied the likely causes of a community's resistance to inva-
sions. I first focused on resistance to destructive invasions, which 

I quantified as the number of failed invasions a community expe-
riences before a destructive invasion occurs. I hypothesized that 
a community's productivity is important for such resistance. If an 
invader grows more rapidly than some members of the community, 
either on nutrients that exist in the environment or on nutrients 
that other species excrete as waste products, then it may cause a 
destructive invasion in which these members go extinct. As time 
progresses during an assembly sequence, ever- superior competi-
tors may replace inferior resident species in this way. The incidence 
of such destructive invasions may also depend on the earliest stage 
of an assembly sequence. Because all species are drawn from a fi-
nite species pool with a given distribution of biomass growth rates 
(Table S1), if the first invading species happens to grow slowly, it 
is more likely to be outcompeted by the next invading species. 
Over time, successful destructive invasions may become more 
rare, because the resident species increasingly consist of strong 
competitors.

This hypothesis creates several predictions. First, for it to be 
true, the communities I assemble must become increasingly more 
productive. This is indeed the case, because the equilibrium biomass 
of successive communities increases during an assembly sequence, 
both for gut microbes (Figure 3a) and for random viable networks 
(Figure S4A). Second, the hypothesis entails that communities be-
come more invasion resistant as their biomass increases. This is also 
the case, and for both measures of invasion resistance, that is, for 
the number of failed invasions (Spearman's r = 0.28, p = 4.8 × 10−12; 
n = 604) and the time between successive communities (partial 
Spearman's r = 0.19, p = 2 × 10−6; n = 604, controlled for time to 
equilibrium).

A third prediction is that this increase in productivity also char-
acterizes the dominant members of each community. This is indeed 

F I G U R E  2  Invasion resistance 
increases early during community 
assembly. Vertical axes show (a) the 
mean number of failed invasions, and 
(b) the mean time between successive 
equilibrium communities during assembly 
of gut microbial communities), when 
communities are ranked by their order 
of appearance (first, second, etc) in an 
assembly sequence (horizontal axes). (c 
and d) like (a) and (b), respectively, but 
for random viable metabolisms. Data are 
reported up to a number of communities 
generated by at least 30 of 250 assembly 
sequences. This number is greater for 
gut microbial communities (13) than for 
random viable metabolisms (11). Error bars 
indicate one standard error of the mean

(a) (b)

(c) (d)
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the case, both for communities of gut microbes (Figure 3b) and for 
random viable metabolisms (Figure S4B). In addition, with increasing 
productivity of this dominant member, communities become more 
invasion resistant (number of failed invasions: Spearman's r = 0.22, 
p = 3.8 × 10−8; n = 604; and the time between successive commu-
nities (partial Spearman's r = 0.13, p = 10−3; n = 604, controlled for 
time to equilibrium).

A fourth prediction relates to the first species that becomes 
established during an assembly sequence. If my hypothesis is 
correct, then the time needed to establish a second community 
through a destructive invasion should be smaller if the first in-
vader grows slowly than if it grows rapidly. In other words, we 
would expect a positive correlation between the growth rate 
of the first invader and this time. This correlation indeed exists 
(Spearman's r = 0.83, p < 1.2 × 10−4, n = 15). Taken together, these 
observations suggest that more productive communities are more 
resistant to destructive invasions. Thus, increased community 
productivity (Figures 3a, b) is important to help explain increasing 
invasion resistance.

3.4  |  Decreasing carbon concentration is 
associated with resistance to constructive invasions

I next turned to examine resistance to constructive invasions, that 
is, the number of failed invasions a community experiences before a 
successful constructive invasion occurs. Such invasions can have at 
least two causes. First, in an environment providing multiple nutri-
ents, an invader may exploit a resource that is not yet fully utilized by 
the resident species, that is, it may invade an unoccupied ecological 
niche. Second, the invader may become established by feeding on 
metabolic waste products of other species. Both causes may oper-
ate simultaneously.

To study any changes in resistance to constructive invasions, 
it is relevant that individual gut microbial species, when growing 
by themselves on a Western diet, excrete multiple metabolites 
(12.7 ± 3.2 metabolites per species). Not surprisingly then, during 
community assembly, the nutrient environment becomes chem-
ically more and more complex, as communities harbour more and 
more species (Figure 1c), and these species excrete more and more 

F I G U R E  3  Community productivity 
over time and productivity changes 
caused by destructive and constructive 
invasions. (a) Mean community 
biomass, (b) biomass growth rate of the 
dominant species on a Western diet, 
(c) mean number of metabolites in the 
environment, and (d) mean concentration 
[mmol] of one carbon (C1) units are 
shown on the vertical axes, and plotted 
against communities ranked by their 
order of appearance (first, second, 
etc) in an assembly sequence on the 
horizontal axis. Data are reported up to 
a number of communities generated by 
at least 30 of 250 assembly sequences. 
Error bars indicate one standard error 
of the mean, and are often too small to 
be visible. (e) Box- whisker plot of the 
biomass change caused by constructive 
and destructive invasions; (f) box- whisker 
plot of the reduction in C1 concentration 
caused by constructive and destructive 
invasions. Horizontal lines inside each box 
correspond to the median, boxes extends 
from the first to the third quartile of the 
data, and whiskers extend from the box 
through 1.5 times the interquartile range

(b)(a)

(d)(c)

(f)(e)
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metabolites. Specifically, during an assembly sequence the av-
erage number of metabolites in the environment increases from 
126.1 ± 11.2 to 144.3 ± 13.8 (Figure 3c). However, the total amount 
of carbon in the environment actually declines (Figure 3d). To com-
pute this amount, I determined the environmental concentration of 
each carbon- containing nutrient with a known stoichiometry, and 
multiplied it with the number of carbon atoms the molecule con-
tains. This procedure takes into account that some molecules con-
tain much more carbon than others.

I hypothesized that environments with less carbon provide fewer 
opportunities for constructive invasions and would thus be more in-
vasion resistant. If so, then the carbon content of the environment 
should be negatively correlated with invasion resistance. This is in-
deed the case for both measures of invasion resistance, that is, for 
the number of failed invasions (Spearman's r = −0.35, p = 2.8 × 10−44; 
n = 1513), and for the time between successive communities (partial 
Spearman's r = −0.34, p = 2.2 × 10−43; n = 1513, controlled for time 
to equilibrium).

In sum, when the resistance of communities to constructive and 
destructive invasions increases over time during an assembly se-
quence, it does so for reasons related to productivity and efficient 
resource use. A more productive late community is less easy to in-
vade by a superior competitor that causes resident species extinc-
tions. By the same token, such a community uses nutrients more 
efficiently, leaves fewer unused nutrients in the environment, and 
thus reduces opportunities for constructive invasions. Both destruc-
tive and constructive invasions tend to increase productivity and re-
source efficiency, but they do so to a different extent. Specifically, 
destructive invasions increase equilibrium community biomass 
by twice as much as constructive invasions (by 0.34 vs. 0.17 g, 
Figure 3e), a difference that is highly significant (p = 9.3 × 10−5, two- 
tailed Mann– Whitney U test). Conversely, destructive and construc-
tive invasions reduce the amount of free carbon by an average of 
5.6 and 3.7 mmol, respectively, a difference that is also highly sig-
nificant (Figure 3f, p = 1.5 × 10−5, two- tailed Mann– Whitney U test). 
Thus, although fewer destructive invasions occur during community 
assembly (Figure S2A), they affect community productivity more 
drastically. Similar observations hold for communities assembled 
from random viable metabolisms, where constructive invasions also 
outnumber destructive invasions (Results S2, Figures S2B and S4).

The importance of competition is underscored by a complemen-
tary analysis that asks whether a species' biomass growth is affected 
predominantly negatively (competition) or positively (facilitation) by 
other members of the same community. It shows that at least 80% 
of pairwise interactions (and even more higher- order interactions) 
are competitive, both for gut microbes and randomly viable metabo-
lisms (Figures S5 and S6, Results S3). At the same time, cross- feeding 
occurs between at least 70% of species pairs, but its effect on bio-
mass growth is not sufficient to outweigh competition (Figure S7, 
Results S3). Even so, cross- feeding contributes to community diver-
sity, especially for random viable metabolisms. The reason is that in 
a glucose- minimal environment, cross- feeding is essential to sustain 
multi- species communities.

3.5  |  A community assembly network helps 
identify highly invasion resistant communities as 
attractors of community assembly

Even species drawn from a modest pool of 100 species can poten-
tially form 2100 = 1.3 × 1030 communities, many more than can be 
explored. Even if I also consider all unsuccessful invasions (which 
lead to communities where not all resident species can coexist), 
the 250 assembly sequencies I studied sample merely a fraction 
3408/1.3 × 1030 = 2.6 × 10−27 of all possible communities. Despite 
this highly sparse sampling of all possible communities, some com-
munities of two or more species recur repeatedly across different 
assembly sequences (Figure 4). To study such recurrences system-
atically, I constructed a directed community assembly network 
(graph) by pooling information from all 250 assembly sequences 
(Figure 4a,b). Each node in this network is a community of coexisting 
species, and two communities Ci and Cj are connected by a directed 
edge if community Cj emerged from community Ci via a successful 
species invasion during one of the assembly sequences. If this inva-
sion was constructive, then Cj contains all species of Ci and addition-
ally the invading species. If the invasion was destructive, Cj contains 
at most as many species as Ci, and possibly fewer. The resulting net-
work contains N = 2123 nodes (communities) and K = 2112 directed 
edges. Its most basic property is its degree distribution, that is, the 
number k of communities that are neighbours of any one community, 
that is, connected by an edge to it (Figures 4c– f). Because the as-
sembly network is directed, one needs to distinguish between the 
indegree kin and the outdegree kout of each community (k = kin + kout), 
that is, the number of edges emanating and terminating at any one 
community.

For communities (nodes) of two or more species, the indegree 
quantifies the number of times the community occurs in the 250 
assembly sequences. To ask whether the recurrence of some com-
munities could be expected by chance alone, I employed a simple 
statistical test which assumes that all species can form persistent 
communities (Methods S1). For example, a five- species community 
of species 1, 2 18, 28, and 32 (Figure 4d, Table S1 for species identi-
fiers) occurred twice. Only 341 of the 2123 communities I sampled 

comprise five species, which is a vanishing fraction of the 
⎛⎜⎜⎝
100

5

⎞⎟⎟⎠
= 

7.5 × 107 possible five species communities. Not surprisingly then, 
the likelihood of encountering a community of five species twice is 
not expected by chance alone (p = 5.5 × 10−12, Figure 4d, Methods S1).

Several other communities also recur more frequently than ex-
pected by chance alone (Figure 4d). This suggests that some biological 
properties of these communities are responsible for this recurrence. 
To find such properties, I studied the subset of communities that 
vary in their degree, that is, where kin > 1 or kout > 1. I found that, the 
number of times that a community recurs (kin) is positively associated 
with its biomass (Spearman's r = 0.79, p = 2.4 × 10−29, n = 131), the 
biomass of its dominant species (Spearman's r = 0.63, p = 3.9 × 10−16, 
n = 131), and the biomass growth rate of this species on a Western 
diet (Spearman's r = 0.67, p = 4.1 × 10−18, n = 131). Thus, recurrent 
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no. species indegree p-value species id
2 3 2×10-5 28,79
2 3 2×10-5 37,79
6 3 <10-16 20,33,34,72,81,85
2 2 1.2×10-3 72,91
5 2 5.5×10-12 1,2,18,28,32
6 2 2.2×10-14 1,2,18,28,32,97
3 2 1.2×10-6 53,71,80
2 2 1.2×10-3 44,53
3 2 1.2×10-6 41,44,69
2 2 1.2×10-3 15,18

no. species outdegree p-value species id
1 9 1.1×10-6 63
1 8 9.8×10-6 26
1 7 8.0×10-5 92
1 7 8.0×10-5 40
1 7 8.0×10-5 81
1 6 5.8×10-4 19
1 6 5.8×10-4 79
1 6 5.8×10-4 20
1 6 5.8×10-4 5
1 5 3.6×10-3 36

(a) (b)

(c) (d)

(e) (f)
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communities are productive communities. They also tend to leave 
lower amounts of carbon (C1 units) in the environment that could 
be used for biomass growth (Spearman's r = −0.76, p = 2.5 × 10−26, 
n = 131).

Perhaps surprisingly, a community's recurrence is positively 
associated with the average number of failed invasions that were 
needed to establish it from its predecessor (Spearman's r = 0.52, 
p = 1.96 × 10−10, n = 131), and with the average time needed to es-
tablish them from the communities preceding them (Spearman's 
r = 0.79, p = 5.3 × 10−29, n = 131). From this point of view, recurrent 
communities are more difficult to reach from other communities. This 
is, however, consistent with the fact that they are highly productive, 
because highly productive communities arise late during an assem-
bly sequence, when the invasion resistance of communities has also 
become high. Indeed, recurrent communities do tend to arise late 
during an assembly sequence (Spearman's r = 0.92, p = 2.9 × 10−54, 
n = 131). In addition, once established, recurrent communities are 
less likely to be replaced by other communities, that is, their invasion 
resistance is higher (Spearman's r = 0.53 and 0.48 between kin and 
number of failed invasions until the next community, and time to 
next community, respectively, p < 5.1 × 10−9, n = 131).

As opposed to the indegree, the outdegree of a community in 
the assembly network indicates how often the community gives rise 
to other communities through successful invasions (Figures 4e, f, 
S8). It can thus also be viewed as a measure of a community's tran-
sience. The communities with the highest outdegrees all consist of 
single species. For example, species 63 has an outdegree of kout = 9 
(Figure 4f), that is, it gives rise to nine other communities. This high 
outdegree is not expected by chance alone (p = 1.1 × 10−6, Methods 
S1). Multiple other communities have high outdegrees, which raises 
again a question about biological correlates of community tran-
sience. Communities with high outdegree tend to have low biomass 
(Spearman's r = −0.35, p = 4.3 × 10−5, n = 131), and low biomass 
growth rate of the dominant species on a Western diet (Spearman's 
r = −0.19, p = 0.03, n = 131). They also tend to leave high amounts of 
carbon (C1) units unused that could be used for the biomass growth 
of invading species (Spearman's r = 0.38, p = 7 × 10−6, n = 131). In 
other words, these communities have low productivity. Not surpris-
ingly then, they tend to occur early during an assembly sequence 
(Spearman's r = −0.42 between kout and a community's position in an 

assembly sequence; p = 5.7 × 10−7, n = 131). In addition, communi-
ties with high outdegree are easily reached from their predecessors. 
The average number of failed invasions leading to them tends to be 
small (Spearman's r = −0.41, p = 8.7 × 10−7, n = 131), as does the 
average time needed for transitions between their predecessor and 
themselves (Spearman's r = −0.22, p = 0.01, n = 131). Conversely, 
few failed invasions and little time are on average needed to cre-
ate their successor communities (Spearman's r = −0.21 between kout 
and number of failed invasions to successor, p = 0.015, r = −0.23 
between kout and time to successor, p = 0.089; n = 131). In these 
analyses, neither kin nor kout were significantly associated with sev-
eral other properties that I examined in previous sections, that is, 
the incidence of competitive, neutral, facilitative, and cross- feeding 
interactions. Analogous associations exist for random viable metab-
olisms (Results S4).

In summary, communities that occur recurrently during commu-
nity assembly are highly productive, occur late during an assembly 
sequence, are more difficult to reach, but are also more invasion re-
sistant. Conversely, transient communities are less productive, occur 
earlier during an assembly sequence, are easier to reach, but are also 
less invasion resistant. Transient communities are in several ways 
the opposite of recurrent communities. Indeed, the indegree and the 
outdegree of communities are negatively associated (Spearman's 
r = −0.31 p = 2.9 × 10−4, n = 131).

4  |  DISCUSSION

For both gut microbes and random viable “species”, I find that 
communities become more invasion resistant, especially during 
community assembly. These observations are consistent with ear-
lier modelling work (Drake, 1990; Law & Morton, 1996; Post & 
Pimm, 1983). However, in contrast to the Lotka- Volterra models 
of earlier work, species interactions in my genome- scale metabolic 
modelling framework emerge from first biochemical principles. My 
observations thus suggest that increased invasion resistance is a ge-
neric feature of microbial communities in which trophic interactions 
mediated by environmental nutrients are prevalent.

The models I use also help explain why invasion resistance in-
creases. At the center of this explanation is a community's biomass 

F I G U R E  4  A community assembly graph shows that some communities occur repeatedly across assembly sequences. (a) Largest (“giant”) 
component (N = 1117 nodes, K = 1139 edges) of the community assembly graph, which comprises N = 2123 nodes (communities) and 
K = 2112 edges, and fragments into 50 weakly connected components. Each circle corresponds to one equilibrium community, and two 
communities Ci and Cj are connected by a directed edge if community Cj emerged from community Ci via a successful species invasion during 
an assembly sequences. Circle size corresponds to community biomass, and darker shading indicates higher indegree. (b) Magnification 
of the boxed area from (a). Note that several high biomass nodes have darker shading, which indicates that community assembly reached 
such nodes more than once. The bidirectional arrows indicate communities that can be reached from each other via a successful species 
invasion. (c) Distribution of indegrees for all communities. (d) Top 10 communities of two or more species ranked by indegree, together 
with the probability (p- value) of observing their indegree by chance alone and the species identifiers (Table S1) of their constituent species. 
(e) Distribution of outdegree for all communities. (f) Top 10 communities of two or more species ranked by outdegree, together with the 
probability (p- value) of observing their outdegree by chance alone and the species identifiers (Table S1) of their constituent species. Note 
that all listed communities consist only of a single species



    |  4199Wagner

productivity. It helps explain resistance against both constructive 
and destructive invasions, but for different reasons. Productive 
communities harbour few opportunities for constructive invasions, 
because they harbour few resources that are underused by resident 
species, which an invader can exploit without interfering with the 
persistence of a resident. Conversely, productive communities also 
harbour few opportunities for destructive invasions, because one 
or more of their resident species convert nutrients efficiently into 
biomass, such that few invaders can outcompete them.

In the communities I study, most pairwise species interactions 
are competitive (>80%) rather than facilitative (<17%), that is, a 
species' growth rate is reduced rather than increased by the pres-
ence of another species. This is not surprising, because all species 
can survive on the externally provided nutrients, and are thus com-
peting for these nutrients. It holds even though 70% or more of 
species pairs cross- feed. The prevalence of competition together 
with extensive cross- feeding imply that any one species grows its 
biomass to a greater extent from externally supplied nutrients than 
from the excretions of other species. It does not mean, however, 
that cross- feeding is unimportant for the assembly of species- rich 
communities. This becomes clear from random viable metabolisms, 
whose environments provide only a single carbon- source niche in 
the form of glucose. Without cross- feeding, competitive exclusion 
dictates that only single species communities are possible in this en-
vironment, because a superior competitor would always replace the 
resident species (MacArthur & Levins, 1964; Stewart & Levin, 1973). 
In contrast, I find that communities with more than four species are 
formed even in this simple environment.

My predictions are consistent with recent experiments that 
cultured microbial communities from various natural habitats in 
a synthetic environment with only a single carbon source. Due to 
extensive cross- feeding on metabolic by- products, this simple en-
vironment could support communities of up to 22 species (Estrela 
et al., 2021; Goldford et al., 2018). I emphasize that this prevalence 
of competition over facilitation may depend on the environment and 
on the invading species. For example, in nutrient- poor environments, 
or in environments where many species can grow only on metabolic 
excretions rather than externally supplied nutrients, facilitation may 
be more important than competition (Marsland et al., 2019).

Destructive invasions become more frequent during community 
assembly, but they never account for more than 50% of all invasions 
(Figure S2). This observation underlines that the external environ-
ment and metabolic excretions create ample free niche space to ac-
commodate invaders without leading to the extinction of resident 
species. Constructive invasions, however, generally lead to smaller 
increases in community productivity than destructive invasions.

Genome- scale models can provide a new perspective on long- 
standing debates in invasion biology. One of these debates revolves 
around Elton's biotic resistance hypothesis. Evidence for this hy-
pothesis is mixed, possibly because diversity may prevent invasions 
at small spatial scales, while facilitating invasions at large spatial 
scales (Altieri et al., 2010; Fridley et al., 2007; Jeschke et al., 2018). 
The present study system can help validate the hypothesis without 

space as a complicating factor, because it models a well- mixed en-
vironment. And it shows that more species- rich communities tend 
to be invasion resistant, because their efficient resource use leaves 
fewer opportunities for a new invader.

Elton argued that high species- richness entails high invasion re-
sistance. Part of the reason is that species- rich communities may be 
associated with few ecological niches that are free for an invader to 
exploit. However, this association need not be universal. Many or-
ganisms create new ecological niches through “niche construction” or 
“ecosystem engineering” (Jones et al., 1994; Odling- Smee et al., 2003). 
Bacteria do so by excreting by- product metabolites that other bac-
teria can exploit through cross- feeding. Such niche construction can 
help sustain large microbial communities even in chemically minimal 
environments (Estrela et al., 2021; Goldford et al., 2018; San Roman 
& Wagner, 2021). Thus, species- rich communities might harbour more 
free niches, and these niches might also facilitate species invasions, 
contradicting Elton's reasoning. Indeed, my simulations show that 
species- rich communities excrete a greater number of metabolites 
into the environment (Figure 3). The reason why they are nonetheless 
more invasion resistant is that competition for externally supplied nu-
trients prevails over facilitation via niche construction.

In the community assembly network I study, nodes are equilib-
rium communities. Two communities A and B are connected by a 
directed edge if a successful invasion of community A creates com-
munity B. Subsets of 100 species can form many more communities 
(≈1030) than one can explore. Even if only a small fraction of them 
form equilibrium communities in which all species coexist, the net-
work of Figure 4a is only a sparse sample of the complete community 
assembly network. In addition, it is biased towards small communi-
ties, because I assemble successively larger communities from sin-
gle species. Despite these limitations, the network representation 
can provide a new perspective on community assembly dynamics. 
For example, it leads to a natural distinction between “transient” 
communities, which have many outgoing edges and often give rise 
to other communities, and to “attractor” communities, which have 
many incoming edges and are frequent products of community 
assembly. Transient communities occur early during an assembly 
sequence, have low productivity and little invasion resistance. In 
contrast, attractor communities are late arising, with high productiv-
ity and high invasion resistance (Figure S9).

The most extreme attractor communities are those that have 
no outgoing edges –  they are end points of assembly, because they 
cannot be invaded by any species. However, because the network 
of Figure 4a is a sparse sample of a complete assembly network, I 
cannot conclude that its 244 communities with outdegree zero are 
not invasible. This illustrates the limitations of sampling an assembly 
network. It could be overcome by studying assembly sequences for 
a much smaller species pool with a manageable number of possible 
communities. Complete assembly networks also could help answer 
a number of other questions that sparse sampling cannot. For exam-
ple, they could help identify stationary distributions of community 
assembly, quantify non- transitive interactions between communities 
and invading species through cycles in the network, and determine 
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whether subsets of communities preferentially give rise to each 
other, thus creating assembly networks with a “modular” structure. 
Questions like these remain exciting tasks for future studies.

A main technical limitation of my work is its computational 
cost. For 250 assembly sequences of 5000 h (50,000 time 
steps of 0.1 h), maximal biomass- growth needs to be computed 
250 × 50,000 = 1.25 × 107 times, for each of a community's species, 
which is represented by a model of approximately 103 chemical re-
actions. Despite the numerical efficiency of FBA, this cost prevented 
me from asking a number of additional questions. For example, how 
does invasion resistance relate to other measures of community re-
silience, such as the ability to survive perturbations in species bio-
mass or environmental nutrients. Do communities show multiple 
equilibria and priority effects? These questions too remain tasks for 
future studies.

While genome- scale models are an important step towards bi-
ologically realistic models of community assembly, they also have 
biological limitations. First, they do not represent interference com-
petition, in which bacteria release toxins or antibiotics to slow the 
growth of competitors. Second, they are not suited to represent viral 
parasitism or predator– prey interactions, which do occur in bacte-
rial communities (Pérez et al., 2016), Third, they neglect that bio-
mass growth is not only influenced by nutrient uptake. For example, 
different microbial species achieve maximal growth at different pH 
values, and metabolic by- products often change the pH of the en-
vironment (Ratzke et al., 2020; Ratzke & Gore, 2018). Fourth, they 
neglect intercellular communication mechanisms such as quorum 
sensing, which can help a community coordinate the exploitation of 
nutrients (Goo et al., 2015).

The ability to persist over time is advantageous for a commu-
nity, because it allows a community to “outlive” other communi-
ties. On the level of individual organisms, advantageous properties 
usually arise through Darwinian evolution. However, Darwinian 
evolution requires selection among competing individuals in a pop-
ulation. Because no analogue of a population exists during the as-
sembly of a single community, an alternative mechanism is needed 
to explain increased resistance to invasions or other perturbations 
(Wagner, 2005). This mechanism has also been called “sequential 
selection”, “selection through survival alone” or “systemic selection” 
(Borrelli et al., 2015; Doolittle, 2014; Lenton et al., 2018). In this form 
of selection, ecological systems which experience changes that in-
crease their ability to persist become more prevalent over time, be-
cause they outlive other, more ephemeral systems (Wagner, 2005). 
In my study system, these events are invasions of highly productive 
species, which increase the community's ability to resist future in-
vaders. The same principle has been invoked to explain mechanisms 
that reduce oscillations in predator– prey systems, which make them 
prone to species extinctions (Doolittle, 2014), as well as planetary- 
scale homeostatic mechanisms that are required for the Gaia hy-
pothesis (Doolittle, 2014; Lenton et al., 2018). Darwinian evolution 
is not the only process that can create living systems with advanta-
geous traits. The same can be achieved by ecological processes as 
fundamental as resource competition and repeated invasion.
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