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Abstract: The non-stationarity, nonlinearity and complexity of the PM2.5 series have caused diffi-
culties in PM2.5 prediction. To improve prediction accuracy, many forecasting methods have been
developed. However, these methods usually do not consider the importance of data preprocessing
and have limitations only using a single forecasting model. Therefore, this paper proposed a new
hybrid decomposition–ensemble learning paradigm based on variation mode decomposition (VMD)
and improved whale-optimization algorithm (IWOA) to address complex nonlinear environmental
data. First, the VMD is employed to decompose the PM2.5 sequences into a set of variational modes
(VMs) with different frequencies. Then, an ensemble method based on four individual forecasting
approaches is applied to forecast all the VMs. With regard to ensemble weight coefficients, the IWOA
is applied to optimize the weight coefficients, and the final forecasting results were obtained by
reconstructing the refined sequences. To verify and validate the proposed learning paradigm, four
daily PM2.5 datasets collected from the Jing-Jin-Ji area of China are chosen as the test cases to conduct
the empirical research. The experimental results indicated that the proposed learning paradigm has
the best results in all cases and metrics.

Keywords: PM2.5 prediction; ensemble model; weight coefficient optimization; whale optimiza-
tion algorithm

1. Introduction

Pollution of the environment is one of the most serious issues facing humankind today,
and badly polluted air can cause great damage in economics and people’s lives. According
to the World Health Organization (WHO), it is known that almost 3 million children die
every year from a range of problems caused by air pollution [1]. With the process of
industrialization and urbanization, the air pollution is becoming increasingly serious and
the hazy weather has grown rapidly, especially in developing countries. In recent years,
the foggy weather in many areas of China have become increasingly serious. Since the
beginning of 2013, sustained haze weather has turned Beijing-Tianjin-Hebei (Jing-Jin-Ji
region) into heavy pollution region. Fine particulate matter is one of the key contributors
that leading to air pollution and hazy weather. It carries many adverse health effects, such
as respiratory diseases and premature death [2].

Recently, increasingly countries have set up environmental monitoring systems, which
can provide a large amount of PM monitoring data. However, PM data are affected by many
factors and fluctuates greatly over time, making it very challenging to predict. Therefore,
many models and tools have been developed to predict PM2.5 and other air pollutant
concentrations to improve the accuracy of the predictions. These models can be generally
categorized into physical, statistical and hybrid models. For example, physical methods
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can be used to simulate the processes of emissions, diffusion and transfer of pollutants
through meteorological, emission, and chemical models [3–5]. Statistical methods which
mainly include autoregressive integrated moving average model (ARIMA), artificial neural
networks (ANN) and multiple linear regression (MLR) [2,6–9], have been broadly applied
to the pollutant concentration prediction. For instance, Ref. [10] proposed a forecasting
model based on MLR and bivariate correlation analysis to predict the annual and seasonal
concentrations of PM10 and PM2.5. Ref. [11] studied the effects of meteorological factors
on ultrafine particulate matter (UFP) and PM10 concentrations under traffic congestion
conditions using the ARIMA model. However, in practice, most pollutant sequences
are non-linear and irregular, which may involve the problem of non-linear dynamical
systems, so these linear algorithms are still problematic in predicting PM concentration.
On the contrary, using artificial neural network models to predict pollutant concentration
can overcome the limitations of traditional linear models and handle nonlinear problems
well. [12] developed extended model based on long-term and short-term memory neural
network. The model takes into account the spatiotemporal correlation to predict the
pollutant concentration and shows excellent performance. [13] applied cuckoo search (CS)
to optimize BPNN to predict PM concentrations in four major cities in China.

Recently, to predict air quality more accurately, many hybrid models have been
proposed based on ensemble learning paradigms, data preprocessing techniques and
heuristic algorithms. For example, Ref. [14] developed a new prediction model based
on the multidimensional k-nearest neighbor model and the ensemble empirical mode
decomposition (EEMD) method. Ref. [15] developed a novel hybrid model based on
wavelet transform (WT) and stacked autoencoder (SAE) and long short-term memory
(LSTM) to simulate PM2.5 at six sites in China. Ref. [16] developed a model based on a
combination of WT and neural network algorithm to decompose the PM2.5 data and then
perform sub-series prediction analysis and finally data reconstruction. Ref. [17] proposed
a novel PM2.5 hybrid prediction model, which includes a new pre-processing method
(wavelet transform and variational mode decomposition), using differential evolution (DE)
algorithm optimized BPNN to predict each decomposition sequence. The drawback of
the decomposition-based prediction model is that using a single method to predict all
signal sequences. Since different decomposition sequences have different characteristics,
a single model does not fit all the characteristics of the decomposition sequences [18].
Thus, ensemble prediction model integrated multiple single models will help avoid the
shortcomings of a single model and further improve the prediction accuracy. Furthermore,
many heuristic algorithms are used to help optimize the weight coefficients of the ensemble
model. [19] developed an ensemble model based on differential evolution (DE) to determine
the optimum weights for electricity demand forecasting. Ref. [20] employed the cuckoo
search algorithm (CSO) to optimize the weight coefficients of ensemble model. Whale
optimization algorithm (WOA), proposed by Ref. [21], is a novel heuristic algorithm by
imitating whale behavior in nature. However, the WOA will encounter problems such
as being stuck in a local optimal solution and slow in convergence, when solving more
complex problems. Thus, a new improved whale optimization algorithm (IWOA) is
proposed in this study to strengthen the local seeking capability of the WOA.

Through the above analysis, considering the criticality of data pre-processing and
the limitations of one single prediction model, a new hybrid decomposition–ensemble
learning paradigm based on variation mode decomposition (VMD) and modified whale-
optimization algorithm (IWOA) is introduced. First, the original PM sequence is decom-
posed into different VM sequences using VMD. Then, the weight-determined ensemble
model, which optimized by IWOA, is employed to forecast each decomposition component.
Finally, several prediction subsets are assembled into the final prediction result.

The paper is structured as follows: in Section 2, several single forecasting models,
the ensemble prediction theory and VMD, are introduced. In Section 3, the proposed
decomposition–ensemble model is presented. In Section 4, the study areas and the evalua-
tion criteria are described. In Section 5, the comparative results of the proposed model and
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other models is in conducted. Finally, in Section 6, the conclusions the important results of
this paper are explicitly introduced.

2. Related Methodology

Four individual forecasting models, VMD, IWOA, which employed in the suggested
ensemble model, are described as follows.

2.1. Four Individual Prediction Methods

In latest years, many prediction models have been developed and applied to PM2.5
concentration prediction. This paper uses four popular methods, BPNN, ANFIS, ANFIS-
FCM and GMDH, which show good performance in PM2.5 prediction, to construct the
ensemble models.

2.1.1. The Back Propagation Neural Network (BPNN)

The BPNN is a multi-layer feed-forward neural network, which is widely used in
many fields. The BPNN algorithm needs to find the parameter with the minimum error, i.e.,
the minimum value of the error between the output value and the actual value according
to the negative gradient direction. The process of the BPNN is mainly divided into update
and learning stages:

kij(t) = wij(t− 1)− ∆wij(t) (1)

∆wij(t) = η∂E/∂wij(t− 1) + α · ∆wij(t− 1) (2)

where η denotes the learning speed, wij represents the weights between nodes i and j, α
denotes the impulse parameter, E denotes the error super curve face and t denotes the
current iterative steps.

2.1.2. The Adaptive Network Based Fuzzy Inference System (ANFIS)

Ref. [22] proposed the ANFIS that combines the blur systems and neural networks.
It plays the advantages of both and makes up for the shortcomings of each. ANFIS can
form an adaptive neuro-fuzzy controller by using a neural network learning mechanism to
automatically retrieve rules from the input and output sample data. Through the offline
training and the online learning algorithms, it can create fuzzy inferences and control
the self-adjustment of rules, thereby making the system itself develop towards adaptive,
self-organizing, and self-learning. ANFIS includes five-layer network, and each layer
contains several node functions.

Layer 1: This process is the fuzzy layer. Each node in layer 1 is adaptive, all have node
function, and will generate membership of a fuzzy set.

O1
i = µAi (x) (3)

where x denotes the input to node I, and Ai denotes the language label associated with the
function of this node. The “µ” denotes the membership functions for Ai, which described
by generalized Gaussian functions.

Layer 2: In this process every node is a circular node labeled ∏ out, i.e., ∏ -norm
operation:

O2
i = µAi (x) + µBi (y), i = 1, 2 (4)

Layer 3: At each node in this layer, the ratio of the firing weights under the ith rule to
the sum of the firing weights under all rules is calculated:

O3
i = wi =

wi
w1 − w2

, i = 1, 2 (5)

At this level, all outputs are collectively referred to as normalized emission intensity.
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Layer 4: In this process, the contribution of the ith rule to the overall output is calcu-
lated:

O4
i = wi fi = wi(aix + biy + ci), i = 1, 2 (6)

where wi represents the out of layer 3, and (aix + biy + ci) is the parameter set.
Layer 5: In this layer, the signal node ∑ calculate the final output as the sum of all

incoming signals:

O5
i = ∑

i
wi fi =

∑i wi fi

∑i wi
(7)

The final output of the adaptive neural fuzzy inference system is:

fout = w1 f1 + w2 f2 = w1
w1+w2

f1 +
w2

w1+w2
f2

= (w1x)p1 + (w1x)q1 + (w1x)r1 + (w2x)p2 + (w2x)q2 + (w2x)r2
(8)

2.1.3. The Fuzzy C-Means Clustering (FCM)

The FCM is a type of data aggregation method. In the FCM method, each data point
needs to be classified as a level assigned at the member level in the cluster. FCM divides
a selection of n vector xi, (i = 1, 2, . . . , n) into fuzzy groups, and then finds a clustering
center in each fuzzy group in a way that minimizes the cost function of the similarity
measure. The above i = 1, 2, . . . , c represents random sampling from n points. Here is a
brief introduction to the stage of the FCM algorithm. First, choosing the centers of cluster
ci, (i = 1, 2, . . . , c) from the n points (x1, x2, x3, . . . , xn) randomly. Second, the membership
matrix U, is calculated by using the subsequent equation as follows:

µij =
1

∑c
k=1

( dij
dkj

) 2
m−1

(9)

where dij = ‖ci − xj‖ is the Euclidean distance which involves the i-th cluster center and
the j-th data point, and m is the fuzziness index. Third, compute the cost function using the
following formula.

J(U, c1, . . . , c2) =
c

∑
i=1

ji =
c

∑
i=1

n

∑
j=1

µm
ij d2

ij (10)

Stop the process when it falls below a certain threshold. Additionally, finally, the new
c fuzzy clustering center ci, i = 1, 2, . . . , c is calculated using the following equation:

Ci =
∑n

j=1 µm
ij

xj

∑n
j=1 µm

ij

(11)

2.1.4. The Group Method of Data Handling (GMDH)

The GMDH is a series of computer-based inductive algorithms for the mathematical
modeling of multi-parameter data sets. It is characterized by a fully automatic structure
and parameter optimization of the model. The GMDH can be used for data extraction,
knowledge detection, prediction, modeling of complex systems, optimization, and pattern
recognition [23]. The GMDH algorithm features an induction procedure to classify increas-
ingly complex multinomial models and select the best solution by the externality criterion.

The GMDH pattern generally have multiple sets of inputs and one set of outputs, and
is a subset of the components of the basic function:

Y(x1, . . . , xn) = a0 +
m

∑
i=1

ai fi (12)
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where a denotes coefficients and f denotes the fundamental function that depends on
different inputs, m represents the number of fundamental function components.

The basic function (12) is called the partial model and the GMDH considers various
subsets of this function and thus finds the optimal solution. The coefficients of the model
are first estimated using the least squares method. Then, the number of local components
of the model is gradually increased. Finally, the GMDH algorithm finds the best complexity
model structure by minimizing the external criterion. This process is called self-organizing
of the model.

The main idea of the GMDH neural network learning algorithm is as follows: a series
of source neurons are generated by performing cross-combining on each entry unit of the
system, and the mean square error of the output error corresponding to each neuron is
calculated; then, several outputs are chosen from the created neurons with smaller mean
square error than a predetermined threshold, the selected neurons are used as the input
unit of the new generation; the process of survival of the fittest and gradual evolution is
repeated until the new generation of neurons is no better than the previous generation.

2.2. Variation Mode Decomposition (VMD)

The VMD is a non-recursive signal treatment algorithm that decomposes the original
signal into a family of patterns with a specific frequency spectrum domain bandwidth [24].
During the decomposition process, each pattern can be compressively pulsed around a
certain center. If the bandwidth of each pattern is required, three steps should be completed.
After that, a constraint variational problem can be given. The details of VMD are described
in [25].

2.3. Optimization Algorithm-IWOA

An improved heuristic algorithm IWOA is developed to enhance the performance of
the ensemble model. The IWOA determines the optimal weight coefficient of the ensemble
model. The basic whale optimization algorithm (WOA), chaotic local search (CLS), and the
WOA modified by CLS will be described below.

2.3.1. Overview of the Whale Optimization Algorithm

The WOA, put forward by S. Mirjalili in 2016, is a simulation of the hunting mech-
anism of humpback whales, called bubble-net feeding method. Humpback whales form
distinctive bubbles by circling around their prey in a circular or “9 shaped” path during
foraging. With special exercises, humpback whales first form a spiral bubble 10-15 m below
their prey while swimming upstream to the surface. Then, it surrounds the prey with its
flashing fins to prevent it from escaping and catch it [21]. The mathematical principles of
the above humpback whale behavior are described as follows:

(a) Encircling prey:
The humpback whale orbits its prey, and updates its position to the best search agent

as the number of iterations increases. It can be depicted mathematically as:

→
D =

∣∣∣∣→C →X∗(t)−→X(t)
∣∣∣∣ (13)

→
X(t + 1) =

→
X∗(t)−

→
A ·
→
D (14)

where X* denotes the position vector of the best solution obtained thus far,
→
X is the position

vector,
→
A and

→
C denote the coefficient vectors, and t denotes the current iteration.

(b) Bubble-net attacking method:
The mathematical modeling of humpback whale’s vesicular behavior is designed for

the following two methods. 1. Shrinking encircling mechanism: This is a bracket predation
mechanism that requires finding a new agent location, which can be anywhere between
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the agent’s original location and the current optimal agent location. The values of
→
A in this

process is in the interval [−1, 1].
2. Spiral update position: A spiral equation needs to be created between the positions

of both the prey and the whale to mimic the spiral motion of the humpback whale, as
shown below.

→
X(t + 1) =

→
D′ · ebl · cos(2πl) +

→
X∗(t) (15)

The probability p, a random number in [0,1], is assumed to select between the shrinking
encircling and the spiral-shaped path during the optimization process.

(c) Search for prey:

During the search phase, the variation of vector
→
A can also be used to find prey at

random. Therefore, to move away from a reference whale,
→
A can be utilized with the

random values greater than 1 or less than −1. The mathematical model at this stage is
as follows: →

X(t + 1) =
→

Xrand −
→
A ·
→
D

→
D =

∣∣∣∣→C · →
Xrand −

→
X
∣∣∣∣ (16)

where
→

Xrand is a random position vector (random whale) selected from the current popula-
tion.

2.3.2. IWOA

As mentioned earlier, WOA was recently proposed and widely used in many fields.
However, it also has shortcomings, like slow conversion in the late stage and easy to
fall into a local optimum. Additionally, the chaotic local search (CLS), based on chaotic
search, can effectively avoid the local optimization and converge to the global optimization.
The blending of WOA and CLS can help improve global conversion and prevent falling
into local solutions. To accelerate the local convergence of WOA, the chaotic local search
algorithm is also applied. When WOA finishes iterating to find the best solution, the
acceptance of these new solutions as determined by CLS will perform to local search a
better solution close to the best solution. A logistic equation applied in CLS is defined
as follows:

cxiter+1
i = µcxiter

i

(
1− cxiter

i

)
(17)

where cxi denotes the ith chaotic variable, iter is the iteration number. When µ = 4,
the above equation exhibits chaotic dynamics, cxi denotes range in (0,1) and cx0 /∈
{0.25, 0.5, 0.75}. For more details about CLS, please refer to [26].

The pseudo-code of the IWOA algorithm is outlined as follows:
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Algorithm: Improved whale-optimization algorithm (IWOA)

Objective:
Minimize and maximize the objective function f (x), xi = (xi1, xi2, . . . , xid)
Parameters:
iter-iteration number.
Maxiter-the maximum number of iteration.
I-a population pop.
p-the switch probability
1. /*Initialize a population xi = (xi1, xi2, . . . , xid)
2. WHILE iter < Maxiter
3. FOR i = 1 to I
Update

→
A,
→
C , l and p

4. IF p > 0.5

5. IF (

∣∣∣∣→A∣∣∣∣ < +1)

6. Update the position of the current solution by Equation (14)

7. ELSE IF (

∣∣∣∣→A∣∣∣∣ > +1)

8. Randomly choose a search agent
9. Update the position of the current search agent by Equation (16)
10. END IF
11. ELSE IF p > 0.5
12. Update the position of the current search by Equation (15)
13. END IF
14. END FOR
15. /*Jump out of local optimum by using chaotic local search. */

16. Calculate cxiter
i =

xiter
i −xmin

i
xmax

i −xmin
i

17. Calculate the next iteration chaotic variable by Equation (16)
18. Transform cxiter+1

i for the next iteration xiter+1
i = xmin

i + cxiter+1
i

(
xmax

i − xmin
i
)

19. /*Evaluate xiter
i replace xiter

i by xiter+1
i if the newly generation is better. */

20. /*Find the current best solution gbest*/
21. iter = iter + 1
22. END WHILE

3. Decomposition–Ensemble Learning Paradigm

In this part, we suggest a new hybrid decomposition–ensemble learning paradigm
that integrates VMD method, several prediction models and IWOA optimization. The
main process of the developed decomposition–ensemble paradigm is shown in Figure 1.
The three main steps of the ensemble model are as follows:

- Step 1: Decomposition process:

First, the features and noise of the original pollution data needed to be cleaned
and processed so that an effective prediction model could be built. In this study, VMD
technology was used to disaggregate the original pollution datasets into a set of VMs and
the residue component with corresponding frequencies.

- Step 2: Ensemble forecasting and IWOA optimization:

The decomposition sequences with different characteristics were obtained via the
VMD process. However, different sequences had different properties, which meant that
a single prediction method could no longer effectively adapt to all the characteristics
of the VMs. Thus, the ensemble strategy is adopted to solve this problem, and can be
described as that if there are M types of prediction methods with the correct selection
of weight coefficients to solve a problem. The results of multiple models were added
together. Assume that Emodel (Model = “BPNN”, “ANFIS”, “ANFIS-FCM”, “GMDH”) is
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the ensemble prediction result of each VM by using the above methods. Then, using IWOA
to optimize the output of the Emodel , it can be expressed as

OutputVMs
SCWOA−NNCT = w1 × Pmodel1 + w2 × Pmodel2 + w3 × Pmodel3 . . . (18)

where wi (i = 1, 2, . . . , N) is the weight coefficient of the model N. wi ∈ [−2, 2] is the range
of weight coefficients by NNCT [27].
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To improve the optimal weight coefficients wi(i = 1, 2, . . . , N), IWOA was employed
to find the optimal solution for the ensemble weight coefficients. Before optimization, the
objective equation needed to be confirmed first. The objective function of this paper is set
by Equation (18). When the predefined minimum value of the objective function or the
maximum iterations was reached, the optimization process was terminated. Nevertheless,
the search boundary of the WOA is set to [−2, 2], the nesting dimension is 5 and the
maximum number of iterations is 500.

- Step 3: Assemble forecasting results:

Through the above steps, the overall prediction results of the VMs were obtained.
Then, the prediction results were combined to obtain the final result.

4. Study Areas and the Evaluation Criteria
4.1. Data Description

In this paper, the PM2.5 concentration data from the Environmental Protection of
the People’s Republic of China (http://www.mep.gov.cn/) were collected to verify the
performance of the proposed model. The selected daily PM2.5 concentration sample data are
for Beijing, Tianjin, Baoding and Shijiazhuang from 1 August 2015 to 31 August 2017. The
total data number of daily PM2.5 concentration for each city were 763. In each experiment,

http://www.mep.gov.cn/
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the first 572 data (approximately 75% of the total data) of each VM were used for training
subsection, and the rest were the test subsection. When all predicted VMs were integrated
into the overall result, the 189 pieces of data (about 25%) in the test results were used for
optimizing the weights of the ensemble model and the rest were used for model testing.

4.2. Model Assessment Standards

To effectively assess the prediction performance of the developed model, four popular
error criteria, shown in Table 1, were employed to assessment the prediction capacity of
the developed model. Smaller values denote better prediction performance.

Table 1. Four evaluation rules.

Metric Equation Definition

MAE MAE = 1
N

N
∑

n=1

∣∣∣yn −
∧
yn

∣∣∣ The average absolute forecast error
of n times forecast results

RMSE RMSE =

(
1
N

N
∑

n=1

(
yn −

∧
yn

)2)1/2

The root mean-square forecast error

MAPE MAPE = 1
N

N
∑

n=1

∣∣∣∣ yn−
∧
yn

yn

∣∣∣∣× 100% The average of absolute error

TIC TIC =

√
1
N

N
∑

n=1
(yn−ŷn)

2

√
1
N

N
∑

n=1
yn2+

√
1
N

N
∑

n=1
ŷn2

Theil’s inequality coefficient

Here, yn and ŷn present the actual and predicted values at time n, respectively. N
denotes the sample size.

5. Results and Analysis
5.1. Data Decomposition by VMD

In the proposed VMD-IWOA ensemble model, the original PM2.5 concentration se-
quence is first decomposed into several independent VMs by using VMD. However, too
many VMs introduce new problems. During the integrated prediction process, each VM
generates estimation errors, and too many VMs cause an accumulation of errors. It also
increases the time consumed in a single prediction step. To prevent the above problems,
the entire VMs were restructured into three VMs and a residual.

5.2. The Process of Ensemble Forecast on VMs

The BPNN, ANFIS, ANFIS-FCM and GMDH prediction models were applied to
forecast each VM, which reconstructed in Section 5.1. Additionally, then, the ensemble
model integrates the results of the four prediction models on each VM, and optimizes
the weights of the four prediction results based on IWOA. Before the simulation, the
parameters of the four neural network model need to be initialized. The input nodes of the
neural network are set to four, the hidden nodes to nine and the output nodes to 1. Besides,
the rolling single-step forecasting operation method based on PM2.5 concentration data of
four cities is used to test the predictive performance. The detailed experimental parameters
of the four neural networks are shown in Table 2.

Table 3 shows the prediction results of the single models and the proposed ensemble
model for each VM. To evaluate model performance, the RMSE was utilized as a model
evaluation index. As can be seen from Table 3, each model performed optimally predictive
behavior at a particular VM. For instance, the experimental results in Beijing were shown
as follows: the BPNN provides the lowest RMSE values among all single models at VM2
and VM3, while at VM1 and residual, GMDH has the lowest RMSE values. The prediction
results in Tianjin show that the ANFIS presents the best results at VM1. The FCM performs
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best at VM3. At VM2 and Residual, the GMDH provides the best results. The experimental
results in Baoding show that among all of the single models, the RMSE value was lower
than those of the other methods at VM1 and Residual, when the ANFIS was applied.
At VM2 and VM3, the GMDH presents the optimal results. The forecasting results in
Shijiazhuang reveal that the GMDH performs better than the others at VM2, VM3 and
residual while ANFIS performs the best at VM1.

Table 2. Experiment parameters of artificial neural networks (ANNs).

Model Experimental Parameters Default Value

BPNN
The learning velocity 0.01

The maximum number of trainings 1000
Training requirements precision 0.00004

ANFIS
Spread of radial basis functions 0.5
Training requirements precision 0.00004

FCM
The maximum number of trainings 1000

Spread of radial basis functions 0.15

GMDH
Learning rate 0.1

Training requirements precision 0.00004

Based on the above analysis, it can be revealed that each model has its advantages on
the particular VMs. A single prediction model cannot be used to predict all decomposition
signals uniformly. Thus, the most suitable model is selected according to the different
conditions, which reveals that an ensemble model can incorporate the virtues of multiple
individual models to overcome the limitations of individual models. Therefore, this study
proposed an ensemble model based on the IWOA to seek the best weight coefficients of
the ensemble model. The searching boundary is set in [−2, 2] based on the NNCT, and the
RMSE criteria is used as fitness function of IWOA. Table 3 presents the best weights and
final results of the ensemble model. By comparing with each single model, it indicates that
the developed ensemble model can give the desired prediction results.

Comparing the ensemble model with BPNN, ANFIS, FCM and GMDH, the average
RMSE of four cities at VM1 was reduced by 26.10%, 2.62%, 7.80% and 3.97%, respectively;
At VM2, the average RMSE of four cities was reduced by 5.81%, 11.15%, 11.51% and 3.59%;
At VM3, the average RMSE of four sites was reduced by 7.19%, 58.21%, 13.92% and 6.22%,
respectively. For Residual, the average RMSE of four sites was reduced by 17.79%, 33.09%,
22.27% and 7.51%, respectively. Consequently, it can be seen that compared with the single
models BPNN, ANFIS, FCM and GMDH, the forecasting result of the ensemble model is
significantly improved on each VM component.
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Table 3. VMs forecasting results of the individual model and ensemble models in four cities.

Models
VM1 VM2 VM3 Residual

Weights RMSE Weights RMSE Weights RMSE Weights RMSE

Beijing BPNN 0.06880 0.32695 0.40850 0.67043 1.24076 0.81130 0.51770 1.16300
ANFIS 0.30331 0.30256 0.03701 0.75516 −0.10014 1.38320 0.38167 1.17560

ANFIS-FCM 0.00617 0.30669 0.17178 0.73279 0.18866 0.87710 −0.48722 1.43640
GMDH 0.63306 0.29672 0.38893 0.68048 −0.34365 0.86398 0.56177 1.16110

Ensemble model - 0.29096 - 0.65445 - 0.79141 - 1.05820

Tianjing BPNN 0.03703 0.31010 0.11645 0.61997 0.16865 0.79890 −0.57673 1.34090
ANFIS 0.34467 0.25575 0.35167 0.64571 −0.17093 0.90740 −0.00375 1.73350

ANFIS-FCM 0.26816 0.25998 −0.07272 0.66214 0.74391 0.75810 −0.14957 1.23630
GMDH 0.34997 0.25685 0.61707 0.59548 0.24071 0.78005 1.71433 0.99831

Ensemble model - 0.24593 - 0.57482 - 0.73581 - 0.93073

Baoding BPNN −0.04298 0.36294 −0.35375 0.65537 0.11825 1.19390 0.17385 0.82444
ANFIS 0.72431 0.26715 0.33840 0.67208 0.12688 1.49690 0.40790 0.80775

ANFIS-FCM 0.10233 0.28678 0.33900 0.65961 −0.03061 1.35590 −0.00282 0.85015
GMDH 0.21607 0.27619 0.67852 0.65221 0.81967 1.13750 0.38544 0.86024

Ensemble model - 0.26360 - 0.63175 - 1.08830 - 0.77429

Shijiazhuang BPNN −0.07031 0.29393 −1.28208 0.60497 0.40346 1.09080 −0.01858 0.78471
ANFIS 1.01576 0.23183 0.50000 0.61216 −0.04074 2.99250 −0.07890 0.92644

ANFIS-FCM −0.08646 0.25504 −0.20145 0.63428 0.15397 1.18430 0.32321 0.78460
GMDH 0.14144 0.23988 2.00000 0.57380 0.50412 1.06280 0.75931 0.72264

Ensemble model - 0.22918 - 0.55405 - 1.01030 - 0.70881
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5.3. Model Performance Evaluation and Comparison

To evaluate the proposed ensemble model, three types of model comparison exper-
iments were designed to compare the proposed ensemble model with other individual
models, VMD-based models, and existing benchmark models.

5.3.1. Experiment 1: The Comparison between the Ensemble Model and
VMD-Based Models

The experiment compares four VMD-based prediction models with the developed
ensemble model. The four VMD-based models are VMD-BPNN, VMD-ANFIS, VMD-FCM
and VMD-GMDH, which were constructed to emphasize important usages of the data
decomposition technology. The corresponding improvement of the developed ensemble
model and the VMD-based models are shown in Table 4 and Figure 2. By comparing the
ensemble model with the VMD-BPNN, VMD-ANFIS, VMD-FCM and VMD-GMDH, we
can conclude that the ensemble model significantly outperforms the other VMD-based
models according to four evaluation criteria. For example, in Beijing, the ensemble model
leads to 2.3843, 10.6660, 3.6867 and 2.1953 reductions in MAE, 5.4454, 21.3895, 11.6926 and
9.7510 reductions in RMSE, 0.3159, 11.9748, 12.3061 and 5.3553 reductions in MAPE, 5.2795,
21.3508, 11.6465 and 9.6318 reductions in TIC to compare with VMD-BPNN, VMD-ANFIS,
VMD-FCM and VMD-GMDH, respectively. In addition, Figure 2 illustrates the comparison
of actual values and the forecast values. The predicted results from the developed ensemble
model are better than other VMD-based models.
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Table 4. The results of the ensemble model and other VMD-based models at four cities.

Dataset Indicator Ensemble Model vs. VMD-BPNN Ensemble Model vs. VMD-ANFIS Ensemble Model vs. VMD-ANFIS-FCM Ensemble Model vs. VMD-GMDH

Beijing IMAE (%) 2.3843 10.6660 3.6867 2.1953
IRMSE (%) 5.4454 21.3895 11.6926 9.7510
IMAPE (%) 0.3159 11.9748 12.3061 5.3553

ITIC (%) 5.2795 21.3508 11.6465 9.6318

Tianjing IMAE (%) 14.0270 14.5473 7.3431 3.5937
IRMSE (%) 18.0484 21.9939 11.8452 7.1982
IMAPE (%) 14.5592 12.9259 10.8481 3.3801

ITIC (%) 18.0279 22.0097 11.7854 7.1898

Baoding IMAE (%) 2.8295 7.3044 6.9863 0.5752
IRMSE (%) 3.9004 7.4784 7.6538 2.3325
IMAPE (%) 2.1528 7.0565 6.0185 0.0488

ITIC (%) 3.8167 7.5020 7.6881 2.3468

Shijiazhuang IMAE (%) 1.4251 18.7068 4.7226 4.8292
IRMSE (%) 4.8678 49.9864 9.2788 5.0535
IMAPE (%) 1.2716 15.5030 5.3138 4.0961

ITIC (%) 4.8218 50.0715 9.3976 5.0563
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5.3.2. Experiment 2: The Comparison between the Ensemble Model and Individual Models

This experiment used four individual models to make comparison with the developed
ensemble model. The four individual models are BPNN, ANFIS, FCM and GMDH. Table 5
indicates the comparison forecasting results between ensemble model and other single
models. From Table 5, by comparing the ensemble model with the BPNN, ANFIS, FCM
and GMDH, there are significant improvements in the predictions of the proposed model.
For example, in Beijing, the ensemble model leads to 66.4829, 71.3965, 67.8848 and 82.5946
reductions in MAE, 65.7865, 73.3943, 7.7401and 81.1458 reductions in RMSE, 67.7547,
71.7270, 67.5358 and 83.5715 reductions in MAPE, 65.6355, 73.1804, 67.5553 and 80.7598
reductions in TIC to compare with BPNN, ANFIS, FCM and GMDH, respectively. Besides,
Figure 3 presents the comparison between the actual values and the forecast values. The
forecast results from the developed ensemble model are better than other single models.
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Table 5. The results of the ensemble model and other single models at four cities.

Dataset Indicator Ensemble Model vs. BPNN Ensemble Model vs. ANFIS Ensemble Model vs. ANFIS-FCM Ensemble Model vs. GMDH

Beijing IMAE (%) 68.6537 71.9248 69.1895 80.9890
IRMSE (%) 66.6395 76.9644 68.1596 78.5772
IMAPE (%) 69.6792 68.0098 58.9320 79.7105

ITIC (%) 66.3829 76.7079 67.9496 77.7231

Tianjing IMAE (%) 66.4829 71.3965 67.8848 82.5946
IRMSE (%) 65.7865 73.3943 67.7401 81.1458
IMAPE (%) 67.7547 71.7270 67.5358 83.5715

ITIC (%) 65.6355 73.1804 67.5553 80.7598

Baoding IMAE (%) 87.9473 90.1459 89.0888 88.2149
IRMSE (%) 88.0371 90.9558 88.0382 87.3972
IMAPE (%) 88.0240 89.6555 89.2647 88.3508

ITIC (%) 87.7416 90.6394 87.7908 87.0859

Shijiazhuang IMAE (%) 88.3384 88.7396 89.1616 88.0327
IRMSE (%) 88.8181 88.9320 89.5788 88.2980
IMAPE (%) 87.7574 88.4450 88.8123 87.8461

ITIC (%) 88.8018 88.8921 89.4880 88.1406
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5.3.3. Experiment 3: The Comparison between the Proposed Model and the
Existing Models

This part was conducted to further verify that the suggested hybrid decomposition–
ensemble method can effectively improve performance prediction. Several existing models
widely used in environmental prediction were applied to conduct comparative studies
to access the suggested models. The existing models include two simple algorithms
(i.e., ARIMA and RBFNN) and three hybrid algorithms (i.e., SSA-ENN, EEMD-GRNN and
EEND-WOA-BPNN). The results of the comparative study are given in Table 6 and Figure 4.
It can be seen from Table 6 and Figure 4 that the values of MAE, RMSE, MAPE and TIC of
the developed model are all lower than the other existing models, which further shows the
prediction performance of the developed ensemble model has obvious advantages. For
example, comparing the proposed model with ARIMA, RBFNN, SSA-ENN, EEMD-GRNN
and EEND-WOA-BPNN, the MAPE of Beijing was reduced by 94.01%, 91.14%, 90.22%,
86.73% and 69.20%, respectively. For Tianjing, the average MAPE of was reduced by 92.13%,
89.47%, 89.39%, 82.92% and 57.96%, respectively. For Baoding, the average MAPE was
reduced by 94.01%, 91.14%, 90.22%, 86.73% and 69.20%, respectively. For Shijiazhuang, the
average MAPE was reduced by 94.01%, 91.14%,90.22%, 86.73% and 69.20%, respectively.
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Table 6. Comparison of prediction performances with existing models.

Dataset Indicator MAE RMSE MAPE TIC Error Mean Error STD

Beijing ARIMA 26.4865 36.2374 92.8296 0.3176 −0.1317 36.3334
RBFNN 17.0813 21.7653 62.7264 0.1751 −11.9703 18.2263

SSA-ENN 14.8237 18.7182 56.8534 0.1593 −6.4266 17.6271
EEMD-GRNN 11.3569 13.8575 41.9101 0.1176 −6.0212 12.5142

EEMD-WOA-BPNN 6.3748 7.7832 18.0544 0.0647 −5.2481 5.7629
Pro. Ensemble 1.6843 2.3367 5.5600 0.0202 0.0577 2.3422

Tianjing ARIMA 17.4613 24.6957 35.4034 0.2059 −1.6273 24.7075
RBFNN 12.5062 16.2787 26.4680 0.1376 −2.2933 16.1591

SSA-ENN 12.4636 16.4413 26.2710 0.1335 −5.6593 15.4776
EEMD-GRNN 7.6808 9.7881 16.3186 0.0815 −2.8509 9.3886

EEMD-WOA-BPNN 3.2047 3.9304 6.6289 0.0328 −0.8012 3.8581
Pro. Ensemble 1.4745 2.0918 2.7869 0.0176 0.0061 2.0973

Baoding ARIMA 20.0634 26.7218 31.9956 0.1888 −3.9880 26.4927
RBFNN 15.0370 19.2877 25.5808 0.1376 −5.4023 18.5648

SSA-ENN 13.4114 17.4316 24.1157 0.1275 −4.2010 16.9627
EEMD-GRNN 9.5818 12.4331 17.2851 0.0902 −4.2821 11.7035

EEMD-WOA-BPNN 5.0988 6.7604 9.2280 0.0495 −2.2183 6.4030
Pro. Ensemble 1.4926 2.1029 2.4427 0.0156 −0.0498 2.1079

Shijiazhuang ARIMA 15.5991 19.9363 25.4303 0.1541 1.9553 19.8929
RBFNN 13.4980 17.7899 23.6275 0.1310 −5.9717 16.8022

SSA-ENN 11.1319 15.3624 18.5469 0.1204 0.9266 15.3752
EEMD-GRNN 15.5582 18.5484 29.2907 0.1326 −11.1552 14.8584

EEMD-WOA-BPNN 11.9964 15.2740 22.6224 0.1093 −9.8333 11.7187
Pro. Ensemble 1.4004 1.8717 2.3930 0.0143 −0.0449 1.8762
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In addition, the error mean and error STD are also used to evaluate the models’ ac-
curacy and stability, and the results shows that the developed model has higher accuracy
and stability than other existing models. Therefore, it can be concluded that the proposed
ensemble model can be successfully and effectively employed for PM2.5 concentration
prediction compared with existing models. Furthermore, the proposed ensemble model
has the following highlights compared to previous works [15,16]: 1. the data decom-
position; 2. multi-model integration prediction; and 3. the optimized ensemble pattern
weighting coefficients.

6. Conclusions

Reliable and precise PM2.5 concentration forecasting is important for air quality early
warning and pollution control. Owing to uncertainties and unstable of the PM2.5 datasets,
the original PM2.5 series are very difficult to forecast accurately. Thus, it is still a chal-
lenging task to predict and simulate the PM2.5 reasonably. In this study, a new hybrid
decomposition–ensemble learning paradigm, which based on variation mode decomposi-
tion (VMD) and modified whale-optimization algorithm (IWOA), is proposed to predict the
PM2.5 concentration. In this developed paradigm, the VMD method was employed to de-
compose the original PM2.5 sequence into several VM series for forecasting. The prediction
results show that the single prediction model used for pollution concentration prediction
has limited capability and is not appropriate for all VMs. To this end, an ensemble model,
based on four individual forecasting approaches, BPNN, ANFIS, FCM and GMDH, is
proposed for predict all the VM components. Furthermore, in order to ascertain the best
ensemble weight coefficients, an improved Whale Optimization Algorithm, named IWOA,
is proposed and the final forecasting results were achieved by reconstructing the precise
sequence. The main contributions of this paper are summarized as follows: (1) A new
decomposition–ensemble learning paradigm is developed for PM2.5 concentration forecast-
ing. (2) The VMD technique is adopted to decompose the primary PM2.5 series. (3) ANFIS,
ANFIS-FCM and GMDH are utilized for PM2.5 forecasting. (4) An improved heuristic
algorithm, IWOA, is developed to improve the weight coefficients of the ensemble model.

To evaluate the developed model, daily PM2.5 sequence from four cities located in
Jing-Jin-Ji area of China were collected as the test cases for the comparison study. The
comparison results indicated that the developed ensemble model is superior to comparison
models, include four VMD-based models, four individual models, two benchmark models
and three existing models. Thus, the developed ensemble model provides an effective
forecasting ability, especially for the highly volatile and irregular data (e.g., PM2.5 concen-
tration) and can be a powerful tool for decision makers in air quality monitoring and early
warning system.
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