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Abstract: Gammaherpesvirus infections have been described in cervids worldwide, mainly the
genera Macavirus or Rhadinovirus. However, little is known about the gammaherpesviruses species
infecting cervids in Norway and Fennoscandia. Blood samples from semi-domesticated (n = 39)
and wild (n = 35) Eurasian tundra reindeer (Rangifer tarandus tarandus), moose (Alces alces, n = 51),
and red deer (Cervus elaphus, n = 41) were tested using a panherpesvirus DNA polymerase (DPOL)
PCR. DPOL-PCR-positive samples were subsequently tested for the presence of glycoprotein B (gB)
gene. The viral DPOL gene was amplified in 28.2% (11/39) of the semi-domesticated reindeer and in
48.6% (17/35) of the wild reindeer. All moose and red deer tested negative. Additionally, gB gene
was amplified in 4 of 11 semi-domesticated and 15 of 17 wild Eurasian reindeer DPOL-PCR-positive
samples. All the obtained DPOL and gB sequences were highly similar among them, and corresponded
to a novel gammaherpesvirus species, tentatively named Rangiferine gammaherpesvirus 1, that seemed
to belong to a genus different from Macavirus and Rhadinovirus. This is the first report of a likely
host-specific gammaherpesvirus in semi-domesticated reindeer, an economic and cultural important
animal, and in wild tundra reindeer, the lastpopulation in Europe. Future studies are required to
clarify the potential impact of this gammaherpesvirus on reindeer health.

Keywords: Fennoscandia; gammaherpesvirus; moose; red deer; reindeer; ungulates; virology;
wildlife diseases; virus discovery

1. Introduction

Herpesviruses are large DNA viruses which are able to establish latency in infected hosts.
Three different subfamilies of herpesvirus are recognized within the family Herpesviridae as follows:
Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae (ICTV, 2020) [1]. Different species in the
subfamilies Alpha-, beta-, and Gammaherpesvirinae infect cervids [2,3]. Among alphaherpesviruses, cervid
alphaherpesvirus 1 (CvHV1) and cervid alphaherpesvirus 2 (CvHV2) are well documented in different
cervid species and populations, with CvHV2 being associated with infectious keratoconjunctivitis and
possibly with respiratory diseases in semi-domesticated Eurasian tundra reindeer (Rangifer tarandus
tarandus) [4–6]. Regarding betaherpesviruses, a novel species, designated cervid herpesvirus 3 was
detected in eye swabs of reindeer with ocular lesions [2].
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The subfamily Gammaherpesvirinae is divided into the following four genera: Lymphocryptovirus,
Rhadinovirus, Percavirus, and Macavirus. The genus Macavirus contains nine recognized virus species [7],
while several other species have also been reported [8,9]. Most viruses in this genus are closely related
both genetically and antigenically and are associated with the disease malignant catarrhal fever (MCF)
in different ruminant species. Several gammaherpesviruses have been reported in cervids, some of
them responsible for MCF, for example, ovine gammaherpesvirus 2, caprine gammaherpesvirus 2,
the malignant catarrhal fever virus (MCFV) of white-tailed deer (Odocoileus virginianus), and the
alcelaphine herpesvirus 2-like virus; the latter responsible for MCF in Barbary red deer (Cervus elaphus
barbarus) [1,8,10–12]. Many other gammaherpesviruses have been reported in wild ruminants, but due
to limited information were named ruminant rhadinovirus, depicting an older nomenclature of
ruminant rhadinovirus type 1 (Type 1 RuRv-MCF like) and type 2 (Type 2 RuRv-lymphotropic like [13]),
based on shared antigenic epitopes.

MCF is one of the most concerning diseases caused by gammaherpesvirus, affecting domestic
and wild ruminants of the families Bovidae and Cervidae [11,14], and pigs (Sus scrofa domestica) [15].
Despite being able to cause severe disease in non-adapted species [3], MCFV infection is usually of
low pathogenicity in specific natural hosts, as described for ovine gammaherpesvirus 2 in domestic
sheep (Ovis aries), and caprine gammaherpesvirus 2, and possibly white-tailed deer MCFV in goats
(Capra aegagrus hircus) [12,16–18].

Several species of cervids inhabit Fennoscandia, i.e., Eurasian tundra reindeer, moose (Alces alces),
red deer (C. elaphus atlanticus), fallow deer (Dama dama), roe deer (Capreolus capreolus), and white tailed
deer (Odocoileus virginianus, introduced in Finland) [19–21]. Eurasian reindeer live as wild animals
in 23 fragmented subpopulations in mountain areas of southern Norway, whereas semi-domestic
reindeer are mainly found in the northern part of the country [22,23]. Moose inhabit the whole country,
but with lower population densities on the west coast and in northern Norway [23]. Red deer inhabit
the southern part of Norway and are especially prominent along the west coast, while roe deer are
found in almost all areas of the country, but less frequently in the north [23]. Fallow deer comprises a
restricted population in the southeastern part of the country. The distribution of some of these cervid
species overlaps with the habitat used by domestic species, mainly sheep, promoting shared grazing
areas [24].

In Norway, MCF cases have been reported in cattle (Bos taurus) and pigs [15,25], and fatal outcomes
associated with ovine gammaherpesvirus 2 and caprine gammaherpesvirus 2 have also occurred in
moose, roe deer, and red deer [11]. A serosurvey of sheep and goats in Norway indicated a MCFV
seroprevalence of almost 100% in both species [25]. A few cases of fatal MCF have been reported in
captive reindeer from the United States [26], and, recently, also in a semi-domesticated reindeer in
northern Norway [27]. Additionally, a serological study using a competitive ELISA (cELISA) to detect
specific antibodies against MCFV in a group on 3339 apparently healthy semi-domesticated reindeer
from Finnmark County, Norway [28], indicated an overall seroprevalence of 3.5%.

In spite of previous reports available in the literature, information regarding the gammaherpesvirus
species infecting wild cervids from Fennoscandia are limited. In light of the potential spillover of
these viruses from domestic animals to wild populations and the serological evidence of one or
more circulating gammaherpesviruses in Norway, our aim was to surveying for the presence of
gammaherpesviruses DNA in blood samples of wild Eurasian reindeer, semi-domesticated reindeer,
moose, and red deer from Norway, attempting to characterize potentially novel herpesviruses.

2. Materials and Methods

2.1. Samples

Blood samples from thirty-nine (n = 39) semi-domesticated reindeer from eight reindeer herding
districts in Finnmark County, northern Norway, were selected based on a previous serological
survey, on samples obtained between 2004 and 2006, and in 2009 [28]. These included samples tested
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seropositive (n = 23) and negative (n = 16) for gammaherpesvirus by a direct cELISA. Additionally, blood
samples were collected from wild reindeer (n = 35), red deer (n = 41), and moose (n = 51), chemically
restrained or hunted between 2014 and 2018 in different Norwegian regions (Hardangervidda, Lesja,
Nordfjella, Oppdal, Rondane sør, Setesdal Ryfylke, and Sunndal for reindeer; Aurland, Hol, Kvinnherad,
Lærdal, and Ørstad for red deer; and Selbu and Vega for moose). Some of the reindeer samples were
collected as part of a national project to cull the wild reindeer population of Nordfjella, the site of the
first reported case of chronic wasting disease in Europe [29]. No information on the gammaherpesvirus
serological status was available for wild reindeer, red deer, and moose. A summary of all samples,
species, and locations is provided in Table 1 and Figures 1 and 2.

Table 1. Results for the gammaherpesvirus PCRs conducted in this study presented by species,
and district/municipality of origin (wild cervids) or reindeer-herding district in Finnmark County
(semi-domestic reindeer).

Species Municipality (for Red Deer and Moose)
or Reindeer District

Number of
Samples

Gammaherpesvirus PCR

DPOL + gB +

Semi-domesticated
reindeer

7 ZE Rákkonjárga 3 0 0
13ZG Lágesduottar/Ifjordfjellet 3 1 0

16 ZS Kárašjoga oarjjabealli Karasjok
vestre 10 4 2

27 YK Joahkonjárga 3 0 0
33YP Spalca 1 1 1

34 YR Ábborašša 3 1 0
36 YT Cohkolat ja Biertavárri 1 0 0

40 YX Orda 15 7 1
subtotal 39 14 4

Wild reindeer

1 Setesdal Ryfylke 4 2 1
7 Hardangervidda 13 9 8

11 Nordfjella 10 6 6
17 Reinheimen-Breheimen 1 0 0

18 Snøhetta 1 0 0
19 Rondane sør 2 0 0

23 Knutshø 4 0 0
subtotal 35 17 15

Red deer

Aurland 4 0 0
Hol 6 0 0

Kvinnherad 11 0 0
Lærdal 16 0 0
Ørstad 4 0 0
subtotal 41 0 0

Moose
Selbu 24 0 0
Vega 27 0 0

subtotal 51 0 0

Total 166 31 19
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Figure 1. Location of the moose (Alces alces) and red deer (Cervus elaphus) samples tested in this study
and which were all PCR negative. The map depicts Norway’s municipalities.
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Figure 2. Location of the wild and semi-domesticated Eurasian tundra reindeer (Rangifer tarandus
tarandus) samples tested in this study. The map depicts in red/orange wild reindeer management areas,
and in dark/light blue semi-domesticated reindeer husbandry districts. Numbers in the areas/districts
refer to information from Table 1.

2.2. Molecular Diagnostics

In order to lyse the blood samples, 200 µL of whole blood samples preserved in EDTA were
macerated with 350 of ATL lysis buffer (Qiagen, Hilden, Germany) and a tungsten carbide bead
(Qiagen) for 10 min. Subsequently, total DNA was extracted using the DNeasy Blood and Tissue
kit (Qiagen) (semi-domestic reindeer) or the Qiasymphony DSP virus/pathogens midi kit (Qiagen)
(wild reindeer, moose, and red deer) in the QIAsymphony automated extraction system (Qiagen),
according to the manufacturer’s instructions. We employed the panPCR designed by VanDevanter
and colleagues to amplify a fragment of 250 bp of herpesviral DNA polymerase (DPOL) gene [30].
The primer set GH1 was used to amplify a fragment of approximately 500 bp of glycoprotein B (gB)
gene on DPOL-positive samples [31]. Controls (ovine gammaherpesvirus 2 and no template control,
respectively) were included in each PCR assay. Following 2.0% agarose gel electrophoresis, several
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PCR products within the expected size range were purified with ExoSAP-IT Express (USB Corporation,
Cleveland, OH, USA) and directly sequenced in both directions.

Visual inspection determined the chromatogram sequence quality. The obtained sequences were
aligned using ClustalW 2 on Mega 7.0 [32] and were compared to similar ones from GenBank using the
Blast search tool. In order to establish the percentage of nucleotide and amino acid identity between
the obtained and reference sequences, p-distance analyses were performed on Mega 7.0. [32].

The phylogenetic analyses were performed based on the DPOL and gB gene nucleotide sequences
obtained in this study and available corresponding sequences of other gammaherpesvirus from wild
and domestic ruminants (Figure 3). Bovine gammaherpesvirus 4 sequences were selected as outgroups
to help generate Bayesian inference phylogenetic trees. Initially, multiple sequence alignments were
performed using the ClustalW algorithm on Mega 7.0 [32]. In order to select the best model of evolution,
the jModelTest2 program (version 2.1.10, [33]) was used prior to the construction of the Bayesian
phylogenetic trees for DPOL and gB genes, under the Akaike Information Criterion (AIC). The Bayesian
analyses were carried out on the platform Phylogeny.fr (http://www.phylogeny.fr/ [34]) using MrBayes
program v3.2.6, [35]. We ran Markov Chain Monte Carlo (MCMC) chains for 10,000 generations,
sampling every 10 generations. A burn-in of 1000 was applied. Finally, a 50% majority rule consensus
tree was constructed with branching support shown as posterior probability percentages. An extended
version of Figure 3 with information on the taxonomic classification of the host species from which
viral sequences were obtained and is presented in Appendix A in Figure A1 and Table A1.
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Figure 3. MrBayes Bayesian inference phylogenetic tree of a ClustalW alignment of gammaherpesvirus
DNA polymerase nucleotide sequences (A) and gammaherpesvirus DNA glycoprotein B sequences
(B). • represents the reindeer sequences obtained in this paper. Dotted grey boxes represent the two
gammaherpesvirus genera depicted in this analysis. One should note that the genus Macavirus has
been established as a new denomination for a previous type 1 rhadinovirus (malignant catarrhal
fever (MCF)-like) group. This explains the presence of some rhadinovirus names in sequences now
included in the Macavirus genus. F represents sequences of viral species officially classified in its
respective genus by the International Commission for Taxonomy of Viruses (ICTV), whereas all other
sequences are classified tentatively (from GenBank taxonomy lists). The scale bar indicates the number
of nucleotide substitutions per site.

3. Results

The viral DPOL gene was amplified from 11 out of 39 (28.2%) semi-domesticated reindeer samples,
and four of the amplified products were submitted for sequencing. The gB gene was amplified in four
out of the 11 DPOL positive animals, and gB amplicons were also submitted for sequencing.

Viral DNA amplification of the DPOL gene was obtained in 17 of 35 (48.6%) wild reindeer blood
samples, of which 12 were sequenced. All positive animals belonged to subpopulations from the
adjacent territories of Hardangervidda, Setesdal Ryfylke, and Nordfjella. Furthermore, the gB gene
PCR amplified viral DNA in 15 of these 17 samples, all of them generating high quality sequences.
The novel DPOL and gB viral unique sequences were deposited in GenBank, for semi-domesticated
reindeer (DPOL, JX036282 to JX036285 and gB, MK736311) and for wild reindeer (accession number
MK697538 and MK697539, respectively).
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There was no viral DNA amplified from any of the moose or red deer samples. All results are
summarized in Table 1 and Figures 1–3. For semi-domesticated reindeer, Table 2 summarizes the relation
between positive and negative PCR results and the results obtained in a previous serological survey.

Table 2. Relation between PCR and serology results for the semi-domesticated Eurasian tundra reindeer
(Rangifer tarandus tarandus) samples included in this study. The serology results refer to a previous
survey published in 2013, where 116 out of 3339 (3.5%) apparently healthy semi-domesticated reindeer
scored positive for specific antibodies to the malignant catarrhal fever virus (MCFV) group by a direct
competitive inhibition enzyme-linked immunosorbent assay [28].

cELISA

POS NEG TOTALS

PC
R

R
es

ul
ts DPOL +/gB + 4 0 4

DPOL +/gB − 7 3 10
DPOL −/gB + 0 0 0
DPOL −/gB − 12 13 25

TOTALS 23 16 39

A nucleotide identity of 99% was observed between our wild and semi-domesticated reindeer
DPOL sequences (approximately 250 bp), corresponding to an amino acid identity of 100%, whereas
100% nucleotide identity amongst them was observed for gB (approximately 500 bp). The obtained
sequences were clearly different from other ruminant gammaherpesvirus sequences available from
GenBank (Figure 3). The highest DPOL nucleotide (99.4%) and deduced amino acid (98.2%) similarity
was to a sequence of gammaherpesvirus identified in a porcupine caribou (Rangifer tarandus granti) from
Yukon, northwestern Canada (KX062138, ANC35073). This was followed by another gammaherpesvirus
from porcupine caribou (KX062139, ANC35074) of the same region (nucleotide and amino acid identities
of 96% and 93%, respectively).

The gB sequences from reindeer presented the highest nucleotide (74.7%) and amino acid (82.4%)
identities, respectively, a gammaherpesvirus obtained from muskox (Ovibos moschatus, AY237371) and
an alcelaphine gammaherpesvirus 2 sequence from a topi (Damaliscus lunatus jimela, YP_009044395.1).
Both DPOL and gB sequences indicate a potential novel gammaherpesvirus in reindeer.

4. Discussion

On the basis of this study’s detection of gammaherpesvirus DNA in wild and semi-domesticated
reindeer and its phylogenetic differences as compared with other gammaherpesvirus sequences, one
can consider that a novel gammaherpesvirus species, tentatively named Rangiferine gammaherpesvirus
1, is circulating within the reindeer populations in Norway. The proposed name refers to the
cervid genus, therefore, more accurate than reindeer gammaherpesvirus 1 or porcupine reindeer
gammaherpesvirus and follows the recommendations of the International Committee on Taxonomy of
Viruses [7]. The tentative “Rangiferine gammaherpesvirus” does not, however, seem to be properly
grouped either within the MCF type of viruses (Macavirus genus) or within several rhadinoviruses of
wild ruminants (Rhadinovirus genus), as shown in both phylogenetic trees (Figure 3). To the authors’
knowledge, this is the first report of what seems to be a host-specific gammaherpesvirus in Eurasian
tundra reindeer (R. tarandus tarandus). Another gammaherpesvirus, ovine herpesvirus 2, has been
previously amplified from the semi-domesticated reindeer with clinical MCF [27]. The sequences in
semi-domesticated reindeer reported in our study, while only now published, predate the only other
report of gammaherpesviruses in porcupine caribou from Canada [36]. Nevertheless, the phylogenetic
analyses confirm that the gammaherpesvirus sequences found in Canada are highly similar to the
ones circulating in Norway (based only on DPOL, since no information on gB is available from
Canada). This further strengthens the theory that reindeer are probably the natural host for this novel
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gammaherpesvirus species, and is in line with a serological survey conducted in northern Norway that
found a low (3.5%, n = 3339) yet geographically widely spread prevalence of gammaherpesvirus in
semi-domesticated reindeer [28]. A similar seroprevalence for gammaherpesvirus has also been found
in a recent study in Norway that screened reindeer herds spreading from the southern to northern
regions of the country [37]. Furthermore, the absence of apparent clinical disease, in all animals
from where this virus was amplified, reinforces the theory of reindeer as the natural host, since the
pathogenicity of gammaherpesviruses can be very often limited in their natural host [38]. Nevertheless,
future studies are necessary in order to verify this hypothesis.

The presence of an endemic gammaherpesvirus in reindeer is relevant for both wild and
semi-domesticated populations. Future studies should address if serological cross-reactions between
this novel virus and other gammaherpesviruses, in serological tests designed to detect if malignant
catarrhal fever exist, could result in false positive results that could trigger containment measures
with potential economic consequences. Previous studies used a competitive ELISA with an antigen
based on a conserved epitope among all known members of the malignant catarrhal fever virus group.
These studies showed 5.9% seropositivity in captive Eurasian reindeer from Germany (n = 119) [39],
4% in wild Eurasian reindeer from Norway (n = 250) and porcupine caribou from Alaska (n = 232) [40],
and 3.5% (n = 3339) in apparently healthy, semi-domesticated Eurasian reindeer from Finnmark County,
northern Norway [28]. Such findings contrasted with the prevalence we obtained in this study by
PCR (28.2% and 48.6% in semi-domesticated and wild reindeer, respectively). This was similar to PCR
prevalence results observed in whole blood samples from several other ruminant species, for example,
42.9% (six of 14) in Dall sheep (Ovis dalli) [40], and 72% (23/32) in peripheral blood mononuclear cells of
clinically healthy captive white-tailed deer (Odocoileus virginianus) [41]. The possibility that the antigens
in the available serological test did not sufficiently cross react with antibodies against Rangiferine
gammaherpesvirus 1 cannot of course be discarded. Similarly, none of the black-tailed deer (Odocoileus
hemionus), mule deer (Odocoileus hemionus), elk (C. elaphus canadensis), or addax (Addax nasomaculatus)
serum samples from infected animals with novel gammaherpesvirus species, and different from those
of the malignant catarrhal fever virus group, were antibody positive when tested by cELISA [13].

As shown in Table 2, crossing serology and PCR results allow us to draw some additional interesting
inferences as follows: Of the 14 PCR-positive semi-domesticated reindeer, 11 were seropositive, possibly
indicating reactivation of a latent infection, because in general, when an immune response is detected
the viremia stage has already subsided. Latency is a known characteristic of herpesviruses associated
with lifelong infections and immune evasion, and usually is the result of a long co-evolution with
their natural host, as it requires the virus to circularize and form an episomal DNA element packed in
histones and copied by cellular DNA polymerases, along with the chromosomes [42]. If these PCR
and serology positive animals truly are cases of viral reactivation, this could be additional evidence of
this virus being a reindeer specific gammaherpesvirus that has co-evolved with the host over a long
period. The remaining three PCR positive, serology negative animals could most likely be the result
of technical limitations of the serological assay. Considering that both DPOL and gB PCRs target a
highly conserved region of the viral genome, and that both produce relatively short amplicons, one can
hypothesize that the lower number of PCR positives for gB in relation to DPOL is more likely to be the
result of a lower efficiency of gB PCR method rather than mismatches in the primer regions. Since both
PCR methods are commonly used for the detection and characterization of new gammaherpesviruses,
a re-evaluation of the gB method and its efficiency warrants some attention.
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All moose and red deer samples tested in this study were herpesvirus-PCR-negative. In a previous
study, ovine herpesvirus 2 was detected in brain, spleen, or lymph node samples from three moose with
lethal MCF, while spleen samples from clinically healthy moose (n = 23) and red deer (n = 17), all hunted
on the Norwegian region of Lesja, were negative to the same panherpesvirus PCR used here [43].
Overall, in Norway, ovine gammaherpesvirus 2 and caprine gammaherpesvirus 2 have been detected,
respectively, in eight moose and one red deer, and in two moose with MCF lesions [11,43]. Additionally,
lesions consistent with MCF were reported in two moose from Sweden [44], and another two moose
from Canada presented ovine gammaherpesvirus 2-associated MCF [45]. Furthermore, specific
gammaherpesviruses have been detected in deer, including captive red deer from New Zealand [46],
elk (unidentified subspecies) from the United States [13], and elk (C. canadiensis, previously named
C. elaphus canadensis) from Canada [36,47]. Additionally, Barbary red deer (C. elaphus barbarus) infected
with a gammaherpesvirus closely related to alcelaphine gammaherpesviruses 2 reportedly developed
clinical signs similar to those of MCF [10]. The absence of viral DNA amplification in our red deer and
moose cases could, among others, be due to a true absence of the virus or a low prevalence within the
populations. The more solitary behavior of moose and deer in contrast to reindeer can also imply fewer
contacts and transmission events. Additionally, the fact that the proposed Rangiferine gammaherpesvirus
1, identified in reindeer across Norway, was absent in other cervid species, despite the populations’
overlap in some areas, could indicate that moose and red deer are either not susceptible to this new
virus infection or that latency is not successful in these species. The absence of latency could well
hinder the detection by PCR in apparently healthy animals, as observed in those included in this study.
We recognize, however, that we have a geographic limited sampling, especially for moose (only two
municipalities), and analyzing more animals from different locations in the country would be necessary
to draw conclusions on species susceptibility to this new virus.

Herein, we described infection by a novel gammaherpesvirus, tentatively named Rangiferine
gammaherpesvirus 1, in an economic and cultural important species (semi-domesticated reindeer) and in
the last wild Eurasian tundra reindeer population in Europe. Our findings contribute to the knowledge
of infectious agents affecting this taxon. Future studies are warranted to elucidate on cross-reactions
with current MCF serological tests after infection with Rangiferine gammaherpesvirus 1, as well as the
pathological potential and impact of this novel virus on reindeer populations and possibly other cervid
species and domestic ruminants.
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Appendix A

Figure A1 (A and B) as well as Table A1 provide additional information on the taxonomy of the
host species from which the viral sequences used in this paper were obtained.
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Figure A1. The information on the virus phylogenetic trees (A,B) is already presented in Figure 3.
In front of each viral sequence, a colored rectangle refers to the taxonomic classification of its host species.
These colors are explained on the right-hand side of the figure in an evolutionary cladogram based
on species within the Cervidae and Bovidae families. Colored bars indicate the families, subfamilies,
and tribes relevant to host species of viral sequences analyzed in this paper. The sequence referring to
reindeer is highlighted in a black dashed box. The evolutionary relationships of taxa were inferred using
the minimum evolution method [48]. The optimal tree with the sum of branch length = 0.91536236
is shown. The evolutionary distances were computed using the maximum composite likelihood
method [49] and are in the units of the number of base substitutions per site. The ME tree was searched
using the close-neighbor-interchange (CNI) algorithm at a search level of 1. The analysis involved
14 complete mitochondrion genome sequences (average of 16,000 bp). All positions containing gaps and
missing data were eliminated. There was a total of 11,199 positions in the final dataset. Evolutionary
analyses were conducted in MEGA7 [32]. For information on the ascension numbers used on the taxa
cladogram, please refer to Table A1.
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Table A1. Information on the different species within the Cervidae and Bovidae families used on this
analysis and retrieved from GenBank at the National Center for Biotechnology information.

GenBank
Accession Number Organism Common Designation

NC_020700.1 Dama dama Fallow deer
NC_007704.2 Cervus elaphus Red deer
NC_020684.1 Capreolus capreolus Roe deer
NC_020677.1 Alces alces Moose/elk
NC_015247.1 Odocoileus virginianus White-tailed deer
NC_020729.1 Odocoileus hemionus Mule deer
NC_007703.1 Rangifer tarandus Reindeer
NC_001941.1 Ovis aries Sheep
NC_005044.2 Capra hircus Goat
NC_020633.1 Rupicapra rupicapra Chamois
NC_020631.1 Ovibus moschatus Muskox
NC_020699.1. Connochaetes taurinus Blue wildebeest
NC_016421.1 Oryx dammah Scimitar oryx
AF492351.1 Bos Taurus Bovine/Cattle
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