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Abstract

Metisa plana (Walker) is a leaf defoliating pest that is able to cause staggering economical

losses to oil palm cultivation. Considering the economic devastation that the pest could

bring, an early warning system to predict its outbreak is crucial. The state of art of satellite

technologies are now able to derive environmental factors such as relative humidity (RH)

that may influence pest population’s fluctuations in rapid, harmless, and cost-effective man-

ners. This study examined the relationship between the presence of Metisa plana at differ-

ent time lags and remote sensing (RS) derived RH by using statistical and machine learning

approaches. Metisa plana census data of cumulated larvae instar 1, 2, 3, and 4 were col-

lected biweekly in 2014 and 2015 in an oil palm plantation in Muadzam Shah, Pahang,

Malaysia. Relative humidity values derived from Moderate Resolution Imaging Spectroradi-

ometer (MODIS) satellite images were apportioned to 6 time lags; 1 week (T1), 2 weeks

(T2), 3 week (T3), 4 weeks (T4), 5 week (T5) and 6 weeks (T6) and paired with the respec-

tive census data. Pearson’s correlation was carried out to analyse the relationship between

Metisa plana and RH at different time lags. Regression analyses and artificial neural network

(ANN) were also conducted to develop the best prediction model of Metisa plana’s outbreak.

The results showed relatively high correlations, positively or negatively, between the pres-

ences of Metisa plana with RH ranging from 0.46 to 0.99. ANN was found to be superior to

regression models with the adjusted coefficient of determination (R2) between the actual

and predicted Metisa plana values ranging from 0.06 to 0.57 versus 0.00 to 0.05. The analy-

sis on the best time lags illustrated that the multiple time lags were more influential on the

Metisa plana population than the individual time lags. The best Metisa plana prediction
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model was derived from T1, T2 and T3 multiple time lags modelled using the ANN algorithm

with R2 value of 0.57, errors below 1.14 and accuracies above 93%. Based on the result of

this study, the elucidation of Metisa plana’s landscape ecology was possible with the utiliza-

tion of RH as the predictor variable in consideration of the time lag effects of RH on the

pest’s population.

Introduction

Bagworm, a leaf defoliating caterpillar, is among the biggest pest threats in oil palm cultivation.

In Malaysia, the most economically devastating species of bagworms for oil palm plantations

areMetisa plana (Walker), Pteroma pendula (Joannis), andMahasena corbetti (Tams). Among

these three common species,Metisa plana have caused the most detrimental effect in Peninsu-

lar Malaysia, judging by the magnitude of its infestations and damages [1] that is resulting

from efficient dispersion mechanisms that lead to high reproductive success [2]. A damage of

only 10% to 13% could affect the oil yield production by up to 40% [3], or even worse, 50% of

the damage brought by the insects’ infestation would reduce approximately 10 t ha-1 of fresh

fruit bunch (FFB) for two subsequent years [4]. The pest is capable of defoliating the palm

leaves to the extent that they could jeopardize the ability of palms to photosynthesize through

complete skeletonization of leaves and canopies, eventually suppressing the growth of the

palms and reducing yield. The economic importance that the pest has brought to the oil palm

industry signifies the urgency to controlMetisa plana infestation at its earliest, through proper

execution of rigorous control methods and mitigation actions such as integrated pest manage-

ment (IPM) and pesticide applications. The success in performing these actions significantly

depends on understanding the pest’s spatial and temporal distributions i.e. its ecological pref-

erence. Hence, understanding environmental factors such as the influence of weather variables

on the extent of bagworm’s outbreak is essential owing to its adverse influence on insect’s

behaviour.

Apart from weather parameters such as temperature and precipitation, relative humidity of

which is derived from these two, is also found to have a strong influence of insect population

dynamics. The influence of relative humidity on insect development and survivability is espe-

cially important during early developmental stages of insects. Given higher levels of relative

humidity, faster development of normal embryonic and eggs hatchability for some insects

have been reported [5–7]. Nevertheless, on both extreme ends of relative humidity values, eggs

hatchability might be compromised. While an insufficient level of humidity is able to hinder

the release of larvae from eggshell due to the loss of lubrication and hardened cuticle caused by

desiccation [8], increased humidity may cause egg mortality due to drowning and pathogen

infection [8–11]. Additionally, at excessive humidity, entomopathogenic fungal infections

among insects and their larvae will increase [12–14]. In a bagworm related study, Sajap and

Siburat [15] demonstrated that a high level of relative humidity was positively correlated with

the infections of fungus in bagworm. Since the relative humidity was higher on the middle and

the lower tree canopies than at the upper level, a higher number of infected bagworms were

found in the higher canopies. Fargues and Luz [16] further emphasized the time of exposure

towards the favourable humidity as equivalently essential as the level of relative humidity. A

longer exposure towards favourable humidity would increase the potential of fungal infections

on insects. The authors stressed that given the combination of temperature and relative

humidity, the latter can take precedent due to high cases of fungal infections on insects that

were observed within the unfavourable ranges of temperature.

Remotely sensed relative humidity for predicting Metisa plana’s population
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In addition to duration, the immediacy of impacts of external abiotic factors towards insect

population dynamics may vary; they can either be immediate or delayed. Studies by Wood and

Foot [17], Karpakakunjaram et al. [18] and Intachat et al. [19], for instance, have reported the

effects of time lags associated with Aglenchus costatusMeyl, acridid grasshopper and geome-

troid moths population, respectively, up to months. Generally, elucidating the immediacy of

insects on their population dynamic’s reaction towards their environmental factors is crucial

as it can assist to the development of a more precise and accurate prediction model.

The current practice to elucidate the environmental aspects that possibly affect the insect

pest outbreaks are still leaning towards the conventional approaches that typically utilizes a

single or networking of weather stations. Often, they are sparsely distributed due to limitations

such as cost and topography. On the other hand, weather data such as temperature, rainfall,

and relative humidity are currently possible to be obtained from satellite measurements in a

denser spatial distribution in comparison to the weather stations, which often require data

interpolation for a comprehensive spatial quantification. Remotely sensed spectral measure-

ments offer the possibility to acquire weather variables that triggers insect pest outbreaks in

rapid, harmless, and cost-effective manners. While many researches have evaluated the utiliza-

tion of remotely sensed temperature and rainfall for characterizing pest populations at the

landscape level [20–24], little attention has been paid into utilizing RS derived RH for the same

goal.

Meanwhile, ANN is a sophisticated system whose working principle imitates the way

human brain process information i.e. through pattern recognition and relationship determina-

tion. Unlike computer algorithms that process information through programming, ANN con-

duct information processing and knowledge gathering through experience i.e. learning and

training of data. ANN has the ability to produce prediction model with higher accuracy com-

pared to regression analysis [25–28], as its advanced mechanism allows it to excel in capturing

nonlinear relationships, whereas regression models requires assumption of linearity. ANN has

been used to predict the occurrences of pests’ incidences in several studies such as the popula-

tion density of cotton pest (Thrips tabaci) [29], the effect rainfall and temperature to the estab-

lishment of aphid (Myzus persicae, Brevicoryne brassicae, Aphis gossypii and Erisoma
lanigerum) and mealybug (Planococcus citri) [30], the occurrences of paddy stem borer (Scir-
pophaga incertulas) [31], and the population density of Diamondback Moth (DBM) along with

its parasitoids [32]. It is notable that neither of these studies considered lag effects in their pre-

dictive model development.

Considering the potential devastating impacts ofMetisa plana towards the oil palm indus-

try in Malaysia and the importance of the application of technologies in controlling them, the

objective of this paper is to examine the relationship between the presence ofMetisa plana at

different time lags and RS derived RH, and to evaluate the applicability of statistical and data

mining method to model the presence ofMetisa plana using RH. This is the first application of

its kind and the results will produce prediction models that is able to predict the outbreak of

Metisa plana using RH as the input factor.

Methods

Study area

This study was conducted in a 2000-ha oil palm estate belongs to Tabung Haji Plantation Ber-

had in Sungai Mengah, Muadzam Shah, located at 2° 57’ 30" N, 102˚ 53’ 0" E to 3˚ 1’ 0" N, 102˚

53’ 0" E in the state of Pahang, Malaysia (Fig 1). The estate has 26 blocks that are divided into

two main divisions which are division A (10 blocks) and B (16 blocks). The ages of oil palm in

the study area range from 10 to 20 years old while the bagworm infestation level range from

Remotely sensed relative humidity for predicting Metisa plana’s population
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zero to mild infestations i.e. 0 to 32 bagworms per frond. The plantation incorporates IPM

with pesticides being applied through trunk injection when the bagworm infestation is above

the economic threshold level (>10 per frond). The study area is characterized by temperature

ranging from 24˚C to 35˚C and average annual rainfall ranging from 1900 mm to 2500 mm.

Data collection

Bagworm census data. The census data were collected biweekly over the period of 2014

and 2015, resulting in 24 census cycles annually. The census was conducted according to the

standard practice of the plantation management where for each cycle, 25 random palms were

selected: 5 palms from each cardinal direction i.e. the north, south, east, west and center of the

block. Frond number 17 was destructively pruned for each of the chosen palm as it is consid-

ered to represent oil palm crown as a whole [33] and bagworm larvae of instar 1, 2, 3, and 4

from this frond were collected and counted. Only bagworm of these instar level were consid-

ered in this study due to the fact that bagworm larvae at these stages bring the most destruction

to oil palm owing to the high level of leaf consumption [34]. The total bagworm counts in

these 25 palms were then averaged to obtain an average bagworm number per palm per block.

Remotely sensed derived relative humidity. The computation of RH was performed

according to algorithm described and modified for Malaysia’s utilization by Peng et al. [35].

RH is the ratio of vapour pressure (e) and saturation vapour pressure (es) and can be computed

Fig 1. Study area located in Tabung Haji Plantation Berhad’s estate in Muadzam Shah, Pahang, Malaysia (Landsat-8 OLI image courtesy of the U.S.

Geological Survey).

https://doi.org/10.1371/journal.pone.0223968.g001
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according to Eq 1A, 1B, and 1C:

RH ¼ ðe=esÞ � 100 ð1AÞ

Where

e ¼ Q� Pa=0:622 ð1BÞ

es ¼ 611 exp ð
17:27 Ta

237:3þ Ta
Þ ð1CÞ

Where, RH stands for relative humidity, e stands for vapour pressure, es represents satura-

tion vapour pressure, Ta denotes surface air temperature, Pa signifies air pressure andQ repre-

sents specific humidity.

The estimation of vapour pressure (e) was dependent on air pressure (Pa) and specific

humidity (Q) that was computed from precipitable water vapour (PW). Their relationship is

described in Eq 2A and 2B. The computation of saturation vapour pressure (es), on the other

hand was dependent on surface air temperature (Ta)

Q ¼ 0:001� ð� 0:0762PW2 þ 1:753PW þ 12:405Þ ð2AÞ

While

PW ¼ ða � ðTobsÞ=bÞ2 ð2BÞ

Where, the acquisition of precipitable water vapour (PW) was done through the retrieval of

atmospheric water content by channel ratio technique that utilizes near infrared (NIR) chan-

nels using NIR bands. Among 36 bands of MODIS platform, 5 of them are NIR bands: 2

(0.865μm), 5 (1.24μm), 17 (0.905μm), 18 (0.936μm), and 19 (0.940μm) in which band 2 and 5

are atmosphere window bands while band 17, 18, and 19 are absorption bands that were repre-

sented as observed transmittance (Tobs) in Eq 2B. The algorithm of the computation of Tobs
was provided by Kaufman and Gao [36] as the following (Eq 3A, 3B and 3C):

TobsB17ð0:905mmÞ ¼ r � ð0:905mmÞ=r � ð0:865mmÞ ð3AÞ

TobsB18ð0:936mmÞ ¼ r � ð0:936mmÞ=r � ð0:865mmÞ ð3BÞ

TobsB19ð0:940mmÞ ¼ r � ð0:940mmÞ=½C1r � ð0:865mmÞ þ C2ð1:24mmÞ� ð3CÞ

Where Tobs B17, Tobs B18, and Tobs B19 stands for the observed transmittance for band

17, band 18, and band 19, respectively (Eq 4A, 4B, 4C). α and β were the observed transmit-

tance coefficients that was different for each Tobs and was provided for Malaysia region by

Peng et al. [34] as follows:

TobsB17ð0:905mmÞ; a ¼ 0:025;b ¼ 0:30; ð4AÞ

TobsB18ð0:936mmÞ; a ¼ 0:056;b ¼ 0:60; ð4BÞ

TobsB19ð0:940mmÞ; a ¼ 0:120;b ¼ 0:651 ð4CÞ

It is also worth noting that ρ � represents the apparent reflectance which is a ratio between

the radiance at the sensor and solar radiance at the top of atmosphere for the specified channel:

C1 = 0.8 and C2 = 0.2 [27].

Remotely sensed relative humidity for predicting Metisa plana’s population
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Since derived water vapour (PW) values were different for all three channels, a mean water

vapour was obtained using Eq 5.

PW ¼ f 1PW1þ f 2PW2þ f 3PW3 ð5Þ

Where, PW1, PW2, PW3 are water vapour derived from channel 0.905μm, 0.936μm,

0.940μm or band 17, 18, and 19, respectively. f is the corresponding weight of water vapour val-

ues of each channels for Malaysia region: f1 = 0.36, f2 = 0.24, and f3 = 0.40.

Finally, the air pressure (Pa) used in Eq 1B was obtained using algorithm provided by Peng

et al. [35] as shown below (Eq 6):

Pa ¼ 1013:3 � 0:1038H ð6Þ

Where H stands for elevation obtained from data provided by shuttle Radar Topography

Mission (SRTM) version 3.0 Global 1 arc second Data.

According to Eqs 1 to 6, two sets of MODIS images observed from the Terra and Aqua sat-

ellites were required. The first image was MOD07 for the acquisition of surface air temperature

(Ta) data used in Eq 1C, while the second image was MOD021KM for the acquisition of 5 NIR

bands used to compute precipitable water vapour (PW). Both of their temporal resolutions

were 1 day with spatial resolution of the first product being 5 km and second product being 1

km.

Hence, a total of 444 and 443 of the images for 2014 and 2015, respectively, were utilized in

performing the RH derivation. The images were first downloaded from the United States Geo-

logical Survey (USGS) Global Visualization Viewer (GloVis) website (https://glovis.usgs.gov/).

Further, the required band layers were extracted from each images; surface air temperature

layers from the MOD07 images, while layers of NIR bands from the MOD021KM images. All

of the layer spatial projections were set to WGS 1984 UTM Zone 47 N and the algorithm was

applied to the layers to compute RH images. Finally, all of the images were subset according to

the study area.

Data extraction. Prior to data extraction, the RH layers pixel size were resampled by near-

est neighbour from 1 km to 250 m. The area-weighted mean of RH values for each blocks were

then calculated according to Eq 7. Next, the RH values were extracted and paired with the

average number of bagworms per palm for each block of each census cycle at 6 different time

lags; 1 week (T1), 2 weeks (T2), 3 week (T3), 4 weeks (T4), 5 week (T5) and 6 weeks (T6) prior

to the census date. The time lag analysis was carried out based on the hypothesis that the

response of insect population towards the effect of abiotic factors in some cases may not be

immediate as demonstrated by Wood and Foot [17], Karpakakunjaram et al. [18] and Intachat

et al. [19]. Besides, the knowledge of insects responding towards the environmental fluctuation

ahead of time is also important in developing a forewarning system of insect outbreak and pro-

vide the opportunity for a better and more efficient mitigation program.

Area weighted mean ¼
P
ðpixel area within a block� pixel values within a blockÞ

total area of each block
ð7Þ

Data analysis

Regression analysis. The relationship between the average bagworm per palm per block

with the area-weighted mean of RH of each block at time lag T1, T2, T3, T4, T5, and T6 was

determined by Pearson’s correlation coefficient (r). The analysis was later followed by single

and multiple regression analyses, linear or polynomial, to measure the magnitude of influence

that RH possessed over theM. plana number. In order to determine the best time lags to be

used as the model input, the RH dataset was tested according to these different configurations

Remotely sensed relative humidity for predicting Metisa plana’s population
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as follows: (i) individual time-lags i.e. T1, T2, T3, T4, T5 or T6, (ii) divided into two classes of

multiple time lags: week 1, 2 and 3 (T1, T2 and T3) or week 4, 5 and 6 (T4, T5 and T6), and

(iii) individual time-lags as selected through stepwise selection criteria method. For configura-

tion (iii), among all the time lags analysed, T3, T4 and T5 and T6 were selected for linear

regression while T1 and T6 were chosen for polynomial regression. All the statistical analysis

was carried out by using statistical analysis software SAS version 9.2 (SAS Institute Inc., Cary,

North Carolina, USA).

Artificial neural network (ANN). Three main layers characterize the architecture of neu-

ral network: the input, output, and hidden layers. The input layer represents the independent

variables, the output layer represents the dependent variables, and the hidden layer represents

the relationship developed between input and output variables. The relationship between the

input and the output variables will be established by the hidden layers through the adjustment

of weightage that is performed iteratively by the training network. In each training, an esti-

mated output will be generated and compared to the actual output values to produce an error

term. This error will be used in the network training and the iterative process will be con-

ducted until the minimum error is achieved [37].

In this study, multilayer perceptron ANN was used to further analyse the relationship

between dependent and independent parameters to construct the prediction model for the

outbreak ofMetisa plana. The analysis was conducted by using the Alyuda Neurointelligence

2.2 (Alyuda Research LLC, Cupertino, CA). Datasets containing missing values, as well as data

anomalies and outliers were excluded before the neural network analysis. All data were then

divided into 3 datasets; i) network training dataset which accounted for 60% of the data, i.e.

n = 170 ii) network testing dataset which accounted for 20% of the data, i.e. n = 56 and iii) net-

work validation dataset which accounted for remaining dataset, i.e. n = 56. All of the input

data were scaled into numbers between -1 to 1 prior to the ANN processing in the next step.

Further, the RH dataset was tested according to the same configurations as in the regression

analysis. However, for configuration (iii), forward stepwise feature selection method was con-

ducted where the feature mask with the best fitness value was chosen. Through the feature

selection procedure, four time lags were chosen as the input layer i.e. T1, T3, T4 and T6. Prior

to the training of the data, network architecture for each input layer was determined as follows:

for the (i) input layer, the network architecture was 1-x-1, while for the (ii) input layers, a dif-

ferent architecture was assigned i.e. 3-x-1 and finally, the (iii) input layer was represented by 4-

x-1 architecture. The number of hidden layers or x for the different input layers were later

determined through the best fitness value of the network architecture. The logistic (sigmoid)

function was selected as the activation function connecting the hidden and output layers. Net-

work trainings were then performed upon the training dataset using the quick propagation

(QP) algorithm. This ANN algorithm was selected since QP is a modification of back-propaga-

tion algorithm making it faster than the standard incremental back-propagation, which would

be efficient in processing large amount of data in this study [38]. In the training process, the

data fed to the network was analyzed and the weights were adjusted according to their influ-

ence towards the dependent variables in a series of iterations. The weights were fine-tuned

through the validation process of neural network where the number of hidden units were

determined and the declination of predictive ability of the neural network was detected.

Finally, the output were back transformed to the input data scale prior to the evaluation

metrics.

Evaluation metrics. The accuracy of predictions for the regression and ANN models

were then evaluated and compared by using the adjusted R2 values between the actual and pre-

dictedM. plana number. In evaluating the quality of the ANN predictions, two methods were

employed in this study which were the absolute error (Eq 8) [39] and testing accuracy (Eq 9) of

Remotely sensed relative humidity for predicting Metisa plana’s population
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the training models. The absolute error is the average value of the absolute difference between

the predicted and original or actual values, whereby smaller error values indicate a better

trained network. On the other hand, the accuracy of prediction models in this study used the

min-max accuracy by dividing the minimum average value with the maximum average value

among the averaged prediction and actual values and multiplying it by 100 [40]. The mini-

mum-maximum accuracy indicates the deviation of the predicted values from the actual values

where the perfect accuracy is 100%.

Absolute error ¼ jðPredicted Values � Actual ValuesÞj ð8Þ

Where absolute error represents absolute error for training, validation and testing datasets.

Accuracy ¼ Average
min ðactual; predictedÞ
max ðactual; predictedÞ

� �

� 100 ð9Þ

Results

Relationship between RH and Metisa plana
Table 1 presents the correlation results betweenMetisa plana biweekly census and RH of 6 dif-

ferent time lags (T1, T2, T3, T4, T5, and T6). Generally, Pearson’s correlation analysis showed

relatively high correlations, positively or negatively, between the presences ofMetisa plana
with RH, ranging from 0.46 to 0.99. Consequently, these values suggested an absence of a lin-

ear relationship between the presence ofMetisa plana and RH. Among 31 correlation coeffi-

cient values obtained, 18 of them were negative and 13 were positive. Most of the negative

correlations were found in time lag T3 with 6 occurrences. This was followed by T6 with 4

occurrences, and T4 and T5 with 3 occurrences. The least negative correlation frequencies

were found in T2 with 2 occurrences. No negative correlation was found in T1. On the other

hand, most of the positive correlations were found in T1 with 4 occurrences. This was followed

by time lag T4 with 3 occurrences and T2 and T3 with 2 occurrences. The least frequency was

found in T5 and T6 with 1 occurrence each.

The highest significant level (α = 0.0001) of correlations was found more in negative corre-

lations as opposed to positive correlations. Among the highest level of negative correlations,

two of them were in each time lag T3 and T5. Negative correlations with the highest level of

significance occurred at relative humidity within the range of 47% to 64%. Conversely, the pos-

itive correlations with the highest level of significance occurred at relative humidity within a

narrower range than negative correlations from 64% to 70%.

Impact of time lag effects on regression analyses and ANN

Metisa plana prediction models were generated using linear and polynomial regression mod-

els, for a single or multiple RH values (Tables 2 and 3), and ANN (Table 3 and 4). An overall

result demonstrated that the highest adjusted R2 values were obtained through the ANN i.e.

0.57 and 0.56, both for multiple time-lags. Regardless of the time lags, the linear regressions,

either single or multiple, consistently produced models with the lowest adjusted R2 that was

ranging from 0.00 to 0.05 (Table 3). On the other hand, a distinct pattern was observed for the

ANN: high adjusted R2 values for models with multiple time lags (0.45 to 0.57) and much

lower adjusted R2 models utilizing individual time lags (0.08 to 0.31).

Table 4 tabulates the performance of the trained QP algorithm. For the individual time lags,

only RH at T2 produced training, validation and testing error below than 1. Indeed, the error

terms for this time lag was the lowest among all the models. Multiple time lags, either RH at

T1, T2 and T3, RH at T4, T5 and T6 or RH at T1, T3, T4 and T6 similarly had error terms
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below 1, despite the validation and testing errors were almost one fold of the training error.

Other remaining individual time lags had noticeably larger error terms, ranging from 1.25 to

1.68 for the training, 1.47 to 1.80 for the validation and 1.63 to 1.75 for the testing. A consider-

ably different observation could be made for the accuracy terms, whereby there was no clear

pattern could be associated with the time lags. While all time lags had a very high training

accuracy that was above 90% (except for RT at T1), only RH at T2 and RH at T1, T2 and T3

had both validation and testing accuracies above 90%.

Discussion

Relationship between RH with Metisa plana’s population

The presence ofMetisa plana were found to be positively and negatively correlated with both

relatively low and high level of RH which suggested that correlation analysis was not able to

Table 1. Pearson’s correlation between 8-days average relative humidity (RH) with the average number of Metisa plana in 2014 and 2015.

2014

Census cycle T6 T5 T4 T3 T2 T1

Cycle 6 -0.79���� 0.52�

Cycle 7 -0.74���� 0.63��

Cycle 8 0.91���

Cycle 9 0.65��

Cycle 12 -0.49� -0.48�

Cycle 13 -0.59�� -0.46�

2015

Census cycle T6 T5 T4 T3 T2 T1

Cycle 1 -0.45� 0.73� -0.49� 0.46�

Cycle 8 -0.57�� -0.47� -0.43� 0.51�

Cycle 9 -0.99���� -0.99���� 0.96�� -0.96�� -0.95�� 0.97��

Cycle 13 0.67� -0.68� -0.68�

Cycle 19 0.99���� 0.82�� 0.97���� -0.99����

Cycle 24 0.97�

�0.05

��0.01

���0.001

����0.0001 significant levels (P-value). T1, T2, T3, T4, T5 and T6 denotes 1 week, 2 weeks, 3 week, 4 week, 5 week and 6 weeks prior to the census date, respectively.

Non-significant cycles were excluded from the table.

https://doi.org/10.1371/journal.pone.0223968.t001

Table 2. Multiple linear and polynomial regression equation between M. plana number and relative humidity (RH) at different time lags.

Predictor variables Linear regression Polynomial regression

RH at T1 M. plana number = 15.81–0.23(T1) M. plana number = 55.45–1.62(T1) + 0.01(T12)

RH at T2 M. plana number = 12.47–0.18(T2) M. plana number = 58.83–1.92(T2) + 0.02(T22)

RH at T3 M. plana number = 6.99–0.08(T3) M. plana number = 41.42–1.23 (T3) + 0.01(T32)

RH at T4 M. plana number = 8.47–0.11(T4) M. plana number = 47.46–1.42 (T4) + 0.01(T42)

RH at T5 M. plana number = 5.90–0.07(T5) M. plana number = 62.81–2.01 (T5) + 0.02(T52)

RH at T6 M. plana number = 12.85–0.18(T6) M. plana number = 60.82–1.95 (T6) + 0.02(T62)

RH at T1, T2, T3 M. plana number = 9.48–0.12(T1) M. plana number = 9.48–0.12(T1)

RH at T4, T5, T6 M. plana number = 13.86–0.24(T6) + 0.13(T4)– 0.08(T5) M. plana number = 57.40–1.91(T6) + 0.02(T62)

RH at T6, T5, T4, T3 for linear

RH at T6, T1 for polynomial

M. plana number = 16.73–0.29(T6)– 0.16(T5) + 0.11(T4) + 0.09(T3) M. plana number = 65.18–1.97(T6) + 0.02(T62)– 0.13(T1)

T1, T2 and onwards denotes RH at week 1, week 2 and so forth prior to the census date, respectively.

https://doi.org/10.1371/journal.pone.0223968.t002
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determine the optimum values of RH that favourMetisa plana’s population. All in all, the cor-

related average relative humidity with the average number ofMetisa plana’s were recorded to

range from 47% to 71%. These correlation results also suggested that the effect of individual,

different time lags of RH towards the presence ofMetisa plana is not pronounced, as the corre-

lation occurrences between RH of different time lags and the presence ofMetisa plana were

more or less the same frequency i.e. no distinct individual time lag was observed to have a sig-

nificantly more correlation than the other. The low adjusted R2 values for the regression mod-

els, along with the high adjusted R2 and accuracies for the ANN also have confirmed that the

relationship between RH andMetisa plana was non-linear.

Modeling algorithms

Regression versus ANN. The fact that the ANN models was found to produce higher

adjusted R2 values than the regression models suggest that the former caters non-linearly and

non-normally distributed datasets as opposed to the latter. The regression analysis, for

instance, essentially predicts the relationship between dependent (y) and independent (X1,

X2. . . Xk) variables by assuming that their associations are linear (Eq 10). This include the

polynomial regression; the model still assumes the linearity of the relationships when predict-

ing the associations of dependent and independent variables despite it being used to fit a non-

linear data into least squares regression (Eq 11).

y ¼ aþ b1X1þ b2X2 . . . bkXk ð10Þ

y ¼ aþ b1X þ b2X2þ b3X3 . . . bkXk ð11Þ

Whereas y represents dependent variables i.e. bagworm numbers and X represents indepen-

dent variables i.e. RH, a represents initial intercepts and β represents partial regression coeffi-

cients of variableX.

As a result, this principle limits the ability of regression analysis, either linear or polynomial,

to predict non-linear relationships efficiently. The ANN, in contrast, is more superior in

assessing large datasets with multivariate interactions and complex patterns [41, 42]. This can

be attributed to its ability to self-learn the data and produce models through weight adjustment

without preliminary assumptions of the datasets linearity.

Table 3. Comparison of adjusted R2 values obtained from linear regression, polynomial regression and artificial

neural network (ANN) between the actual and predicted M. plana number.

Predictor variables Linear regression Polynomial regression ANN

RH at T1 0.05 0.05 0.10

RH at T2 0.00 0.00 0.11

RH at T3 0.00 0.00 0.06

RH at T4 0.00 0.00 0.16

RH at T5 0.02 0.04 0.31

RH at T6 0.00 0.01 0.08

RH at T1, T2, T3 0.03 0.03 0.57

RH at T4, T5, T6 0.00 0.00 0.56

RH at T1, T2, T3, T4, T5, T6 0.01

(T6, T5, T4, T3)

0.01

(T6, T1)

0.45

(T1, T3, T4, T6)

T1, T2 and onwards denotes RH at week 1, week 2 and so forth prior to the census date, respectively.

https://doi.org/10.1371/journal.pone.0223968.t003
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In comparing among the ANN architectures, the 3-8-1 architecture with RH T1, T2 and T3

input layer was found to be able to predict the presence ofMetisa plana with high accuracy

and the highest adjusted R2 value. Despite the lowest error and highest accuracy terms were

produced with the RH at T2 layer with 1-5-1 network architecture, the adjusted R2 value for

this model was too low i.e. 0.11. A close inspection found that the model failed to predict

extreme values ofM. plana at both ends and hence implies a low reliability. Finally, it was

noticeable that the absolute error of the best training models utilizing multiple time lags por-

trayed an almost one-fold increase during the validation and testing phases (from 0.56 to 1.14

and 1.06, and from 0.94 to 1.35 and 1.54, respectively). The amplification of the absolute error

was contributed by the overfitting of the training model; likely from the combination of high

iteration number and small size of training datasets [43]. Nonetheless, evaluating from the

magnitude of the errors, the overfitting could be considered inconsequential and thus, the pre-

diction model was stable and reliable.

Time lag effects on modelling algorithms. The effects of time lag was pronounced dur-

ing the ANN analyses, which generally suggested that multiple time lags could produce high

adjusted R2 values and acceptable testing accuracies (more than 79%). Individual time lags, on

the other hand, resulted in models with unacceptable values of adjusted R2 and relatively

higher errors than the multiple time lags, despite high overall accuracies. This suggests that, a

duration of a week, regardless at any time lags, was insufficient to evaluate the impacts of RH

onMetisa plana’s population dynamic. In contrast, better accuracies of the multiple time lags

models signified the importance to consider the continuity of the RH fluctuations over a lon-

ger period towards insects’ population, especially in the more recent weeks. This was mani-

fested through the datasets from the T1, T2 and T3 time lags that were able to generate the

highest adjusted R2 value and accuracies i.e. above 95%. The results suggest RH fluctuations at

the time lag T1, T2 and T3 are more influencing to the insect’s life cycle than at any other time

lags. Given the focus of this study that was to predictMetisa plana’s larvae of instar level one to

four, one to three weeks prior to these stages marks the reproductive stages ofMetisa plana.

This is in alignment with the importance of RH in regulating the efficiency of insects’ repro-

duction. The optimum level of RH for eggs hatchability is crucial due to the need of lubrication

and soft cuticle tissues for eggs to be successfully hatched [8]. Nevertheless, high level RH has

Table 4. ANN error and accuracy terms for different time lags.

Predictor

variables

Network

architecture

Training absolute

error

Validation absolute

error

Testing absolute

error

Training

accuracy

Validation

accuracy

Testing

accuracy

RH at T1 [1–4–1] 1.51 1.61 1.69 81.20% 78.24% 68.16%

RH at T2 [1–5–1] 0.14 0.17 0.16 99.80% 99.20% 99.80%

RH at T3 [1–2–1] 1.68 1.60 1.67 96.97% 93.53% 88.02%

RH at T4 [1–4–1] 1.55 1.80 1.63 98.22% 83.10% 84.60%

RH at T5 [1–7–1] 1.25 1.47 1.74 97.44% 80.79% 95.95%

RH at T6 [1–7–1] 1.45 1.63 1.75 97.57% 78.30% 68.84%

RH at T1, T2, T3 [3–8–1] 0.56 1.14 1.06 99.56% 93.63% 95.29%

RH at T4, T5, T6 [3–7–1] 0.94 1.35 1.54 93.45% 87.02% 79.40%

RH at T1, T3, T4,

T6

[4–9–1] 0.73 1.61 1.18 98.23% 81.34% 89.57%

T1, T2 and onwards denotes RH at week 1, week 2 and so forth prior to the census date, respectively.

https://doi.org/10.1371/journal.pone.0223968.t004

Remotely sensed relative humidity for predicting Metisa plana’s population

PLOS ONE | https://doi.org/10.1371/journal.pone.0223968 October 18, 2019 11 / 15

https://doi.org/10.1371/journal.pone.0223968.t004
https://doi.org/10.1371/journal.pone.0223968


been associated with the increase of pathogens and fungi attack [44]. This is further supported

by Sajap and Siburat [15], where 90% of fungal infected of Pteroma pendula was found on the

bottom and middle of tree canopies where the RH was higher than the top canopies. RH, on

both extreme ends, could hinder this process through desiccation or drowning of insect eggs

[8–11]. Since RH been associated in successfully assisting the breed, grow, and dispersion of

certain insects, having the right level of humidity is vital for their survivability. However, as the

relationship between the presence of bagworm and RH is nonlinear, the optimum RH values

for infestations to occur could not be determined. Over and above that, there has been no

study conducted specifically to determine the optimum values of relative humidity forMetisa
plana.

Despite the other multiple time lags models especially T4, T5 and T6 being lower in accura-

cies in comparison to the T1, T2 and T3 model, the adjusted R2 and error terms were compara-

ble between those two. This observation suggests that this model could be used to predict

possible outbreak in an earlier manner so that proper mitigation actions could be taken and

the risk could be reduced.

Conclusions

In this study that focuses on quantifying the relationship between RH andMetisa plana’s infes-

tations, it was found that the ANN was better in capturing the relationship between the abiotic

factor i.e. RH and the presence ofMetisa plana when compared to the regression analysis. The

ANN algorithm in combination with remotely sensed derived RH was able to predict the pres-

ence ofMetisa plana three weeks before an outbreak possibly occur with 95.29% accuracy.

This geospatial model would allow for an early warning system to be developed. Such a system

would assist the decision making process by plantation’s managements to controlMetisa pla-
na’s outbreak by providing them with a quantitative information on the potential magnitude

ofMetisa plana’s infestations. Consequently, mitigation actions could be taken at their earliest

at specific potential locations, and thus, permit the plantation management to strategize for

the most efficient controlling method that would save cost, man power, and time.

Finally, while the study only focused on a single abiotic factor that might influence the

Metisa plana’s population i.e. RH, it is known that insects’ population are significantly

impacted by other factors such as temperature and rainfall. Future works should include the

assessment of calibrated remotely sensed temperature and rainfall data for predicting popula-

tion ofMetisa plana, specifically or other insect pests, generally.
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