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Abstract

Competition between synapses arises in some forms of correlation-based plasticity. Here we propose a game theory-
inspired model of synaptic interactions whose dynamics is driven by competition between synapses in their weak and
strong states, which are characterized by different timescales. The learning of inputs and memory are meaningfully
definable in an effective description of networked synaptic populations. We study, numerically and analytically, the dynamic
responses of the effective system to various signal types, particularly with reference to an existing empirical motor
adaptation model. The dependence of the system-level behavior on the synaptic parameters, and the signal strength, is
brought out in a clear manner, thus illuminating issues such as those of optimal performance, and the functional role of
multiple timescales.
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Introduction

Natural neural systems possess the capacity for generating

purposeful, relevant and directed behavior in a complex, uncertain

and ever-changing environment. At the heart of this capacity is

their ability to show adaptive behavioral changes in the face of

varying external conditions, to learn efficiently and to retain

information reliably in memory. Given that the external sensory

world is a complex one and contains a spectrum of dynamic

processes spanning a gamut of timescales [1–3], it may be

expected on general grounds that the dynamical system underlying

information processing in brains must have a multiplicity of spatial

and temporal scales built in, to take cognizance of, respond to, and

deal with its complex multi-scale environment. On the one hand,

that neural mechanisms of adaptation and cognition involve short

as well as long timescale dynamic phenomena, is amply evidenced

by experimental work [4–7]. On the other, several theoretical

studies [8–13] carried out in recent times have explored how the

introduction of multiple timescales into computational models of

learning and adaptation can affect their functional properties,

expanding their capabilities and strengthening links with exper-

iment. To give a few representative examples: the introduction of

multiple degrees of plasticity in a model for synaptic ‘‘metaplas-

ticity’’ was shown to achieve a desirable balance between

receptivity to new stimuli while remaining immune to degradation

of older memories, and to give rise to a power law-type forgetting,

not just at the system level [9] (consistent with psychophysical

findings), but also at the level of a single synapse [14]; a neural

network model [11] for motor learning with two membrane time

constants was able to demonstrate efficient motor learning,

generating a functional hierarchy of motor movement, with more

elaborate actions being composed out of sequences of shorter,

elementary building-block motor ‘primitives’ strung together; an

empirical model of motor adaptation [10] that contained mutually

coupled slow and fast timescale sub-systems, produced better

agreement (in relation to alternative models) with a series of

experimental findings on hand-reaching behavior, which included

such phenomena as savings, anterograde interference, and

adaptation rebound.

While learning is integral to neural systems and functionally

beneficial at the level of a single individual, many studies have

focused on the collective effects of [simple forms of] individual

learning and decision-making, i.e. in populations of interacting

individuals, or agents. Such distributed systems, exemplifying

social or ecological group behavior [15], also share similarities

with interacting systems of statistical physics, in the nature of the

local ‘‘rules’’ followed by the individual units as well as in the

emergent behavior at the macro level, which can under some

circumstances display a high degree of order and coordination

[16]. Game-theoretic approaches [17–19] are sometimes brought

to bear on such issues, their underlying idea being that the

behavior of an individual (its ‘‘strategy’’) is to a large extent

determined by what the other individuals are doing. The strategic

choices of an individual are thus guided by those of the others,

through considerations of the relative ‘‘payoffs’’ (returns) obtain-

able in interactive games. In this context, a stochastic model of

strategic decision-making was introduced in [20], which captures

the essence of the above-stated notion, i.e. selection from among a

set of competing strategies based on a comparison of the expected

payoffs from them. Depending upon which of the available

strategic alternatives (that are being wielded by the other agents) is

found to have the most favorable ‘‘outcome’’ in the local vicinity,

every individual appropriately revises its strategic choice.

Competition between prevalent strategies and adaptive changes

at the individual level characterize the sociologically motivated

model of [20]. Given that these two features of competition and

adaptation also generally occur across the framework of activity-

induced synaptic plasticity, which is the primary mechanism for

learning in biological neural systems [21,22], it might be

interesting to consider a translation of the notions in [20] to the
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latter context, as a cross-pollinatory attempt of sorts. In other

words, a model for synaptic plasticity that incorporates the brand

of competition present in the agent-based strategic learning model

could be envisaged. A model was delineated in ref. [23] along

these lines, with the types or weights of a plastic synapse taking the

place of strategies. This model inherently possesses more than a

single timescale, which are interpreted here in terms of the

[different] effects of each synapse type on the activation rate of a

connected neuron. It turns out to be possible to define a rather

simple framework for learning and memory, which involves

subjecting the network of interconnected neural units to external

signals, and following the changes in the average behavior (in

terms of the relative abundances of the different synaptic states) of

the system as it responds to the external input. A salient result

emerging from the analytical approximation carried out in ref.

[23] points to the benefit of choosing disparate synaptic timescales

for obtaining longer retention times at the network level. This

finding echoes earlier results on two timescales of some theoretical

analyses mentioned in the opening paragraph above [10,11]. Of

possible and perhaps broader significance is also the fact that in

our setup, there is a clear-cut connection between the micro-level

physical observables and the macroscopic learning/forgetting

rates, at least in the analytically tractable effective representation

within which we work in [23]. This should allow for a more

transparent approach to dealing with questions of optimization of

the system performance under different learning protocols, so that

behavior is given a microscopically understandable basis.

Taking a cue from the numerical investigations of the motor

adaptation model in [10] to which we have alluded in [23], here

we shall explore the dynamical outcomes of our model of

competitive synaptic interactions under a variety of applied

time-dependent external signals. This is expected to reveal in

more detail the dependence of the system-level adaptational

properties on the synaptic time constants, and thus the model’s

functional scope as well. Also, given the inherent nonlinearity of

this model arising from the synaptic interactions at the basic level,

it is reasonable to suppose that it would be better suited to

modeling memory. Seen in the context of the linear two-timescale

system of ref. [10], which is essentially empirical in nature, our

analysis should provide some clues as to the sort of microscopic

approach that would be needed towards obtaining an adequate

theoretical underpinning of the ideas presented there.

This paper is organized along the following lines: the next

subsection provides, by way of background, an outline of the

original strategic learning model, followed by an account of the

model for synaptic plasticity that adopts elements of the former, and

which has been treated in detail in ref. [23]. In the subsequent

section, the mean-field representation of the network model is

briefly summarized. Working within the limits of this effective

description, we illustrate with an example how the choice of synaptic

parameters has a bearing on the collective timescales associated with

learning and forgetting when the system is subjected to a signal. This

idea is elaborated further in Section 4, which extends the foregoing

analysis to an analytical-cum-numerical exploration of different

forms of input signals and the dynamical responses they elicit. These

inputs are meant to reflect, at least in essence, some of the

experimental protocols considered in [10]. Finally, the overall

picture emerging from our findings is put in perspective, particularly

in relation to ref. [10], in Section 5, and potential directions for

taking the work further are briefly noted.

Background: A model for strategic learning
The starting point for our proposal in the present work is the

model of competitive learning that was introduced, and analyzed

from a physics perspective, in [20]. Although originally intended to

describe sociological phenomena like the diffusion of innovations

in connected societies, it can be applied just as well to represent

any process which involves, at the elemental level, selection from

among a set of competing alternatives.

In its original formulation, a distributed population of

interacting agents is arranged on the sites of a regular lattice,

each being ascribed one of two categories: fast (F) or slow (S). In an

evolutionary scenario, for example, these types could stand for two

contrasting behavioral strategies prevalent in the population. The

type associated with every site is not a given, but can keep

changing over time as a function of its nearest neighbors’ types;

this is where competitive selection plays a role. Thus, every agent/

site regularly revises its strategic choice, being guided by a pair of

rules: a majority-type rule reflecting an inherent tendency to side

with the local neighborhood, which is followed by an adaptive

performance-based rule, involving the selection of the type that is

perceived to be locally more successful. The notion of success is

measured in terms of the random outcomes of the agents in some

‘‘game’’, with a favorable outcome being ascribed to every F-type

(S-type) individual with an independent probability pz (resp. p{).

Thus, if an agent is surrounded by Nz (N{) nearest neighbors of

the F (S) type, Iz (resp. I{) of which turn out to be successful in a

particular trial, the agent arrives at a decision on whether or not to

convert by comparing the ratios Iz=Nz and I{=N{; if, for

example, a site is currently associated with the F state, then it will

switch to the S type provided that Iz=NzvI{=N{, and remain

unchanged otherwise. This rule can be immediately understood by

noticing that the ratios just mentioned are nothing but the average

payoff per individual ascribed by a site to each of the two types in

its neighborhood, assuming of course that success yields a payoff of

unity and failure, zero.

It goes without saying that the above outcome-based updates

naturally introduce an element of stochasticity into the population

dynamics, owing to the random fluctuations inherent in the

estimation of the relative payoffs. In ref. [20], a detailed analysis of

this model was carried out under the assumption of coexistence, i.e.

when pz~p{:p. Its collective behavior, as a function of the

parameter p, was shown to exhibit multiple dynamic phases

separated by critical phase transitions.

In ref. [23], the notion of competition embodied by the above

model has been reformulated in the synaptic context. After all,

adaptivity is a feature common to both settings, and it is therefore

not unnatural to consider the embedding of the rules of the agent-

based learning model into a model for synaptic plasticity, and to

understand the implications of doing so for suitably defined

learning and memory. This was initiated in ref. [23], and in the

present work will be explored in greater detail.

Results

Model and effective description
To begin with we shall sketch our model of competitive synaptic

interactions that is based on game theory-inspired ideas. We

consider a network consisting of neural units connected by

undirected, binary, plastic synapses. (It is pertinent to mention

here that in working with symmetric, i.e. undirected synapses, we

are following in the footsteps of several previous theoretical studies

on neural networks (e.g. [24–26]); on the other hand, the binary

property approximates synapses with discrete weight states, which

also appear in previous modeling work [27,28] and find some

experimental support as well [29,30]). Synapses sharing a

connected neural unit are treated as mutual neighbors. In a one-

dimensional formulation, like the one depicted in Fig. 1, each
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synapse will thus be associated with two synaptic neighbors. For

simplicity the neurons can be represented by binary threshold

units, and the two states of the binary synapse, which are inter-

convertible by definition, are assumed to have different weights,

which we label as ‘strong’ and ‘weak’ types.

Under the influence of some ongoing neural activity in the

network, the synapses undergo plastic switching from one state to

the other. In order to motivate the specific plasticity rules that we

introduce, we point out that in the configuration shown in Fig. 1,

where the middle synapse n is under consideration for a state

update, the neurons A and B share this middle synapse in

common; thus, in comparing how often the two neurons are found

activated, one can factor out the influence of the common synapse,

when considering averages, and effectively treat the time-averaged

activation frequency of either neuron as being determined only by

the single, other synapse that the neuron is connected to. This

‘‘ignoring of the common denominator’’ essentially implies that

the state of neuron A, say, in Fig. 1 can be considered quite

reasonably as an ‘‘outcome’’ to be associated with synapse n{1,

and similarly with neuron B and synapse nz1; thus, neurons can

be thought of as taking on the identities of the respective synapses.

Recalling the obvious similarity of this situation with that of the

abstract model of [20], and taking this analogy further, we set forth

the following rules governing the synaptic weight changes, which

have an anti-Hebbian flavor: for clarity, we shall first associate

with every possible pair of neural outcomes a ‘‘polarized’’ signal,

that depends on the states of the two neurons as well as the types of

both the adjacent synapses (i.e. the neighbors of the synapse that is

being considered for updating at that moment). A positively

(negatively) polarized signal is realized when the synapse connects

a strong neuron with a weak neuron, and the strong (weak) neuron

alone is activated. All other possible combinations of neuron types

and activation states are associated with zero or unpolarized

current. With this definition of polarity, it is proposed that Dww0
(Dwv0) whenever there is a positively (negatively) polarized

current, and Dw~0 in all other cases. Furthermore, to be

consistent with the binary nature of the synapses, it is assumed that

a strengthening event would effect a weak to strong conversion,

while leaving an already strong synapse unchanged (the corre-

sponding logic would hold for a weak synapse). Thus, loosely

speaking, the two synapses adjacent to any given synapse

‘‘compete’’ to decide its type, and this continues to happen

repeatedly across the entire network. Competition, albeit in other

forms, is found to occur in some other models of correlation-based

plasticity also [22,31,32].

In order to make some mathematical headway in analyzing

such a network of interacting synapses, we shall consider the

update dynamics of a single effective synapse, that in some sense

represents the average state of the whole network. To begin with,

in such a picture, the neural outcomes are assumed to be

uncorrelated at different locations, and treated as independent

random variables, with the probability for activation being

obtainable from the time-averaged activation frequency of the

neuron. Consistent with the situation described in the previous

paragraph, that the effect of the common synapse can be left out

on average in comparing the outcomes of its connected neurons,

we associate, with each neuron, a probability for activation at any

instant that is only a function of the other neighboring synapse,

being equal to pz (p{) for a strong (weak) type synapse. Thus, in

Fig. 1(b), the probability for activation of neuron A is equal to pz,

and that for neuron B is p{; both are independent of the state of

the middle synapse that is under consideration for updating.

Having defined these quantities it is rather straightforward to

work out the probabilities for potentiating or depressing events to

occur at a candidate synapse, given the identities of its neighbors.

This is illustrated with an example. Say a synapse has one

neighbor of each type, as is depicted in fig. 1. For this

configuration, a total of four outcomes for the neuronal pair A–

B are possible. There will be no weight changes if both neurons get

activated (giving an unpolarized synaptic current) or if both

remain silent; the likelihood of this happening is

pzp{z(1{pz)(1{p{). A depressing event (Dwv0) occurs if

neuron B fires but neuron A remains inactive, and this has a

probability p{(1{pz). The only remaining possibility is that

neuron A gets activated and neuron B does not. This occurs with a

probability pz(1{p{), and is accompanied by potentiation

(Dww0).

Our rules for activity-induced weight changes may have been

motivated by game-theoretic notions of strategic competition, but

when seen in the light of earlier work on rate-based models of

synaptic plasticity, a case can be made for their reasonableness at

least in relation to other earlier proposals in the field. In continuous-

time models, the firing rate of the neuron, rather than its membrane

potential, is taken as the basic dynamical variable, and synaptic

plasticity is a continuous process that depends on the firing rates of

the pre- and post-synaptic neurons. The dynamical equation

describing the time evolution of the synaptic weight usually involves

some non-linear function of pre/post-synaptic activities and the

weight itself, and in some cases, a dependence on averages of the

Figure 1. A model for plastic synapses. (a) A networked population
of binary synapses connecting neurons in a one-dimensional chain. The
synapse n, under consideration for an update, has a ‘strong’ type and a
‘weak’ type neighbor. (b) Two examples of synaptic weight changes
(the synaptic configuration is same as above): when neuron B is
activated and neuron A is not (upper example), the synaptic current has
negative polarity (I~I{?z) and the weight of synapse n is depressed.
When both neurons get activated (lower example), the current has net
zero polarity (Inet~0), and therefore the synaptic weight remains
unaffected.
doi:10.1371/journal.pone.0025048.g001
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firing rates over some temporal window has also been motivated

[22,33,34]. Drawing on such approaches, we speculate that the rules

for synaptic plasticity proposed in the previous paragraph might also

be realizable through an iterative, discrete equation symbolically

expressed as Dw!w((u{vuw)(v{vvw)) [22], where the form

of the non-linear function w is chosen to provide an appropriate fit to

the plasticity rules. Here, u and v represent the activity states of the

two connected neurons, which are binary variables in the present

set-up, being either active (1) or inactive (0). The symmetric form of

the argument of w is in keeping with the bi-directional nature of the

synapses and ensures that the synaptic response is insensitive to the

spatial direction of any current, while still being sensitive to its

polarity. The inclusion of time averages of the activity of the

connected neurons allows for a characterization of the strengths of

the neighboring synapses in this picture, and hence allows for the

determination of the polarity of any current at the synapse.

Returning to our previously mentioned intention of having an

analytically pliable representation of the system dynamics – even

though it could be numerically simulated by using a range of

updates, as in the case of the game-theoretic model [20] – we

consider a mean-field version of the model. The idea behind the

mean-field approximation is that we look at the average behavior

in an infinite system. This, at one stroke, deals with two problems:

first, there are no fluctuations associated with system size, and

second, the approximation that we have made in ignoring the

‘‘self-coupling’’ of the synapse is better realized.

In the mean-field representation, every synapse is assigned a

probability (uniform over the lattice) to be either strong (fz) or

weak (f{), so that spatial variation is ignored, as are fluctuations

and correlations. This single effective degree of freedom allows for

a description of the system in terms of its fixed point dynamics.

The rate of change of the probability fz, say, (which in the limit of

large system size is equivalent to the fraction of strong units) with

time, is computed by taking into account only the nearest-

neighbor synaptic interactions, via the rules defined earlier. The

dynamical equation for fz(t) assumes the following form:

fz(tz1)~rz?z(t)fz(t)zr{?z(t)f{(t)

:F (fz(t))
ð1Þ

with the transition probabilities being given by

rz?z(t)~f 2
z(t)zf 2

{(t)

z2fz(t)f{(t) 1{p{(1{pz)ð Þ

r{?z(t)~2fz(t)f{(t)pz(1{p{):

ð2Þ

The fractions of strong and weak types are, of course, normalized

by definition: fz(t)zf{(t)~1.

The implicitly time-dependent transition probabilities, which

incorporate the effect of nearest-neighbor coupling, introduce non-

linearity into the dynamics, an obvious departure from the linear

coupled equations of [10]. The deterministic dynamics of Eq. 1

yields stationary states (f �z) to which the system would relax

exponentially starting from an arbitrary initial state. Besides the

trivial unstable fixed points at 0 and 1 corresponding to

homogeneous, absorbing states (all units being one or the other

type), the algebraic equation f �z~F (f �z) also possesses a stable

solution; this is given by

f �z(pz,p{)~
(1{p{)pz

(pzzp{{2pzp{)
: ð3Þ

(Of course, in the presence of fluctuations, e.g. associated with

finite system sizes in mean-field, or in the full solution of the

stochastic equations, we would expect the trivial fixed points to be

absorbing, and the stable fixed point associated with Eq. 3 to be

metastable). The time scale for relaxation to this fixed point is the

other dynamically relevant quantity, which again can be extracted

from Eq. 1 and is given by

t~
1

2

1

pz(1{p{)
z

1

p{(1{pz)

� �
: ð4Þ

This system-level relaxation time is the central quantity with

regard to learning and forgetting protocols (see e.g. [10]). It

depends on the synapse-level outcome probabilities p+, and varies

with the location of the corresponding fixed point. It is instructive

to illustrate this dependence in the (pz,p{) plane, and this has

been done in Fig. 2. Such a picture suggests a possible way of

defining learning and retention in the coarse-grained representa-

tion. To do so, we first define a general time-dependent signal as a

‘perturbation’ of the system parameters (pz,p{) having the

following form: (pz,p{)?(pzzs(t),p{{s(t)). This choice of

signal definition is motivated by taking into account the fact that

pz{p{ plays the role of a ‘biasing field’. This has been argued

earlier [20] by means of an analogy with spin models; it can also

be inferred from the results of applying linear response theory to

the original model [35]. Moreover, this way the signal is being

applied to both the parameters, rather than preferentially to only

one of them. Thus, the application of a signal of this form has the

effect of introducing a time dependence into the system

parameters.

Figure 2. Relaxation timescales. Inverse time constant for relaxation
(t{1) as a function of the synaptic parameters p+, obtained in the one-
dimensional effective representation (see Eq. 4). The dashed line
corresponds to the diagonal pzzp{~1, along which the range of
imposable signals is maximized. The dark regions near the corners
correspond to default configurations with long retention times.
doi:10.1371/journal.pone.0025048.g002
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It is easy to work out the consequence of the above signal

definition for the simplest example of a constant input signal: the

fixed point would shift to a new location along a pzzp{~

constant line in the (pz,p{) plane. One can, then, imagine a

protocol whereby a constant signal is switched on at t~0 and

persists up to a time t~T , following which the system reverts to its

original state. Learning and forgetting are both exponential

relaxation processes in this setting, and two timescales naturally

enter the picture: the learning time constant for moving to the new

stable state (after the signal is applied), and the forgetting time

constant for reverting to the default fixed point once the signal is

turned off. It may be noted that, since the relaxation timescale is a

function of the parameters p+ of the end state, whatever that may

be, it is in general different for the learning and the forgetting: the

former depends on the values of p+ in the presence of the signal,

while the latter depends on the unperturbed state.

One of the strengths of the preceding approach is that

performance optimization can be directly related to the micro-

scopic parameters p+ (in contrast to the approach of [10] where

optimization relied on the relative values of multiplicative

constants). Fig. 2 suggests an approach to optimizing the

performance in the particular scenario under consideration, i.e.

achieving long forgetting times and typically shorter learning

times: by choosing the default parameters in such a way that the

unperturbed state of the system lies near the lower right corner (or

the upper left corner), the timescale for retention, being only a

function of the unperturbed state, can be made very long, with the

average timescale for learning applied signals being shorter. This

limit corresponds to having a wide separation between the

timescales associated with the two parameters p{1
z and p{1

{ . (If,

alternatively, one were to choose the default values of p+ to lie

closer to the middle of the graph, the forgetting time constant

would be shortened, clearly an undesirable feature.) It may be

noted that translating the default state along the diagonal line

given by pzzp{~1 only modifies the retention time, while

leaving the range of signals that can be absorbed, and thus the

average learning time, unchanged. Additionally, one observes that

given the form of the signal as defined above, which can only

produce shifts parallel to the pzzp{~1 diagonal, the range of

allowed signals is maximal when the system stays on this diagonal,

rather than on any other line parallel to it.

It should be clear from the preceding discussion that we now

have a framework in place for studying the responses of the

effective system to arbitrary input signals having more general

forms of time dependence. We would like to build on the simplest

case considered above, and in the next section, carry out a similar

exercise of linking system performance to the physically meaning-

ful synaptic parameters for other signal profiles representative of

more complex learning protocols. In particular, it would be

worthwhile to ascertain if optimal parameter settings can similarly

be located in the parameter space of the effective system.

Analyzing various protocols
We start by reconsidering the first example discussed above,

that of a constant signal which is present for a specific duration of

time. This signal profile is depicted in Fig. 3(a). The response of the

system in terms of the time-dependent relative abundance of

strong synapses is illustrated for some different choices of the

parameter pz~1{p{ in Fig. 4; these curves have been obtained

by numerically evolving the effective equation for fz. The

preceding analysis led us to infer that the system shows long

forgetting times (associated with exponential relaxation) when the

synaptic time constants are well separated, which is also observable

in Fig. 4. Moreover, the effective mean-field representation has the

property that the learning time (but not the retention time) shows a

dependence on the signal strength as well as the default values of

p+. Since, in some situations, quick learning is as important as

slow forgetting, another quantity of interest is the ratio of

forgetting to learning times (which we label as R). This quantity

will obviously be a function of the signal strength (s) too; thus, it is

not hard to imagine that for a given system, there will be a

particular value of the signal strength that will yield an optimal

value for R. Continuing to confine ourselves to the pzzp{~1
diagonal (so as to maximize the range of allowable inputs, as

mentioned earlier) so that the default system is essentially

parametrized by a single variable (pz, say) now, the performance

with respect to the parameter R can be visualized, as before, on a

two-dimensional (pz,s) plane. This is shown in the color-coded

plots of Figs. 5(a) & (b), which correspond to the analytically

computed values and the estimates obtained by numerical

simulation (see Methods section for details) respectively; they

show hardly any difference. Recall that for any given value of pz,

only a certain range of signal values is meaningfully imposable,

and this fact is reflected in the phase diagram which does not span

the entire range of the pz{s plane. While the dependence of R
on the value of the signal strength s is readily apparent, it is also

clear that close to the extremal values of the parameter pz (which

correspond to having disparate synaptic efficacies) the system does

much better overall, with higher values of R being attainable in

these limits, over a wider range of signal strengths. This result is in

agreement with our earlier finding regarding the ‘‘functional’’

benefit of having well-separated synaptic parameters p+.

Figure 3. Temporal forms of the protocols analyzed in the text. (a) Signal - No Signal (De-adaptation); (b) Signal - Half-Signal (Downscaling);
(c) Signal - Reverse Signal (AI).
doi:10.1371/journal.pone.0025048.g003
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The signal example that was just considered also appears in a

simulation of deadaptation in the context of the motor adaptation

model of [10]. Proceeding along these lines, we next consider two

other types of signals, which also are intended to be variants of

experimental paradigms considered in [10]. These are referred to

as Downscaling and Anterograde Interference (AI), and their

forms are shown in Figs. 3(b) & (c).

Let us consider the downscaling signal first. It consists of a phase

of constant input, followed by a phase during which the original

input is reduced (in our case halved) in magnitude, rather than

being completely removed. Just as before, the temporal response of

the effective variable fz to such a signal is illustrated in Fig. 6 with

different realizations of the synaptic parameter pz and some fixed

value of signal strength; these curves have been obtained by

simulating the effective equation, Eq. 1, by evolving from the

default fixed point state. In order to obtain a clearer picture of the

variation of the behavior with the basic synaptic parameter as well

as the strength of the signal, we consider the corresponding

visualization in Figs. 7(a) & (b), which display the analytical and

numerical estimates respectively in the allowed region. As before,

the two results are extremely similar, although obviously not

identical. The quantity that is depicted here is the ratio between

the downscaling time (i.e. the timescale associated with relaxing to

the fixed point corresponding to the half signal) and the timescale

for the initial learning (i.e. the relaxation time to go from the

original, unperturbed default state to the fixed point in the

presence of the full signal). The joint dependence on the two

parameters is brought out in a fairly clear manner, especially to do

with the following idea: configurations with p+ closer to extremal

values have a slower downscaling rate in general, although the

performance of any given system certainly depends on the choice

of signal strength also.

We next deal with the signal type mimicking the protocol for

anterograde interference (refer to Fig. 3(c)). The basic idea here is

to apply a constant input signal for a specific duration, and to

follow this up by reversing the sign of the applied signal, while

leaving its magnitude unchanged. Such a scenario was considered

in the original context [10] in order to probe the effect that

previous learning might have on the subsequent adaptation to an

oppositely directed input; in other words, whether past learning

could remain imprinted at a deeper level even after appearing to

have been erased, thus interfering with the receptiveness to future

inputs. For our effective model, the response to such a paradigm is

exemplified by the numerically obtained curves in Fig. 8 for three

different parameter (pz) choices and a fixed signal strength. Once

again, we consider the functional dependence on the synaptic time

constants, examining the ratio of the relearning time (for

relaxation to the reversed, negative input) to the initial learning

time (the timescale for exponential relaxation to the fixed point

corresponding to the originally imposed signal), both of which of

course also depend on the value of the signal. (For details of the

accompanying numerical simulation, see the Methods section.)

Figures 9(a) & (b) show a more complex response of the system

than we have seen hitherto. It is clear that both the signal strength

and its orientation need to be factored in; thus for a typical default

value of pz lying in (0,0:5), a positive signal (sw0) shows more

Figure 4. De-adaptation protocol. Time dependence of the
dynamic variable fz representing the state of the synaptic population
in the effective description, to a signal that is imposed until the system
reaches saturation (see Fig. 3(a)). The curves for different settings of p+
have been translated vertically to meet the baseline for comparative
analysis. The black, red and blue curves correspond to p+~ (0.5, 0.5),
(0.3, 0.7) and (0.2, 0.8) respectively, and the signal strength is fixed at
s~z0:02.
doi:10.1371/journal.pone.0025048.g004

Figure 5. De-adaptation and synaptic parameters. Variation of the ratio R of the forgetting timescale to the learning timescale for the Signal -
No Signal protocol over the two-dimensional pz{s plane (p{~1{pz has been chosen here). The values of ln R are shown color-coded in the panel
to the right of each plot. Both the analytical (a) and numerical (b) estimates are shown.
doi:10.1371/journal.pone.0025048.g005
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anterograde interference than a negative one. (The situation is

reversed when we consider pz in (0:5,1).) This is explained by the

observation that a positive signal adds to the strength of the

stronger synaptic type, causing more retention of the original

signal, and hence a greater time associated with unlearning this to

learn an oppositely directed signal.

Our observations on the various protocols have been based on

analyses carried out within a mean-field framework, and involve

comparisons between timescales of learning and forgetting. These

are obtained analytically, as well as by independent simulation, by

examining the dynamical relaxation to the fixed points associated

with the ‘‘bare’’ system as well as with the system in the presence of

a signal. If, therefore, a signal is relearnt before it has been entirely

forgotten, it is conceivable that ‘‘savings’’ [10] will be manifested;

in particular, this effect may be expected to be quite significant

where forgetting is slow, i.e. where pz and p{ are well separated.

This is also consistent with the fact that we get reasonable results

for another history-dependent phenomenon, that of anterograde

interference, where the system takes longer to learn the reversed

signal in the relevant parameter regimes. Our main reason for not

probing this further in this paper is that the mean-field

approximation, which we have chosen for analytical reasons, is

not really the best way to look at the developing correlations

associated with history; on the other hand, the full numerical

simulation of the exact model will automatically introduce the

necessary correlations, and this is a subject that we leave for future

work.

Discussion

A theoretical model such as ours, which introduces game

theory-inspired notions of competitive interactions into the field of

activity-dependent synaptic plasticity, naturally raises questions

about its experimental utility. The main motivation for our model

was in fact experimental work concerning motor adaptation [10],

where we wished to provide a more microscopic basis to the

coupled linear equations presented there. While our equation is

formally similar to that presented in [10], the important difference

is that it is non-linear, and that microscopic observables, rather

than parameters, determine the timescales associated with learning

and forgetting. The formal similarity however suggests that many

of the protocols can be applied to our mean-field system, with

rather similar results to [10], as shown in the last two sections. It

suggests also that if correlations are included by solving our full

equations to a level that is higher than mean-field, we will be able

to incorporate some of the more sophisticated features of the

experiments of [10]. The non-linearity of our dynamical

equations, and the fact that they show rudiments of network-level

memory even in this fairly simple representation, are strong

positives. Additionally, learning times in our model scale with the

strength of the applied signal, but not the forgetting time, a feature

that may actually have some empirical support [36]. This feature

introduces an additional dimension of complexity into the

dynamics, suggesting for instance, that to every system there

corresponds a particular choice of ‘‘preferred’’ signal strength to

which it is most receptive, in the sense of learning it the quickest

(for an extension of this to the phenomenon of hearing, see [37]).

More importantly, the present analytical approach provides a

rather transparent link between the quantities characterizing the

system performance in this case the various relaxation rates and

Figure 6. Downscaling protocol. Time variation of the effective
variable fz in response to a signal that is reduced by half after a certain
period of time (see Fig. 3(b)). The curves for different choices of p+ have
been translated vertically to meet the baseline for comparative analysis.
The black, red and blue curves correspond to p+~ (0.5, 0.5), (0.3, 0.7)
and (0.2, 0.8) respectively, and the (fixed) signal value is s~z0:02.
doi:10.1371/journal.pone.0025048.g006

Figure 7. Downscaling and synaptic parameters. Variation of the ratio of the downscaling timescale to the timescale of initial learning for the
Signal - Half Signal protocol over the two-dimensional pz{s plane (p{ is set equal to 1{pz). The values of the logarithm of the ratio are shown
color-coded in the panel to the right of each plot. Both the analytical (a) and numerical (b) estimates are shown.
doi:10.1371/journal.pone.0025048.g007
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those defined at the fundamental micro-level of neurons and

synapses (p+ and s). This obviates the need to have to fish around

for optimal parameters, and provides a better handle on matters

having to do with the locating of the right synaptic parameters

corresponding to a particular behavior.

Referring back to the plots of the previous section for the

protocols considered, specifically those corresponding to de-

adaptation and downscaling, we note that the choice of disparate

synaptic timescales (directly relatable to the synaptic weights) is in

general associated with more favorable performance, in the sense

of efficient learning and longer retention, even when signal

strengths are variable. This broad conclusion is consistent with the

findings of ref. [10], whose model consisting of coupled fast and

slow components also shows markedly improved agreement with

the results of hand-reaching experiments, in comparison with its

single-timescale competitors.

Before concluding, we mention some possible extensions of this

work. One can, of course, go beyond mean field, retaining spatial

information, and correlations, in the determination of the

neuronal outcomes. The effect of doing so would be to introduce

additional degrees of freedom, and corresponding timescales, into

the description of the system dynamics. In a pair-approximation

[20] for instance, which takes into account the correlations

between nearest neighbors, the macro-level dynamics would

contain two relaxation rates, and show richer behavior. Thus,

working with such a higher-order effective representation might

lead to a more fruitful link with experiment. An interesting

possibility would also be to look at directed synapses, which would

in fact amount to changing the update rules [35] of the present

model. Also, we would like to incorporate ideas from spike-timing-

dependent plasticity [38] into our model, to give some of our

timescales a firmer microscopic underpinning. Last but by no

means least, the inclusion of our model synapses into realistic

networks is a major goal, to put our work in the context of recent

models of brain learning [39]; the use of game theory in evolving

networks [40] would be of particular use in this endeavour.

To summarize, we have explored a novel model for synaptic

plasticity, sketched in earlier work [23], which incorporates a

notion of competition (between synapses in their distinct states)

appropriate to decision-making paradigms in fluctuating circum-

stances. An approximate, coarse-grained description for obtaining

learning behavior has been explored at length. While highlighting

interesting features, including the effect of choosing dissimilar

timescales along the lines of a body of previous work, our

approach also suggests that more involved quantitative treatment

may lead to more concrete connections with experiment.

Methods

The effective equation Eq. 1 is evolved numerically in the

presence of the chosen signal type s(t). For every simulation, the

starting value of fz is assumed to correspond to the fixed point of

the default, unperturbed system. Once a signal s is turned on, the

system is allowed to evolve from its initial state until the time that it

‘‘saturates’’ at a new state; this is implemented by imposing the

condition that the fractional change in fz over one time-step be

less than a certain tolerance limit (chosen to be equal to 10{8

Figure 8. Anterograde interference. Response of the synaptic
population variable fz to the application of a signal followed by its
reversal (see Fig. 3(c)). The curves for different choices of p+ have been
translated vertically to meet the baseline for comparative analysis. The
black, red and blue curves correspond to p+~ (0.5, 0.5), (0.3, 0.7) and
(0.2, 0.8) respectively, and the (fixed) signal value is s~z0:02.
doi:10.1371/journal.pone.0025048.g008

Figure 9. Anterograde interference and synaptic parameters. Variation of the ratio of the timescale for learning the reversed signal to the
timescale for initial learning for the Signal - Reversed Signal protocol over the two-dimensional pz{s plane (p{ is set equal to 1{pz). The values of
the logarithm of the ratio are shown color-coded in the panel to the right of each plot. Both analytical (a) and numerical (b) estimates are displayed.
doi:10.1371/journal.pone.0025048.g009
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here). The signal is assumed to remain applied until this condition

is reached, at which point the system may be considered to have

‘‘learnt’’ the signal. Thereafter the signal is removed or changed to

a new value depending on the protocol. The time taken to reach

saturation, beginning from the moment the signal was switched

on, is taken to be the timescale for the corresponding process.

In the de-adaptation and downscaling simulations, the deter-

mination of both the involved timescales (initial learning followed

by forgetting or downscaling respectively) is straightforward and

follows the procedure outlined above. The third protocol (signal -

reversed signal) involves reversing the sign of an applied signal,

and estimating the time for learning this reversed signal. For

obtaining this time, the system is first allowed to evolve back from

the stable state that was attained in the presence of the initially

applied signal, to the default level (i.e. the unperturbed system state).

The time for learning the reversed signal is only measured from

this point onwards, until fz saturates at the fixed point

corresponding to the reversed signal (following the procedure of

the previous paragraph). In other words, the system is first allowed

to ‘‘forget’’ the initially imposed signal (by getting back to its

default state), and then made to ‘‘learn’’ the sign-reversed

counterpart.
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