
R AD I A T I ON ONCO LOG Y PH Y S I C S

Evaluation of deep learning-based auto-segmentation
algorithms for delineating clinical target volume and organs
at risk involving data for 125 cervical cancer patients

Zhi Wang1,2 | Yankui Chang1 | Zhao Peng1 | Yin Lv2 | Weijiong Shi2 | Fan Wang2 |

Xi Pei1,3 | X. George Xu1

1Center of Radiological Medical Physics,

University of Science and Technology of

China, Hefei, China

2Department of Radiation Oncology, First

Affiliated Hospital of Anhui Medical

University, Hefei, China

3Anhui Wisdom Technology Co., Ltd., Hefei,

Anhui, China

Author to whom correspondence should be

addressed. X. George Xu

E-mail: xgxu@ustc.edu.cn.

Funding information

Natural Science Foundation of Anhui

Province, Grant/Award Number:

1908085MA27; Anhui Key Research and

Development Plan, Grant/Award Number:

1804a09020039

Abstract

Objective: To evaluate the accuracy of a deep learning-based auto-segmentation

mode to that of manual contouring by one medical resident, where both entities

tried to mimic the delineation "habits" of the same clinical senior physician.

Methods: This study included 125 cervical cancer patients whose clinical target vol-

umes (CTVs) and organs at risk (OARs) were delineated by the same senior physi-

cian. Of these 125 cases, 100 were used for model training and the remaining 25

for model testing. In addition, the medical resident instructed by the senior physi-

cian for approximately 8 months delineated the CTVs and OARs for the testing

cases. The dice similarity coefficient (DSC) and the Hausdorff Distance (HD) were

used to evaluate the delineation accuracy for CTV, bladder, rectum, small intestine,

femoral-head-left, and femoral-head-right.

Results: The DSC values of the auto-segmentation model and manual contouring

by the resident were, respectively, 0.86 and 0.83 for the CTV (P < 0.05), 0.91 and

0.91 for the bladder (P > 0.05), 0.88 and 0.84 for the femoral-head-right (P < 0.05),

0.88 and 0.84 for the femoral-head-left (P < 0.05), 0.86 and 0.81 for the small

intestine (P < 0.05), and 0.81 and 0.84 for the rectum (P > 0.05). The HD (mm) val-

ues were, respectively, 14.84 and 18.37 for the CTV (P < 0.05), 7.82 and 7.63 for

the bladder (P > 0.05), 6.18 and 6.75 for the femoral-head-right (P > 0.05), 6.17

and 6.31 for the femoral-head-left (P > 0.05), 22.21 and 26.70 for the small intes-

tine (P > 0.05), and 7.04 and 6.13 for the rectum (P > 0.05). The auto-segmentation

model took approximately 2 min to delineate the CTV and OARs while the resident

took approximately 90 min to complete the same task.

Conclusion: The auto-segmentation model was as accurate as the medical resident

but with much better efficiency in this study. Furthermore, the auto-segmentation

approach offers additional perceivable advantages of being consistent and ever

improving when compared with manual approaches.
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1 | INTRODUCTION

Cervical cancer is one of the most common malignant tumors in the

female reproductive system. The incidence and mortality rates of

cervical cancer rank the fourth highest among all female cancer

patients.1 Radiation treatment (RT) is an effective method for cervi-

cal cancer treatment,2 and the mainstream technology today is based

on the concept of intensity-modulated radiation therapy (IMRT). In

radiotherapy planning, the precise delineation of the clinical target

volume (CTV) and organs at risk (OARs) is essential in ultimately

delivering the necessary amount of radiation dose to the target area

while sparing adjacent normal tissues from complications. Manual

delineation of the OARs, however, is time-consuming and labor-in-

tensive in the RT planning workflows. Studies have shown that as

much as 120 min can be required for a clinician to manually delin-

eate the OARs of a cervical cancer patient.3 Inter-observer variability

(IOV) has been found among radiation oncologists who perform

manual contours, and even the same physician can have different

manual contours at different times due to fatigue and other fac-

tors.4–8 The variability can lead to a higher error level than the plan-

ning and setup errors.9–12

Automatic segmentation of CTV and OARs can alleviate physi-

cians’ burden and reduce variability. To that end, atlas-based

approaches have been reported.13–15 However, the atlas-based auto-

segmentation methods require users to establish their own tem-

plates, and the subsequent applications can suffer from the large

number of patient cases in the template and the poor accuracy of

manual contouring. Moreover the image processing of the atlas-

based auto-segmentation requires a long time. These issues limit fur-

ther development of this technology.

In recent years, convolutional neural networks (CNNs) have been

proven to be an effective tool in auto-segmentation of the CTV and

OARs of the head and neck,16–19 thoracic cavity,20–23 abdomen,24–26

and pelvis.27–30 Studies have shown that for auto-segmentation of

OARs in head and neck cancers and chest cancers, the accuracy of

deep learning-based auto-segmentation19,21,26,31 is significantly

higher than that of the atlas-based method.32–34 Men et al.30 used

deep-dilated CNNs to yield more accurate segmentation results in

delineating the CTV and OARs of rectal cancer patients. Liu et al.35

used the modified U-Net model for auto-segmentation of OARs of

cervical cancer, and the evaluation of radiation oncologists showed

that the results predicted by the model were highly consistent with

those of the radiation oncologists. Wong et al.36 verified that the

accuracy of deep learning-based auto-segmentation is comparable to

that of expert inter-observer variability for RT structures and sug-

gested that the use of deep learning-based models in clinical practice

would likely realize significant benefits in RT planning workflow and

resources.

However, most previous studies19,24,25,30 have focused on the

accuracy of auto-segmentation ignoring the evaluation of learning

ability in the clinical practice. This study aims to compare the learn-

ing abilities of the auto-segmentation model and a medical resident

— both learned from the same senior radiation oncologist. Higher

accuracy represents higher learning ability, and smaller variance cor-

responds to better stability. We first collected cervical cancer cases

delineated by the same senior radiation oncologist. Next, the testing

cases were delineated separated by a medical resident under the

instruction by the senior physician for 8 months and by the auto-

segmentation model trained on the training set. The auto-segmenta-

tion model was compared against the medical resident using the

remaining 25 cases in the testing set.

2 | MATERIALS AND METHODS

2.A | Datasets

We retrospectively collected 125 cases of cervical cancer receiving

IMRT between January 2019 and May 2020 at the First Affiliated

Hospital of Anhui Medical University in China. These female patients

were between 22 and 86 yr of age, with an average age of 53.8 yr.

The CT scanning covered from the lower lumbar spine to the sciatica

knot and pelvic cavity. The CT slice thickness was 5 mm. The CT

image datasets were transmitted to the Eclipse 13.6 treatment plan-

ning system (TPS).

The manual delineation of the cervical cancer CTV was con-

ducted in accordance with the guidelines of by the Radiation Ther-

apy Oncology Group (RTOG).37 The senior radiation oncologist

manually contoured the CTV and OARs on the Eclipse TPS according

to the International Commission on Radiation Units and Measure-

ments (ICRU) report 50.38 The CTV starts from the bifurcation of

the common iliac artery and includes the primary tumor, uterus,

appendix, part of the vagina (the upper half or two-thirds of the

vagina according to the primary tumor), and pelvic lymph nodes

(common iliac, external iliac, internal iliac, obturator, and presacral).

2.B | Deep learning-based auto-segmentation

In this study, we investigated the use of a 3D CNN for delineating

CTVs and OARs of cervical cancers. As shown in Fig. 1, the network

consists of an encoder which extracts features from data and a

decoder which performs the pixel-wise classification. The encoder

consists of five successive residual blocks. Each block contains three

convolution layers with 3 × 3 × 3 kernel, and there is a spatial drop-

out layer between the early two convolution layers to prevent the

network from overfitting. Spatial down-sampling is performed by a

convolution layer with 3 × 3 × 3 kernel and 2 × 2 × 2 stride. The

decoder consists of four successive segmentation blocks. Each block

contains two convolution layers with the kernel of 1 × 1 × 1 and

3 × 3 × 3, respectively. Spatial up-sampling is performed by a

deconvolution layer with 3 × 3 × 3 kernel and 2 × 2 × 2 stride.

Here each convolution layer is followed by an instance normaliza-

tion, and a leaky rectified linear unit. Four dashed arrows in the

Fig. 1 indicate four skipping connections that copy early feature-

maps and concatenate them with later feature-maps that have the

same size to preserve high-resolution features. In the final three seg-

mentation blocks, a 1 × 1 × 1 convolution layer is used to map the

WANG ET AL. | 273



feature tensor to the probability tensor with the two channels,

before all results are merged by the up-sampling operation to

enhance the precision of segmentation results. Finally, a SoftMax

activation is used to output a probability of each class for every

voxel. The network has achieved high precision in segmentation of

thoracic and abdominal organs, which has been validated in previous

research by Peng et al.39 and integrated into DeepViewer (commer-

cial auto-segmentation software based on deep learning).40,41

This study included 125 cervical cancer cases, 100 of which were

randomly selected and divided into training and validation sets at a

ratio of 4:1, while the remaining 25 cases were used to test the

model. The weighted DSC was selected as the loss function, and

Adam was selected as the optimizer. During training, data augmenta-

tion and deep supervision were used to avoid overfitting. The entire

training process used the Python deep learning library Keras42 with

TensorFlow43 as the backend, and a Nvidia Geforce RTX 2080Ti

GPU card with 11G memory was used to train the model.

2.C | Experiment

To study the difference in learning ability between the auto-segmen-

tation model and the medical resident in delineating the CTVs and

OARs, the auto-segmentation model and the resident both learned

from the same senior physician. The learning abilities of the auto-

segmentation model and the resident were evaluated by comparing

the accuracy of the auto-segmentation model and the resident in

the 25 testing cases. The delineation objects included the CTV, blad-

der, femoral-head-right, femoral-head-left, small intestine, and rec-

tum in cervical cancer. A flowchart of the experiment is shown in

Fig. 2.

First, this study included 125 cervical cancer cases whose CTV

and OAR contours were manually delineated by the same senior

physician with 20 yr of clinical experience according to the above

principles, and these contours were regarded as true contours (TCs)

in this study.

Second, a medical resident, who was a student of the senior

physician and had spent 8 months of training on how to delineate

the CTV and OARs, was invited to participate in this experiment.

Based on his experience, the medical resident independently delin-

eated the CTVs and OARs of the 25 cervical cancer cases in the

testing set layer by layer on the Eclipse TPS. During the delineation

process, no time limit was applied, and the medical resident could

not view anatomy books and online guidance, consult other doctors,

or refer to previous cases. Under these circumstances, we obtained

the resident contours (RCs) manually delineated by the medical resi-

dent.

Then, the auto-segmentation model was trained on the 100

training cases delineated by the same senior physician. For training,

the learning rate starts from 0.0005 and is divided by 10 when the

validation loss does not significantly decrease in 10 successive

epochs. The training process stops automatically when the validation

loss does not decrease in 30 successive epochs. The trained model

was integrated into DeepViewer. The deep learning-based auto-seg-

mentation contours (DCs) of the CTVs and OARs for the 25 cases

were obtained using DeepViewer.

Finally, to compare the learning abilities of the auto-segmenta-

tion model and the medical resident, the accuracy of the deep learn-

ing-based auto-segmentation model and the accuracy of the medical

resident were calculated, and paired Student’s t-tests were used for

statistical analysis.
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Conv3D k3 s2

Deconv3D k3 s2

Conv3D k1 s1

Concatenate
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Upsampling3D s2

Output
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16 16 16 16

32 32 32 32
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64 32 32 2 2
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F I G . 1 . Structure of the network model.
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2.D | Evaluation metrics

The DSC and HD were used to evaluate the accuracy of the auto-

segmentation model and the accuracy of the resident. The DSC is

defined as follows:

DSC¼ 2 A∩Bj j
Aj jþ Bj j , (1)

where A is the DCs or RCs, and B is the TCs in our study. The

numerator is twice as large as the intersection of A and B, and the

denominator is the sum of A and B. A larger DSC corresponds to a

higher degree of coincidence between the DCs or RCs and the TCs.

The DSC ranges from 0 to 1, with the latter value indicating perfect

performance.

The HD is defined as follows:

HD A,Bð Þ¼ max h A,Bð Þ,h B,Að Þð Þ (2)

hðA,BÞ¼ max
b∈B

ðmin
a∈A

k a�b kÞ (3)

where h(A,B) is the greatest of all the distances from a point in A to

the closest point in B. A smaller value usually represents better seg-

mentation accuracy.

3 | RESULTS

The DSC values of deep learning-based auto-segmentation (the DSC

of DCs-TCs) and the DSC values of manual contouring by the resi-

dent (the DSC of RCs-TCs) are summarized in Table 1 and displayed

in Fig. 3. As shown in Table 1, the DSC values of the auto-segmen-

tation model for the CTVs and OARs were (CTV: 0.86 � 0.02; blad-

der: 0.91 � 0.06; femoral-head-left: 0.88 � 0.05; femoral-head-right:

0.88 � 0.04; small intestine: 0.86 � 0.04; and rectum: 0.81 � 0.06).

Compared with the resident, the auto-segmentation model had bet-

ter accuracy for the CTV, femoral-head-left, femoral-head-right, and

small intestine, and a significant difference was identified between

auto-segmentation model and the resident (P < 0.05). The auto-seg-

mentation model and the resident had comparable accuracy for the

bladder, with DSC values of 0.91 � 0.06 for both. For the rectum,

the DSC value of the auto-segmentation model was 0.03 lower than

that of the resident, but no significant difference was observed

(P > 0.05).

The HD values of deep learning-based auto-segmentation (the

HD of DCs-TCs) and the HD values of manual contouring by the

resident (the HD of MCs-TCs) are shown in Table 2 and Fig. 4. As

shown in Table 2, the HD values of the auto-segmentation model

for the CTVs and OARs were (CTV: 14.84 mm � 2.92 mm; bladder:

7.82 mm � 2.42 mm; femoral-head-left: 6.18 mm � 1.51 mm;

femoral-head-right: 6.17 mm � 1.15 mm; small intestine: 22.21 mm

� 6.64 mm; and rectum: 7.04 mm � 2.88 mm). Compared with the

resident, the auto-segmentation model had better similarity for the

CTV, and a significant difference was noted between the auto-seg-

mentation model and the resident (P < 0.05). The auto-segmentation

Training and Valida�on

Training Data

Training and Valida�on

Auto-segmenta�on model

DCs

TCs

Accuracy  of  DCs 

Comparison

Predic�on

RCs

Comparison

Accuracy  of  RCs The Resident DoctorTes�ng Data

F I G . 2 . Flowchart of the experiment. DCs: Deep learning-based auto-segmentation contours; TCs: True contours delineated by the senior
physician. RCs: Manual contours delineated by the medical resident.

TAB L E 1 DSC values of DCs-TCs and RCs-TCs.

DCs-TCs RCs-TCs P value

CTV 0.86 � 0.02 0.83 � 0.02 <0.001

Bladder 0.91 � 0.06 0.91 � 0.06 0.684

Femoral-head-right 0.88 � 0.05 0.84 � 0.07 0.032

Femoral-head-left 0.88 � 0.04 0.84 � 0.08 0.025

Small intestine 0.86 � 0.04 0.81 � 0.07 0.002

Rectum 0.81 � 0.04 0.84 � 0.05 0.059
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model had an accuracy comparable to the resident for the bladder,

rectum, femoral-head-left, femoral-head-right, and small intestine.

The combined results of the DSC and HD show that the deep

learning-based auto-segmentation model had better accuracy than

the medical resident in delineating the CTV, with significant differ-

ences in both the DSC and HD (P < 0.05). As shown in Fig. 5 (panels

a1–a3), deep learning-based auto-segmentation was more similar to

the contours delineated by the senior physician. As shown in Fig. 5

(panels b1–b3, d1–d3 and e1–e3), the auto-segmentation model and

the medical resident performed comparably for the bladder, femoral-

head-left, and femoral-head-right, with no significant differences.

Regarding delineation of the small intestine and rectum (Fig. 5), the

auto-segmentation model was slightly better than the resident for

the small intestine, and the medical resident was slightly better than

the auto-segmentation model for the rectum.

In terms of time requirements, the average time for delineation

of a case, including the data pre-processing and post-processing

steps, with the deep learning-based auto-segmentation model was

approximately 2 min. Approximately 90 min was required for the

medical resident to delineate a case manually, showing that the effi-

ciency of auto-segmentation is substantially higher than that of the

medical resident.

4 | DISCUSSION

In recent years, an increasing number of deep learning-based meth-

ods have been applied to the field of medical imaging, which have

(a)

(b)

F I G . 3 . Boxplots obtained for DSC analyses. (a) DSC values of
DCs-TCs; (b) DSC values of RCs-TCs.

TAB L E 2 HD values (mm) for DCs-TCs and RCs-TCs.

DCs-TCs RCs-TCs P value

CTV 14.84 � 2.92 18.37 � 1.59 <0.001

Bladder 7.82 � 2.42 7.63 � 2.88 0.813

Femoral-head-right 6.18 � 1.51 6.75 � 2.05 0.281

Femoral-head-left 6.17 � 1.15 6.31 � 2.12 0.789

Small intestine 22.21 � 6.64 26.70 � 8.76 0.051

Rectum 7.04 � 2.88 6.13 � 1.93 0.208

(a)

(b)

F I G . 4 . Boxplots obtained for HD analyses. (a) HD values of DCs-
TCs; (b) HD values of RCs-TCs.
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great application potential in disease diagnosis,44–47 lesion recogni-

tion,48–52 and image segmentation.28,52–54 Especially in image seg-

mentation, accuracy has always been the focus of attention. Most

previous studies developed several superior models to improve the

accuracy of auto-segmentation, and some studies compared the

accuracy of different auto-segmentation models.19,24,25,30 In this

study, we investigated the use of the deep learning-based auto-

segmentation model to delineate the CTVs and OARs of cervical

cancer cases and conducted a comparative analysis with the manual

delineation results of a medical resident. The auto-segmentation

model and the medical resident learned from the same senior clinical

doctor to avoid the impact of different physicians. The auto-segmen-

tation model learned the contours of the CTVs and OARs manually

delineated by the senior physician for training, and the medical resi-

dent mimicked the senior physician how to delineate the CTV and

OARs. In this situation, the comparison between the auto-segmenta-

tion model and the medical resident is meaningful. The learning abili-

ties of the auto-segmentation model and the medical resident could

be evaluated by comparing the accuracy of the auto-segmentation

model and the accuracy of the medical resident.

The accuracy of the deep learning-based auto-segmentation

model was found to be higher than that of the medical resident in

delineating the CTVs and most OARs of cervical cancer. The accuracy

of auto-segmentation in this study is comparable to those in similar

studies and even higher for some OARs,19,24,28,30,35,36 and the reason

may be that the cases in this study were delineated by the same

senior physician. The auto-segmentation model is more accurate in

the delineation of the CTV, small intestine, femoral-head-right, and

femoral-head-left. The boundaries of the CTV and small intestine in

cervical cancer are not clear, and the resolution of soft tissue in CT

images is not good. The senior physician must delineate the contours

according to the actual situation of the patient; at this point, the resi-

dent lacks sufficient knowledge and experience. Moreover the loca-

tion of the small intestine in CT images is different from the location

of the small intestine during radiation treatment. To better protect

the small intestine with as low a dose as possible, the senior physi-

cian often uses a larger outline containing the small intestine as the

contours of the small intestine. In other words, the actual outline of

the small intestine will be slightly expanded relative to the original

contours. In this case, the auto-segmentation model is more likely to

learn the contouring standards and experience of the senior physician

in delineating the CTV and the small intestine, while a medical resi-

dent with only 8 months of internship experience does not possess

this ability. For the femoral-head-right and femoral-head-left, the

boundaries are clear, and the auto-segmentation model can easily

recognize and delineate the contour boundary with high precision.

For the bladder and rectum, the performance of the auto-segmen-

tation was comparable to that of the medical resident. The boundary

of the bladder is clearer, with no external expansion. The medical resi-

dent can easily delineate the contours of the bladder through CT

images and his own knowledge, resulting in no significant difference

between auto-segmentation and the medical resident. For the rectum,

the accuracy of the auto-segmentation model in this study was com-

parable to that of auto-segmentation in previous studies,19,28,35,36 but

the accuracy of the medical resident was more similar to that of the

senior physician, which may be due to the small size of the rectum

and the low resolution of the rectum on CT images. The auto-seg-

mentation model had poor predictive ability for small volumes and did

not recognize some of the layers; thus, related research will be carried

out to address this problem in the future.

(a1) (a3)(a2)

(b1) (b3)(b2)

(c1) (c3)(c2)

(d1)

(e1)

(f1)

(d2)

(e2)

(f2)

(d3)

(e3)

(f3)

F I G . 5 . Results for best case in auto-segmentation of CTV shown
in CT slices. Red lines: Manual contours delineated by the senior
physician (TCs); Green lines: Manual contours delineated by the
medical resident (RCs); Blue lines: Deep learning-based contours
(DCs). (a) CTV; (b) Bladder; (c) Femoral-head-L; (d) Femoral-head-R;
(e) Small intestine; (f) Rectum. The DSC values of DCs-TCs and RCs-
TCs are 0.90 vs 0.86, 0.96 vs 0.96, 0.94 vs 0.93, 0.94 vs 0.95, 0.87
vs 0.80, and 0.82 vs 0.88, respectively.
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In this study, the deep learning-based auto-segmentation model

was found to be as accurate as the resident, and the auto-segmenta-

tion model had better stability, indicating that the deep learning-

based auto-segmentation model reached or even exceeded the level

of the resident. In terms of time requirements, the auto-segmenta-

tion model was better than the resident (2 and 90 min for a patient’s

CTV and OARs, respectively). In many clinical situations, the CTV

and OARs are first delineated by a resident, and a senior physician

modifies the contours based on the resident’s results. According to

the results of our experiment, the auto-segmentation model can

even replace part of the work of residents. Senior physicians modify

the contours based on auto-segmentation directly and obtain con-

tours acceptable for clinical radiotherapy, which can improve clinical

efficiency. On the other hand, residents are not required to delineate

all cases during their internship. They can delineate select cases to

gain relevant experience and have more time to learn and think,

which can reduce the burden of residents. Finally, the auto-segmen-

tation model may change the traditional clinical delineation pattern.

Residents modify the contours based on auto-segmentation, and

senior physicians modify the contours based on the residents’ results

for clinical therapy. In this process, the auto-segmentation model can

help residents learn more information about the contouring habits

and standards of senior physicians. In short, the deep learning-based

auto-segmentation model has considerable potential for develop-

ment, and the use of these models in clinical practice will improve

the efficiency of clinical residents and the accuracy of the contouring

of residents.

Some limitations exist in this study. First, whether the use of the

auto-segmentation model will reduce the delineation accuracy of

senior physicians is uncertain. Second, whether the model trained on

a local hospital data can be effectively applied to other hospitals

requires further investigation.

5 | CONCLUSION

In this study, we compared and analyzed differences in learning abil-

ity between the deep learning-based auto-segmentation model and a

medical resident — both learned to delineate the CTV and OARs of

cervical cancer from the same senior physician. This study demon-

strates that in terms of both accuracy and efficiency, the deep learn-

ing-based auto-segmentation model was as accurate as the medical

resident but with a much better computational efficiency. Further-

more, the auto-segmentation approach offers additional perceivable

advantages of being consistent and ever improving when compared

with manual approaches. When carefully validated and implemented

clinically, such as deep learning-based method has the potential to

improve the RT workflow.
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