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A B S T R A C T   

This study aimed to assess the incidental radiation exposure of the hippocampus (HC) in locoregionally-advanced 
oropharyngeal cancer patients undergoing volumetric modulated arc therapy and the feasibility of HC-sparing 
plan optimization. The initial plans were generated without dose-volume constraints to the HC and were 
compared with the HC-sparing plans. The incidental Dmean_median doses to the bilateral, ipsilateral and 
contralateral HC were 2.9, 3.1, and 2.5 Gy in the initial plans and 1.4, 1.6, and 1.3 Gy with HC-sparing. It was 
feasible to reduce the HC dose with HC-sparing plan optimization without compromising target coverage and/or 
dose constraints to other OARs.   

1. Introduction 

Several studies have evaluated neurocognitive function in 
locoregionally-advanced head and neck cancer (HNC) patients and 
suggested association between chemoradiation and post-treatment 
cognitive decline [1–4]. It remains understudied whether the low dose 
radiation to the brain causes long-term neurotoxicity, but there is 
increasing evidence suggesting different radiation susceptibility based 
on anatomical brain lesions [5,6]. The hippocampus (HC) is a highly 
radiosensitive brain region involved in learning and memory, and irra
diation can lead to changes in the dentate gyrus of the HC by depleting 
neural stem cells and progenitor cells [7,8]. Damage to the dentate gyrus 
caused by radiation treatment was found to be a major contributing 
factor to neurocognitive dysfunction [9]. Gondi et al. suggested signifi
cant neurocognitive damage would occur when radiation to 40 % of 
bilateral HC is greater than 7.3 Gy [10]. While knowledge of the effects 
of low-dose irradiation (LDIR) to the HC is sparse, animal studies on 
LDIR-induced bioeffects have suggested radiation dose of as low as 1 Gy 
can affect mitochondrial and synaptic signaling pathways in murine HC 
and cortex [11,12]. Recently, researchers investigated radiation dose to 
HC in locally-advanced nasopharyngeal cancer intensity modulated 
radiotherapy (IMRT) and reported a significant amount of radiation 
exposure to HC [13,14]. Data evaluating radiation exposure of HC and 
feasibility of HC-sparing plan optimization in oropharyngeal cancer 

(OPC) is scarce. Although the oropharynx is not considered as an adja
cent organ to the HC, its location is close enough for incidental exposure 
to radiation during head and neck directed IMRT. 

In this study, we retrospectively evaluated the HC dose volume pa
rameters of volumetric modulated arc therapy (VMAT) plan for 
locoregionally-advanced OPC (LA-OPC) to determine the radiation 
exposure of the HC in the initial plans. Subsequently, we generated new 
plans to compare with the initial plan and test the feasibility of plan 
optimization to minimize the dose to HC. We hypothesized that modu
lation of a VMAT plan to reduce the dose to HC could be achieved 
without compromising the target coverage and the dose constraints to 
other critical organs. 

2. Materials and methods 

2.1. Patient selection 

Medical records of a consecutive series of patients who underwent 
VMAT for oropharyngeal cancer between 2014 and 2018 were retro
spectively reviewed. Patients were identified from a departmental 
database and included if they were treated for LA-OPC. Among 75 pa
tients, 10 patients were identified to also have undergone magnetic 
resonance imaging (MRI) of the brain, with a T1-weighted scan of the 
brain in 3 mm slice thickness or finer resolution; this was coregistered 
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for volume delineation of the HC. This retrospective study was approved 
by the institutional review board. 

The total prescribed doses to the planning target volumes (PTV) were 
69.7–70.0 Gy (D95%) in 2.0–2.1 Gy daily fractions in 9 out of 10 pa
tients, and 66.0 Gy in 2.0 Gy daily fractions in 1 patient who was treated 
postoperatively. Eight patients received radiation therapy to the bilat
eral neck whereas two patients received treatment to the unilateral neck. 
Patient and tumor characteristics are summarized in Table S1 in sup
plementary material. 

2.2. HC delineation and treatment planning 

Initial VMAT plans had been generated without dose-volume con
straints to the HC. PTVs were generated from clinical target volumes 
(CTV) corresponding to areas of high, intermediate and low risk disease. 
For each patient, 32 organs at risk (OAR) and dose-volume histograms 
(DVH) were generated for their routine clinical care. All patients were 
immobilized using standard head and neck aquaplast masks and plan
ning computed tomography (CT) scans were performed with 3 mm slice 
thickness. CT and T1-weighted MRI scans were fused using rigid co- 
registration for all 10 patients in Phillips Pinnacle 3 treatment plan
ning software (Fitchburg, WI). Two central nervous system specialized 
radiation oncologists delineated the HC on the fused images using the 
RTOG HC atlas [15], and HC dose volume parameters on the clinically- 
delivered plan was recorded. HC-sparing VMAT plans were then 
generated with a maximum dose optimization objective of 1–2 Gy to the 
HC without compromising the dose distributions on the targets and 
surrounding OARs. All HC-sparing plans were generated utilizing 
Pinnacle inverse planning version 9.10. A range of dose-volume statis
tics was calculated. The HC-sparing plans were reviewed by a head and 
neck specialized radiation oncologist and deemed acceptable only if 
they did not compromise tumor coverage and increase the dose to the 
rest of the OARs. 

2.3. Plan evaluation 

Wilcoxon signed-rank test was utilized to evaluate the statistical 
significance of differences in the volume parameters, doses to the target 
volume and doses to the OARs, between the initial plans vs HC-sparing 
optimized plans. All tests were two-sided with an alpha level of 0.05. 
Analyses were conducted in SAS v9.4. 

3. Results 

Compared to the initial VMAT plans, HC-sparing VMAT plans had no 
significant effect on the dose parameters for target coverage. The dose 
volume parameters of two plans are presented in Table S2 in supple
mentary material. No statistically significant difference was observed in 
the coverage between initial plans and HC-sparing plans except for 
D98% and D95% of PTV intermediate (61.6 vs 61.9 Gy and 62.7 vs 62.9 
Gy, p < 0.05). The HC-sparing VMAT plan showed significantly lower 
doses on the HC as shown in Table 1. In the initial plan, Dmean_median 

and Dmax_median to the bilateral HC were 2.9 Gy (range, 1.7–3.8 Gy) 
and 4.0 Gy (2.6–8.0 Gy), respectively. In the HC-sparing plan, the doses 
were significantly lowered to 1.4 Gy (range, 0.9–3.6 Gy) and 2.4 Gy 
(1.9–4.4 Gy), respectively. Dmean_median and Dmax_median to the HC 
ipsilateral to the primary lesion were 3.1 Gy (range, 2.0–5.1 Gy), 3.9 Gy 
(2.6–8.0 Gy) in the initial plan, and 1.6 Gy (1.1–3.6 Gy), 2.4 Gy (1.9–4.4 
Gy) in the HC-sparing plan (p < 0.05). Dmean_median and Dmax_median 
to the HC contralateral to the primary lesion were 2.5 Gy (range, 
1.5–3.6 Gy), 3.4 Gy (2.1–4.6 Gy) in the initial plan, and 1.3 Gy (range, 
0.7–3.5 Gy), 1.8 Gy (1.2–4.4 Gy) in the HC-sparing plan (p < 0.05). HC 
point maximum dose was 8.0 Gy in the initial plan and 4.4 Gy in the HC- 
sparing plan. 

The dose-volume parameters of 32 OARs were compared between 
initial plans vs HC-sparing plans as shown in Table S3 in supplementary 
material. The doses to the brain stem, optic apparatus, pituitary, bilat
eral cochleae and right parotid were lower in HC-sparing plan without 
any significant increase in doses to the other OARs. An example of dose 
distributions in the contoured hippocampi and isodose lines in the initial 
plan and the HC-sparing plan are shown in Fig. 1. 

4. Discussion 

We evaluated the incidental radiation exposure of the HC in LA-OPC 
patients undergoing VMAT and the feasibility of HC-sparing plan opti
mization. We found that the incidental dose to the HC with VMAT in LA- 
OPC is in the range that is reported to induce persistent compromise to 
the HC microenvironment in animal models, and it is feasible to reduce 
the HC dose significantly with VMAT plan optimization without 
compromising target coverage and/or increasing the dose to other 
OARs. The HC-sparing plans also tended to lower the doses to the OARs 
that were adjacent to HC or above the level of HC. 

In this study, the mean doses to the bilateral, ipsilateral and 
contralateral HC in the HC-sparing plans were 1.4 Gy, 1.6 Gy, and 1.3 
Gy, respectively. McDonald et al. [16] recently evaluated brain dose 
volume parameters of 15 LA-OPC patients and reported similar mean 
dose of 3.1 Gy (range, 2.1–5.9 Gy) to the medial temporal lobe. It is also 
noteworthy that one of the initial treatment plans evaluated in this study 
was with a HC point maximum dose of 8.0 Gy. This brings up the 
concern that in selected cases, HC may get the dose greater than what is 
clinically reported to affect cognitive function. 

Pre-clinical evidence in rodents has repeatedly shown the LDIR effect 
on HC suggestive of neurocognitive decline (Table 4 in supplementary 
material). Achanta et al. [17] showed significant dose-dependent 
decrease in HC granule cell neurogenesis and HC-dependent trace fear 
conditioning while no differences were observed for HC-independent 
tasks between irradiation and control groups, in rats that received 0/ 
0.3/3.0, or 10.0 Gy whole brain radiation. Mizumatzu et al. also 
demonstrated decreasing hippocampal neurogenesis with increasing 
radiation using 0/2/5, or 10 Gy [18,19]. Rola et al. [20] showed 
decrease in proliferating subgranular zone cells and their progeny 
immature neurons in dose-dependent fashion in mice model when 
irradiated with whole brain irradiation (2.0–10.0 Gy). Schmal et al. [21] 

Table 1 
Comparison of initial plan vs HC-sparing plan maximum, mean, D40% doses to hippocampus and brainstem.   

VMAT plan Dmax (Gy)Median  
(range) 

P value Dmean (Gy)Median  
(range) 

P value D40% (Gy)Median  
(range) 

P value 

HC_Total Initial Plan 4.0 (2.6–8.0)  <0.01 2.9 (1.7–3.8)  <0.01 3.0 (1.7–4.1)  <0.01  
HC Sparing Plan 2.4 (1.9–4.4)  1.4 (0.9–3.6)  1.5 (0.9–3.7)  

HC_ Ipsi Initial Plan 3.9 (2.6–8.0)  <0.01 3.1 (2.0–5.1)  <0.01 3.3 (2.1–5.6)  <0.01  
HC Sparing Plan 2.4 (1.9–4.4)  1.6 (1.1–3.6)  1.7 (1.2–3.7)  

HC_Contr Initial Plan 3.4 (2.1–4.6)  <0.01 2.5 (1.5–3.6)  <0.01 2.6 (1.5–3.7)  <0.01  
HC Sparing Plan 1.8 (1.2–4.4)  1.3 (0.7–3.5)  1.4 (0.7–3.6)  

Brainstem Initial Plan 35.9 (24.6–48.9)  greater than0.01 11.5 (7.5–19.4)  <0.1 11.0 (6.1–22.7)  <0.01  
HC Sparing Plan 34.3 (10.9–52.5)  7.5 (3.1–16.3)  5.4 (3.1–19.6)  

VMAT, Volumetric Modulated Arc Therapy; HC, hippocampus; Rt, right; Lt left; Ipsi, ipsilateral; Contr, contralateral. 
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reported that when genetically defined mouse strains with varying DNA 
repair capacities were exposed to fractionated LDIR (5x/10x/15x/ 
20x0.1 Gy) and analyzed 72 h after last exposure as well as at 1,3, and 6 
months, the radiation induced DNA damage accumulation led to pro
gressive decline of HC neurogenesis, showing that HC is highly sensitive 
to repetitive LDIR. 

Increasing evidence shows that radiation related injury to the HC is 
associated with neurocognitive dysfunction. Gondi et al. reported the 
biologically equivalent dose of 2.0 Gy fractions (EQD2) greater that 7.3 
Gy to the bilateral HC in cranial irradiation was significantly associated 
with neurocognitive impairment [10]. Tsai et al. reported that EQD2 
values of < 12.6 Gy, <8.8 Gy, <7.5 Gy and < 5.8 Gy to the 0, 10, 50, 80 
% of HC were associated with neurocognitive preservation as indicated 
by the immediate recall of Word List Test of Wechsler Memory Scale-III 
[22]. A retrospective study by Gan et al. [23] evaluated an association 
between HNC radiotherapy and cognitive function, and showed an as
sociation of radiation dose to the temporal lobe and cerebellum with 
memory impairment and impaired dexterity. Sharma et al.[24] evalu
ated neurocognitive late effects and quality of life (QOL) following 
radiotherapy for sinonasal cancer and showed dose–response correla
tion of the doses to the whole brain, right temporal lobe, both frontal 
lobes, and HC and the outcomes of the Digit Span of Wechsler’s Adult 
Intelligence Scale IV. 

Previous studies evaluating neurocognitive toxicity of RT in HNC 
have mainly focused on nasopharyngeal cancer [25–31]. Ongoing ef
forts to lower the radiation doses to HC and related toxicities utilizing 
hippocampal-sparing plans also mainly focus on the patients with CNS 
malignancies and nasopharyngeal cancer [32–35]. Since OPC patients 
are also at risk of receiving radiation doses to the HC, incidental expo
sures to HC in OPC patients need to be further investigated. This is 
especially important given the rise in the rates of HPV-positive OPC 
[36–38]. The patients diagnosed with HPV-positive OPC tend to be 
younger, non-smokers, non-drinkers, and generally otherwise healthy 
with excellent overall survival [39–42]. Since increasing evidence 
showed the toxicity of LDIR on HC in animal models and clinical data, 
we raised a concern that the LDIR to the HC may adversely affect the 
neurocognitive function and QOL of LA-OPC patients many of whom are 

in their working-age and have a long life expectancy. As we were able to 
decrease the HC dose significantly without compromising coverage and 
constrains utilizing HC-sparing IMRT, this seems to be a feasible way to 
potentially help LA-OPC patients preserve neuro-cognitive capacity and 
QOL after their treatments. 

This study has several limitations. First, the sample size was small as 
only 10 % of LA-OPC patients treated with VMAT had undergone brain 
MRI that was required to contour the HC. Therefore, the results from this 
study will require validation in a larger number of patient population, 
and the cost-effectiveness of obtaining MRI for HC delineation in LA- 
OPC patients needs to be investigated. Second, dose-volume parame
ters and the effect of HC dose optimization on other structures outside of 
the 32 organs were not evaluated in this study. Third, other factors that 
may have contributed to the lower doses to the OARs in the HC-sparing 
plans such as versions of the treatment planning system or planner 
factors were not evaluated. Lastly, the inference on the effect of LDIR on 
neurocognitive functions is derived mostly from animal studies. There
fore, the clinical advantage of HC-sparing IMRT needs to be validated by 
conducting prospective studies with larger sample size and utilizing 
neuro-psychological assessment. 

In conclusion, it is feasible and safe to reduce radiation dose to the 
HC by utilizing HC-sparing IMRT in LA-OPC patients. As more LA-OPC 
patients are presenting in their working-age with good overall prog
nosis, HC-sparing needs to be considered in this population. However, 
whether the LDIR to HC reported in the current study translates into a 
meaningful impact on neurocognitive function is unknown and should 
be explored further ahead. 
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