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Abstract: Secondary chronic neuropathic pain (NP) in addition to sensory, motor, or autonomic dysfunction can significantly reduce 
quality of life after spinal cord injury (SCI). The mechanisms of SCI-related NP have been studied in clinical trials and with the use of 
experimental models. However, in developing new treatment strategies for SCI patients, NP poses new challenges. The inflammatory 
response following SCI promotes the development of NP. Previous studies suggest that reducing neuroinflammation following SCI can 
improve NP-related behaviors. Intensive studies of the roles of non-coding RNAs in SCI have discovered that ncRNAs bind target 
mRNA, act between activated glia, neuronal cells, or other immunocytes, regulate gene expression, inhibit inflammation, and influence 
the prognosis of NP. 
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Introduction
Spinal cord injury (SCI) is often accompanied by major impairments in motor, sensory, and autonomic functions.1 The 
molecular and biochemical pathways associated with the pathophysiology of SCI include intra-tissue hypoxia, oxidative 
stress, inflammation, apoptosis, and so on. SCI is classified as primary or secondary. Common symptoms of SCI include 
neuropathic pain (NP), spasticity, abnormal autonomic reflexes, and impairment of social, recreational, and occupational 
activities.2 Primary SCI can trigger secondary SCI, resulting in further chemical and mechanical damage to tissues. 
A common secondary complication of SCI is NP, which patients usually experience spontaneously, abnormally, or with 
hypersensitivity to pain.3 Severe SCI-related NP is associated with decreased quality of life. Conventional treatments 
have difficulty resolving severe NP, and many clinical needs remain unmet. Despite the many therapeutic strategies 
proposed and various breakthroughs achieved, cure remains elusive, probably due to the complex healing and protective 
mechanisms involved.4–6

Neuroinflammation (NI) is a coordinated response of the immune system against infection following SCI.7 In the past 
decade or so, NI following SCI was linked to intractable NP. Anatomical alterations associated with SCI include 
disruption of the blood-spinal cord barrier.8,9 During blood-spinal cord barrier disruption, immune cells will enter the 
spinal cord parenchyma and cause direct inflammation. Neurons, neutrophils, microglia, macrophages, astrocytes, and 
B and T lymphocytes, as well as cytokines contribute to this mechanistic process. SCI-induced NI produces NP and 
promotes NP-related behaviors.10–14 Disruption of the blood-spinal cord barrier and subsequent infiltration of leukocytes 
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induces central NI, as well as activation, migration, and proliferation of microglia and astrocytes, which can promote the 
production and release of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL- 
6, which have been associated with behavioral indicators of SCI-related NP.8,15–19 A growing body of evidence suggests 
that NI following SCI can prolong NP.7

Non-coding RNAs (ncRNAs), which include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular 
RNAs (circRNAs), play important roles in regulation of gene expression in central nervous system. In this review, we 
discuss how ncRNAs expression changes are associated with SCI-related NP. Except for miRNAs, IncRNAs and 
circRNAs, NP is rarely associated with other types of ncRNAs, and these are not discussed here. Notably, ncRNAs do 
not code for proteins, but rather regulate the expression of genes and proteins involved in inflammatory and immune 
responses following SCI through a variety of mechanisms. For example, miRNAs regulate the proliferation of astrocytes 
to mediate NI, while lncRNAs and circRNAs act as sponges of RNAs or miRNAs during the progression of NP, regulate 
expression epigenetically of NP-related molecules or modulate procession of miRNAs.20–24

The aim of this review article is to facilitate understanding of SCI-related NP by highlighting the etiological impact of 
ncRNAs and associations with cells and molecules involved in the pathophysiology of SCI as potential prognostic targets 
for SCI-related NP.

Epidemiology
Statistics show that the prevalence of NP ranges from 50.7% to 81% in patients with SCI.25–34 The International 
Association of the Study of Pain classifies SCI-related pain as nociceptive pain or NP.26,35 Among SCI patients, the 
incidence of nociceptive pain ranges from 40.6% to 59% and NP from 30.2% to 53%.5,25–27,32,36 Due to differences in 
the definition of pain, diagnostic tools, and study types, the prevalence of SCI-related NP widely varies.37 Nociceptive 
pain presents as musculoskeletal pain, which is associated with pathological changes to the bones, joints, and/or muscles, 
resulting in pain of the arm or shoulder, or visceral pain of the abdomen involving renal calculus, bowel, and sphincter 
dysfunction.35,38,39 NP is classified as at-level or below-level. At-level NP is referred to as the dermatome, which at the 
level of neuropathic damage and/or within three dermatomes below the level of neurological damage due to disease or 
injury to the nerve root or spinal cord, whereas below-level NP refers to pain beyond three dermatomes below the level 
of neuropathic damage due to direct injury to the spinal cord.40,41 SCI-related NP could be spontaneous or stimulus- 
evoked, continuous or intermittent. SCI patients describe NP as burning, sharp, cramping, cold, squeezing, stinging, or 
electric shock-like.2,42,43 SCI-related NP is severe in hyperacute time and it mainly occurs in the at-level. Compared to 
the chronic phase, acute NP is reported as intense electric and cold stimulation that is more prevalent after 6 months. 
After 1 year, below-level NP starts to increase.5,44 The severity of NP can gradually increase and cause progressive 
damage to the spinal cord over time.45,46 SCI-related NP negatively influences quality of life via disruption of daily 
activities, sleep disorders/insomnia, and anxiety/depression.29,33 In addition, SCI-related NP may cause more disabling 
than physical damage and bring about a sense of isolation and despair.47 Demographic variables related to NP include 
female sex, advanced age, and financial status.30,36,48 An analysis of clinical data in SCI-NP patients (spinal cord injury 
associated with neuropathic pain) showed significantly high TNF-α/IL-6 expression and a stronger association of TNF-α 
with NP in SCI patients.49

Pathophysiological Roles of miRNAs, IncRNAs, and circRNAs in 
SCI-Related NP via Neuroinflammation
Inflammation-Linked miRNAs in SCI-Related NP
The mechanisms underlying SCI-related NP involve complex interactions among neuronal cells, glial cells, and non- 
neuronal cells. Most studies of the roles of miRNAs in SCI-related NP have focused on neurons, astrocytes, microglia, 
and macrophages. However, a previous study of the interactions of miRNAs in oligodendrocytes found that transplanta-
tion of precursor oligodendrocytes attenuated mechanical hypersensitivity reactions.50 During SCI, miRNAs regulate the 
functions of cells involved in tissue repair and regeneration together with active participation in messaging to maintain 
neurological homeostasis. These comprehensive summaries of research findings are shown in Figure 1.
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Roles of miRNAs in Neuron-Mediated Inflammation
NP occurs after nerve injury and the noxious reaction of neurons may persist long after tissue repair, suggesting 
a possible association with altered neuronal function.51 Neuronal responses to SCI are mediated by miR-20a via multiple 
pathways. Injection of miR20a into the spinal cord caused abnormal expression of miR20a and induced secondary injury, 
targeting Ngn-1 together with downregulated regeneration-related functional gene GAP43, upregulating IL-6, TNF-a, 
COX-2, with invasive inflammation of the spinal cord after 2 days and influenced the activation of endogenous neural 
cell regeneration, whereas the miR-20a-PDZ-Rhogef/RhoA/GAP43 axis promoted recovery of superior sensory function 
and inhibited the formation of lesions of the dorsal spinal cord via miR-20a modulation in spinal cord dorsal column 
injury.52,53 Subsequent studies revealed the involvement of miR-362-3p in the regulation of brain-derived neurotrophic 
factors by targeting PAX2, where overexpression of miR-362-3p downregulated expression of IL-1β, TNF-α, COX-2, 
and IL-6, which suppressed neuronal inflammation, thereby treating SCI-related NP.54 However, further studies are 

Figure 1 In neurons, microglia, astrocytes and macrophages, miRNAs regulate inflammatory factors by acting on various target genes after spinal cord injury, thereby 
relieving or worsening neuropathic pain. 
Abbreviations: PAX2, pair box gene2; MEK, mitogen-activated protein kinase kinase; ERK, extracellular signal regulated kinases; NF-κB, nuclear factor kappa-B; p-38, p38 
MAPK; MAPK, mitogen-activated protein kinases; GAP43, growth-associated protein 43; Ngn1, neurogenin-1; C-myc, V-Myc avian myelocytomatosis viral oncogene 
homolog; BDNF, brain-derived neurotrophic factor; PPAR-γ, peroxisome proliferator-activated receptor γ; IκKβ, inhibitor of kappa B kinase β; NeuroD1, neuronal 
differentiation 1; NeuroD4, neuronal differentiation 4; Mst1, macrophage stimulating 1; HMGB1, high mobility group protein 1; TLR4, toll-like receptor 4; p-IκBα, 
phosphorylated NF-kappa-B inhibitor alpha; SOCS1, suppressor of cytokine signaling1.
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needed to explore the functional mechanisms of these various molecules as potential therapeutic targets for SCI-related 
inflammation and NP.

Roles of miRNAs in Microglia Mediated Inflammation
Microglia and astrocytes of the central nervous system strongly enhance neuronal excitability in response to injury.55 

Microglia are quickly activated in response to harmful stimuli and directly express specific neurotransmitter receptors 
associated with NP and subsequently activate intracellular signaling pathways that promote the release of pro- 
inflammatory factors, such as TNF-α, IL-1β/6, and nitric oxide, which play key roles in the induction of NP.56–58 

Therefore, it is important to clarify the molecular mechanisms underlying microglia-induced inflammation for treatment 
of SCI-related NP.

Many miRNAs that influence microglia-mediated inflammation after SCI participate in the regulation of downstream 
target genes. A previous study reported a correlation between TUSC7 and miR-449a expression in a rat model of SCI, 
where overexpression of TUSC7 inhibited miR-449a, while upregulation of PPAR-γ inhibited microglia activation and 
decreased expression of the pro-inflammatory factors TNF-a and IL-1β in the regulation of NP.59 Moreover, upregulation 
of miR-137-3p directly reduced expression of TNF-a and IL-1β via negative regulation of NeuroD1 in lipopolysaccharide 
(LPS)-treated BV2 cells (Gao et al, 2019).60 Both miR-137 and miR-544a can also target NeuroD4 and down-regulate 
pro-inflammatory cytokines to reduce inflammation caused by spinal cord injury. Activation of the P38 signaling 
pathway, following the downregulation of miRNA-128 promotes the transformation of microglia from M1 to M2 
which is involved in NP and improves spinal cord injury.61 Collectively, these findings suggest that miRNAs can 
significantly ameliorate SCI-related inflammation and NP.62,63

It is well known that NF-κB is closely related to immunity as a transcription factor, and its mediated signaling 
pathway is considered to be the regulator of cell homeostasis. The signaling pathway is divided into three parts: (1) 
ligand and receptor binding; (2) receptor-related signaling; (3) Transcriptional activation and biological function of 
downstream genes. Three categories of protein families in the NF-κB pathway are the NF-κB transcription factor family 
(mainly divided into p50 (NF-κB1), p52 (NF-κB2), RelA (p65), c-Rel, and RelB), IκB family – an inhibitor of NF-κB 
transcription activity, and IκKB family – an inhibitor of IκB protein activity eliminate the inhibition of NF-κB. Under 
normal conditions, the inhibitory protein IκB forms a complex with NF-κB that inactivates NF-κB.64

Interestingly, NF-κB-dependent inflammation is reported to cause neuropathic nociceptive hyperalgesia in a mouse 
model of peripheral nerve injury, in response to SCI, inflammatory cytokines, and other antigens bind to receptors, and 
the NF-κB pathway is activated and involved in the immunomodulatory response caused by IκB inhibited by IκKB 
kinase.65 However, after the administration of IκKB inhibitors, the NF-κB pathway was inhibited, which negatively 
secrete pro-inflammatory factors IL-16, CCL2, TNF-α, MCP-1, and narrow NI to help prevent the development of 
chronic nerve pain.66 However, miRNAs can also modulate the inflammatory response by inhibiting activation of the NF- 
κB signaling pathway. MiR-199b is reported to mediate activation of the IκKβ-NF-κB signaling pathway in microglia, 
which attenuated inflammation in response to acute SCI, while overexpression of miR-199b reversed the upregulation of 
IκKβ resulting in the activity of p-p65 was inhibited and affected the microglia biological functions. MiR-216a-5p is 
reported to alleviate inflammation-related behaviors by inhibition of microglia-mediated inflammation via the HMGB1- 
TLR4-NF-κB pathway. In addition, the miRNAs mediated NF-κB signaling pathway plays a role in NP after spinal cord 
injury by regulating inflammatory responses. Upregulation of miR-216a-5p expression inhibits the activity of the p-65 
transcription factor by targeting HMGB1 to bind to TLR4, thereby blocking the signaling pathway to reduce the 
inflammatory response and improve inflammatory pain. Thus, miR-216a-5p was proposed as a potential therapeutic 
target for SCI-related NP.67,68 A previous study demonstrated that miR-139-5P reduced expression levels of TNF-α and 
IL-1β by targeting Mst1, which inhibited NF-κB-related inflammatory responses and reduced nociceptive hypersensi-
tivity, while downregulation of miR-130a-3p inhibited IGF-1 expression and reduced microglia activation by blocking 
NF-κB phosphorylation, leading to decreased expression of IL-1β, IL-6, and TNF-α, which significantly improved 
NP.69,70 These results confirm the important roles of miRNAs in NF-κB-mediated inflammation in response to SCI-NP.
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Roles of miRNAs in Astrocyte-Mediated Inflammation
Astrocytes adopt either a pro-inflammatory or anti-inflammatory phenotype.71 Under pathological conditions, activated 
astrocytes adopt an anti-inflammatory phenotype to protect the central nervous system against NI.72,73

For days to weeks after spinal cord injury (SCI), the proliferation and hypertrophy of astrocytes may be involved in 
the lesion site, inducing glial scar formation. In response to SCI, miR-146a expression is upregulated in spinal cord 
astrocytes. Although miR-146a was highly expressed in spinal cord astrocytes after spinal cord injury, it has anti- 
inflammatory properties and plays a part in inducing glial scar hyperplasia.74 An in vitro model of LPS-induced glial cell 
injury revealed that MiR-140 not only inhibited expression of BDNF but also downregulated expression of IL-6 and 
TGF-α by binding to the 3’-untranslated region of BDNF.75

In a mouse model of LPS-induced inflammation, downregulation of miR-181 enhanced astrocyte production of the 
pro-inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-8, while overexpression of miR-181 significantly increased 
expression of the anti-inflammatory cytokine IL-10.76 An in vitro study proposed GFAP and c-Myc as potential targets of 
miR-145 in astrocytes and found that miR-145 expression was downregulated in astrocytes in response to LPS-induced 
inflammation. However, overexpression of astrocyte-specific miR-145 decreased the density, size, and number of 
protrusions of astrocytes, suggesting that the inflammatory signaling pathways activated by SCI may promote the 
proliferation of astrocytes via inhibition of miR-145 expression.77 In rat models of chronic compression injury and 
spinal nerve ligation, NP was associated with miR-21 and miR-21 expression was upregulated in neurons and astrocytes 
in the chronic phase of SCI, especially affecting astroglial cell proliferation to form scarring.78–80 The regulatory 
sequence of miR-21 contains a highly conserved 300-bp region consisting of two STAT3-binding sites.81 Ablation of 
STAT3 limited early intrapathological hypertrophy of astrocytes and increased inflammatory cell invasion in response to 
SCI.82 Nonetheless, further studies are warranted to confirm the link between miR-21 and SCI-related NP.83

Roles of miRNAs in Macrophage-Mediated Inflammation
Macrophages from the peripheral circulation and resident microglia of the central nervous system are among the major 
effector cells that participate in SCI-related inflammation.84 Macrophages play an important role in the early inflamma-
tory response via production of various pro-inflammatory cytokines and chemokines, which activate specific signaling 
pathways that trigger the production of other cytokines to further recruit more macrophages, ultimately leading to NP and 
disease progression.85

In a rat model of SCI, miR-124 reduced inflammation of the CNS by inhibiting the recruitment of macrophages and 
monocytes.86 In macrophages, miR-181a can directly downregulate IL-1α levels to regulate the inflammatory response.87 

Since miR-181 is an important anti-inflammatory factor, reduced expression of miR-181 could increase SCI-related 
inflammation.74 Moreover, as a negative feedback regulator of an inflammatory response, miR-210 targeting NF-κB1 
reduces inflammatory levels by inhibiting IκKB kinase activity, which is manifested by decreased expression of pro- 
inflammatory cytokines, including IL-6 and TNF-α, in endotoxin-induced macrophages.88 AgomiR-210 is a chemically 
modified miRNA agonist that is reported to mediate inflammation in a rat model of SCI. Together, these findings suggest 
the importance of the regulatory role of miR-210 in SCI-related NI.89

Human miR-155 has been implicated in stem cell differentiation, immunity, inflammation, cancer, and other 
pathophysiological processes.90 The use of a chronic compression injury model of NP demonstrated that inhibition of 
miR-155 significantly reduced mechanical and thermal hypernociception and inhibited macrophage production of pro- 
inflammatory cytokines and NF-κB and p38 MAPK activity via SOCS1.91 Thus, miR-155 presents a potential therapeutic 
target for SCI-related NP, although further studies are needed to clarify the underlying mechanism.92

Inflammation-Linked lncRNAs in SCI-Related NP
Recent studies have revealed that lncRNAs are involved in various physiological and pathological processes, including 
adipogenesis, bone development, tumor formation, diabetes, and neurological diseases.93–97 The biological functions of 
lncRNAs mainly include chromatin regulation, transcription, and translation. Although initially considered 
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untranslatable, lncRNAs contain open reading frame sequences with translational functions.98 The development of 
microarray and sequencing technologies has allowed investigations of the roles of lncRNAs in SCI-related inflammation 
and NP.

A mouse model of SCI showed that lncRNA Neat1 was regulated by miR-124 and promoted neuronal differentiation 
and migration and inhibited apoptosis via the Wnt/β-catenin signaling pathway, thus contributing to recovery from SCI.99 

Interestingly, Neat1 increased expression of the inflammatory factors IL-6 and CXCL10, enhanced inflammasome 
activation, and promoted cellular scorching in vivo.100,101 In addition, Neat1 is reported to directly target the miR- 
128-3p/AQP4 axis to modulate SCI-related inflammation and NP.102 Meanwhile, knockdown of NEAT1 inhibited 
expression of IL-6, IL-1β, TNF-α, and AQP4, whereas inhibition of miR-381 restored expression levels. In a rat 
model of SCI, lncRNA PVT1 was reported upregulated and acted as a competing endogenous RNA that suppressed 
expression of miR-186-5p, thereby increasing CXCL13/CXCR5 expression and NP.103 Surprisingly, the novel lncRNA 
PKIA-AS1 enhanced promoter activity of CDK6 by reducing DNMT1-catalyzed methylation.104 In addition, lncRNA 
PKIA-AS1 has been identified as a key regulator of nerve injury-induced NP.

Small nucleolar RNA host genes (SNHGs) are a recently discovered family of lncRNAs that are closely related to 
tumor formation. The lncRNAs SNHG6 and SNHG17 can promote the development and metastasis of colorectal 
cancer.105,106 SNHG family members also play important roles in SCI-related inflammation and NP. Inhibition of 
KLF4, which is upregulated in SCI, reduces expression of pro-inflammatory cytokines and inhibits activation of 
microglia.107,108 KLF4 was also shown to directly target lncRNA SNHG5, which promotes progression of SCI by 
increasing activities of astrocytes and microglia.109,110

In a rat model of SCI, upregulation of lncRNA SNHG1 influenced the degree of NP via regulation of CDK4.111 

Meanwhile, lncRNA SNHG12 has been associated with SCI-related inflammation and NP. In a rat model of spare nerve 
injury, silencing of lncRNA SNHG12, which was upregulated in the dorsal root ganglia, attenuated NP and reduced 
expression of the inflammatory factors IL-1β, IL-6, and TNF-α via upregulation of miR-494-3p.112

Inflammation-Linked circRNAs in SCI-Related NP
Among the known ncRNAs, circRNAs have been widely studied in various cancers, cardiovascular diseases, and 
diseases of the central nervous system, where these molecules mainly function as sponges for miRNAs and RNA- 
binding proteins, and can drive translation through internal ribosomal entry sites and N6-methyladenosine sites.113 

However, further studies are needed to clarify the differential expression of circRNAs before and after SCI.
Numerous studies have shown that circRNAs play crucial roles in SCI-related NP. For instance, circPrkcsh is 

reportedly upregulated in astrocytes and microglia in response to SCI and acts as a sponge to competitively inhibit 
expression of miR-488.114,115 Knockdown of circPrkcsh can reduce CCL2 expression in astrocytes and regulate the 
MEKK1/JNK/p38 MAPK pathway via upregulation of miR-488 in microglia, thereby improving SCI-related inflamma-
tion. KLF4 was identified as a key regulator of SI-related NI. In a mouse model of traumatic SCI at T8–10, miR-135b-5p 
was significantly downregulated.116 KLF4 and circAbca1 have been identified as targets of miR-135b-5p and the 
circAbca1/miR-135b-5p/KLF4 axis was found to regulate progression of traumatic SCI. Both circ0001723 and 
circ003564 were closely associated with NLRP3 expression after SCI.117,118 Inhibition of the NLRP3 inflammasome 
is reported to reduce SCI-related NI and mitochondrial dysfunction, thereby limiting the extent of SCI.119 In a mouse 
model of SCI, circ-Usp10 was found to regulate activation of microglia via the miR-152-5p/CD84 axis.120 Similarly, 
exosome-mediated circZFHX3 enhanced microglia viability and subsequently exacerbated inflammation-induced sec-
ondary injury.121

The NF-κB signaling pathway has been implicated in the pathology of NI, neural regeneration, cellular scorching, and 
disruption of the blood-spinal cord barrier after SCI. In addition, circ0000962, circ014301, circHecw1, and circ-Ncam2 
were shown to regulate SCI-related NI via the NF-κB pathway. Expression of circ0000962 is downregulated after SCI 
and overexpression of circ0000962 was shown to reduce expression of TNF-α, IL-1β, IL-6, and IL-18 via down-
regulation of miR-302b-3p and regulation by the PI3K/Akt/NF-κB signaling pathway.122 An in vitro model of SCI based 
on LPS-treated PC12 cells found that circHecw1 regulated expression of inflammatory factors via miR-3551-3p and NF- 
κB.123 Meanwhile, circRNA_014301 was found to regulate inflammation and apoptosis of PC-12 cells by upregulation of 
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p-NF-κB/NF-κB, Bax, and cleaved caspase-3, and downregulation of Bcl-2.124 Silencing of circ-Ncam2 induced miR- 
544-3p expression, which inhibited activation of the TLR4/NF-κB pathway, reduced activation of LPS-treated microglia, 
and inhibited neuronal apoptosis, thereby promoting recovery from SCI.125

In a rat model of diabetes, circHIPK3 negatively regulated miR-124 expression and knockdown of circHIPK3 
attenuated NI-related NP.126 On day 7 post SCI of rats, circRNA-2960 was significantly upregulated in tissues around 
the surgical site.127 Interestingly, circRNA-2960 was found to target and downregulate miR-124, which exacerbated the 
inflammatory response, similar to diabetes-induced NP, suggesting that the circRNA-2960/miR-124 complex is 
a potential target for treatment of SCI-related NP. A comprehensive summary of these findings is shown in Figure 2.

Although there are not many reports of circRNAs mediating SCI-related inflammation and NP via the NF-κB 
pathway, several studies have confirmed that the NF-κB pathway is closely associated with inflammation and NP 
following SCI. For example, combination therapy with minocycline and botulinum toxin can reduce SCI-induced NP 
and inflammation by activation of SIRT1 and inhibition of pAKT, P53, and p-NF-κB.128 SAFit2, an inhibitor of FKBP51, 

Figure 2 Interactions between lncRNAs/CircRNAs and miRNAs in neurons, microglia, astrocytes and macrophages alter the expression of inflammatory factors that affect 
neuropathic pain after spinal cord injury. 
Abbreviations: HIF-α, hypoxia-inducible factor-1α; PI3K, phosphoinositide 3-Kinase; AKT, protein kinase B; LRRTM1, leucine-rich repeat transmembrane neuronal protein 
1; NLRP3, nod-like receptor thermal protein domain associated protein 3; CDK6, cyclin-dependent kinase 6; KLF4, kruppel-like factor 4; mEKK1, MAPK/ERK kinase kinase 
1; p-38, p38 MAPK; MAPK, mitogen activated protein kinases; p-JNK, jun n terminal kinase phosphorylated; NeuroD4, neuronal differentiation 4; CD84 (SLAMF5), signaling 
lymphocytic Activation Molecule Family 5; AQP4, aquaporin-4.

Journal of Inflammation Research 2023:16                                                                                          https://doi.org/10.2147/JIR.S413264                                                                                                                                                                                                                       

DovePress                                                                                                                       
2483

Dovepress                                                                                                                                                              Zhu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


inhibits activation of the NF-κB pathway and reduces expression of inflammatory factors in the dorsal root ganglia and 
spinal cord to improve NP caused by nerve injury.129

Treatments
SCI-induced activation of the immune system is involved in tissue damage and repair, and activation of the inflammatory 
responses affects the prognosis of SCI-related NP. Recent studies have found that various miRNAs play essential roles in 
SCI-related inflammation and NP. Thus, the therapeutic roles of miRNAs have received much attention. Delivery of 
miRNA-124a via a chitosan multimeric system reduced microglia activation and TNF-α in vitro in a rat model of SCI, 
thereby providing a promising therapeutic approach for delivery of miRNAs.86

Several neuroprotective agents have been tested for treatment of SCI, including curcumin.60,130 A recent study of 
BV2 cells treated with curcumin found that LPS-induced inflammation was reduced via upregulation of miR-137-3p and 
downregulation of NeuroD1.60 In an in vivo study of SCI-related NP, miR-362-3p increased expression of TNF-α and IL- 
6 in neurons. Clinical data showed that SCI-NP is highly associated with TNF-α as a potential diagnostic biomarker in 
SCI patients. Recently, a TNF-α lentiviral shRNA vector relieved NP via TNF-α inhibition of downstream IL-6 
expression, as a novel therapeutic option for NP.49,131

Perspectives and Conclusion
NP is a serious complication of SCI that negatively impacts quality of life and prognosis. Therefore, ncRNAs continue to 
attract attention for SCI-related NP. Our understanding of NP induced by spinal cord injury-mediated NI continues to 
advance. Researchers have tried a number of solutions in order to deliver ncRNAs into cells. Cui et al and Jee et al 
attempted to use intramyelin lentivirus injection in animal models, and Qi et al mostly used cell transfection to regulate 
the expression of ncRNAs in cell models.53,86,99 Louw et al found a cell selector-specific chitosan complex vector, miR- 
124 can be injected more stably in vivo and in vitro, while lncRNA and circRNA have not been found to have such more 
stable delivery system, and special materials such as nano-encapsulated materials can be considered as carriers.

Immune cells take on different roles during different phases of SCI, neurons respond to spinal cord injury, microglia 
are activated, and astrocyte proliferation promotes the repair of injured lesion sites but may also affect axon repair due to 
hyperplasia of glial scars, which is important to consider the duration of effect.80 Most commercially available reagents 
are now not cell type-specific, ensuring that targeted delivery of ncRNAs into cells and tissues to affect disease states 
without interfering with gene expression in other cells warrants consideration.

At present, gene therapy is gradually used in the clinical practice of various diseases. Recombinant adeno- 
associated virus (rAAV) is commonly used as a stable vector for gene delivery and is non-toxic and cannot be 
integrated into the human genome. Gene therapy would be a promising treatment approach, which can be used as gene 
vectors for ncRNAs to solve SCI-NP via NI, by silencing and increasing the regulation of pro-inflammatory and anti- 
inflammatory mediators. Further in-depth studies are warranted to explore the clinical application of ncRNAs for the 
treatment of SCI-related NP.

This review summarizes the mechanistic pathways mediated by non-coding RNAs, NI, and NP, indicating that the 
regulation of NI by non-coding RNAs is a potential target and direction for the treatment of secondary neuropathic pain 
after spinal cord injury in the future.

Materials and Methods
We searched the online databases of NCBI Medical Database (PubMed), Web of Science, SpringerLink, Elsevier 
(ScienceDirect), OVID series of Medical Databases, and Open Access Library Databases for all valuable literature by 
manual search. To better control quality, articles published in all journals are subjected to a rigorous screening process. 
Keywords include non-coding RNAs, neuroinflammation, neuropathic pain, and spinal cord injury, and we searched 
highly relevant articles for a detailed research strategy. Conventional searches were supplemented by manual searches of 
all the relevant studies, review articles, and conference abstracts to avoid losing papers that might have been missed. We 
have no restrictions on the year and country of publication in our search.
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