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Non-uniform Evolving Hypergraphs 
and Weighted Evolving 
Hypergraphs
Jin-Li Guo1, Xin-Yun Zhu1, Qi Suo1 & Jeffrey Forrest2

Firstly, this paper proposes a non-uniform evolving hypergraph model with nonlinear preferential 
attachment and an attractiveness. This model allows nodes to arrive in batches according to a Poisson 
process and to form hyperedges with existing batches of nodes. Both the number of arriving nodes 
and that of chosen existing nodes are random variables so that the size of each hyperedge is non-
uniform. This paper establishes the characteristic equation of hyperdegrees, calculates changes in the 
hyperdegree of each node, and obtains the stationary average hyperdegree distribution of the model by 
employing the Poisson process theory and the characteristic equation. Secondly, this paper constructs 
a model for weighted evolving hypergraphs that couples the establishment of new hyperedges, nodes 
and the dynamical evolution of the weights. Furthermore, what is obtained are respectively the 
stationary average hyperdegree and hyperstrength distributions by using the hyperdegree distribution 
of the established unweighted model above so that the weighted evolving hypergraph exhibits a scale-
free behavior for both hyperdegree and hyperstrength distributions.

Complex networks can be used to describe and understand a variety of real-life systems, be they complex inter-
acting systems or the microscopic nature of space-time. In 1998, the small-world characteristic of complex net-
works was first found by Watts and Strogatz1. Then in 1999, the emergence of scaling in complex networks was 
discovered by Barabási and Albert2. In addition, growth and preferential attachment were regarded as two basic 
mechanisms of complex networks. Different kinds of complex networks have attracted the attention of scholars 
in recent decades. A complex network is a graph with non-trivial topological features that do not occur in simple 
graphs such as lattices or random graphs but often occur in modelling real-life systems. Since late 20th century, 
studies of complex networks have been undertaken in many disciplines, including mathematics, physics, com-
puter science, biology, social science, and economics. Complex network models have been used to study different 
networks in real-life world, such as protein-protein interaction networks3, food chain networks4, transportation 
networks5, large-scale grid networks, economic networks, and social networks6,7. Throughout the past ten years, 
scientists have constructed various models to describe the characteristics of complex networks and proposed 
many analysis methods to model and to optimize networks that exist in real-life8. Theoretical studies on complex 
networks are now making a transition into the more organized systematic way.

However, it is still hard to depict some real-life systems by using the concept of complex networks. Due to 
the complication involved with real-world systems, simple graphs are no longer suitable for depicting networks 
with different kinds of nodes. The energy-supply network9 can be seen as a part of a larger system, in which 
interdependent networks with different structures and functionalities coexist, interact, and coevolve. Nicosia  
et al.10 proposed a modelling framework for growing multiplexes where a node can belong to different networks. 
Some nodes in real-life networks may exhibit two or more properties, while nodes in complex networks might 
maintain their homogeneity. For example, the nodes in a supply chain11 belong to different categories including 
manufacturers, consumers, and so on. The nodes in a grid network also share different characteristics, including 
power substations, consumers, etc. Consequently, simple graphs are not adequate to represent such systems. On 
the other hand, these graphs also not suitable for any network with one edge containing more than two nodes, 
either. For example, the scientific collaboration network12 may not be suitable for complex networks to represent, 
because there are usually more than two authors on one paper. Ecological networks are normally represented by 
competition graphs in which only two species competing for their common prey can be investigated. The concept 
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of complex networks fails to provide the information about the whole groups of species with a particular prey. 
In these cases, using simple graphs to represent complex networks does not provide a complete description of 
the real-world system. A natural way of representing these systems is to use a generalization of graphs known 
as hypergraphs13,14. The first application of hypergraphs for representing social networks appeared in 1981 as 
reported by Seidman. The competition hypergraph was proposed to develop a more complete description in 
which nodes denote species and hyperedges sets of species having the same prey. In a chemical reaction network, 
nodes and hyperedges are defined respectively as chemical compounds and reactions. Because a chemical reac-
tion represents a process that involves a set of chemical compounds, substrates, and more than one product, the 
hypergraph representation is indispensable15. In order to consider multi-protein complexes, a hypergraph is used 
to represent a protein network, in which nodes and hyperedges represent proteins and complexes, respectively16. 
Although some real-life systems have been represented by bipartite graphs or tripartite graphs, their properties 
may be different when depicted by hypergraphs. In this paper, we will extend these concepts for complex net-
works that are represented by hypergraphs.

The concept of hypergraphs offers a new tool for depicting real-life systems, and has been gaining more atten-
tion in recent years. Boccaletti et al.17 believed that a hypergraph can be regarded as a special case of a multilay-
ered network. Park et al.18 applied the concept of hypergraphs in a cell bio-molecular system, and found that 
the hypergraph structure was very helpful in discovering the building blocks of the higher-order interactions of 
multiple variables. In addition, they applied the hypergraph model in the analysis of microarray data for cancer 
diagnosis. Akram and Dudek19 developed a different application of hypergraphs. They combined intuitionistic 
fuzzy theory with the hypergraph concept and defined several intuitionistic fuzzy structures, which are more 
flexible than the classic models. Bootkrajang et al.20 built a model of associative memory based on an undirected 
hypergraph of weighted edges. Elena and Vladimir21 used the hypergraph theory to study molecular structures 
of compounds and distinguished these structures by their different topological indices. Johnson22 introduced the 
definition of hypernetworks. That is, the concept of hypernetworks is a natural multidimensional generalization 
of networks and represents n-ary relations by simplices with n vertices.

Since a hypergraph is a natural extension of a graph, the concept of complex network can be extended to that 
of evolving hypergraph; and evolving hypergraphs refer to such hypergraphs that represent complex systems23. 
Recently, various scholars have studied the topological properties and models of evolving hypergraphs. Estrada 
and Rodríguez-Velázquez23 studied the subgraph centrality and the clustering coefficient. Wang et al.24 proposed 
a dynamic evolving model according to uniform growth and preferential attachment mechanisms, in which a new 
batch of nodes together with one existing node formed one hyperedge, and gradually formed the final network. 
Hu et al.25 proposed another dynamic model. The growth and preferential attachment mechanisms of the model 
are the same as those of Wang’s model, but at each time step there is only one newly added node. Guo and Zhu26 
developed a unified model and the model can be degenerated to the original model as proposed by Barabási 
and Albert2. Guo and Suo27 also developed a model with the brand effect and competitiveness. Although a few 
of models in evolving hypergraphs have been proposed based on uniform growth, there are no evolving models 
considering the non-uniform characteristics, which may have a huge potential for applications in the study of 
real-life systems.

The afore-mentioned models are all unweighted evolving hypergraphs. The purpose of this paper is to extend 
the concept of evolving hypergraphs by combining the characteristics of non-uniformity and weight of hyper-
edges. Firstly, we propose a non-uniform model with nonlinear preferential attachment and an attractiveness, 
and establish the characteristic equation of hyperdegrees and the stationary average hyperdegree distribution by 
using the Poisson process theory and the characteristic equation. Our theoretical analysis is in good agreement 
with the simulation results. Secondly, we propose a weighted model to better describe real-life systems. It is found 
that the hyperdegree and hyperstrength distributions of our weighted model can be directly obtained from the 
unweighted model with attractiveness.

Non-Uniform Evolving Hypergraphs with Attractiveness
The evolving hypergraphs in the existing literatures are all uniform. That is, each hyperedge connects exactly k 
nodes. However, at each time step the number of new nodes entering into the network or previously existing 

Figure 1. Schematic illustration of the evolving process of the non-uniform model. (a) is the initial network, 
(b) is second time step, (c) is third time step. A red disk denotes a new node. A yellow disk denotes an existing 
node selected to form a hyperedge with a probability proportional to its hyperdegree and attractiveness. A blue 
ellipse denotes a new hyperedge.
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nodes selected may not be the same. For instance, in the scientific collaboration networks, the nodes contained in 
a hyperedge, which is used to describe all the authors of a paper, are usually uncertain. In Wechat networks, the 
number of nodes contained in a group of friends is also uncertain. In these cases, simple uniform evolving hyper-
graphs cannot provide the complete information of the real-life systems of concern. For convenience, for the 
definition of evolving hypergraphs, please consult with ref. 23. Let = V v v v{ , , , }n1 2  be a finite set, and 
= E v v v{ , , , }i i i ik1 2

 ∈ = v V j k( , 1, 2, , )i j
, = E E E E{ , , , }m1 2  a family of subsets of V. The pair H =  (V, E) 

is called a hypergraph. An element in V is called a node, and E m(1, 2, , )i  is called a hyperedge. In a hyper-
graph, two nodes are said to be adjacent if there is a hyperedge that contains both of these nodes. Two hyperedges 
are said to be adjacent if their intersection is not empty. If the cardinality |V| of V and the cardinality |E| of E are 
finite, respectively, then H is said to be a finite hypergraph. If = = E i mk( 1, 2, , )i , then H =  (V, E) is a 
k-uniform hypergraph. Based on these definitions, we can introduce the following mathematical definition of the 
evolving hypergraph. Suppose that Ω = V E V E is a finite hypergraph{( , ) ( , ) } and G a map from = +∞T [0, ) 
into Ω. For any given ≥t 0, =G t V t E t( ) ( ( ), ( )) is a finite hypergraph. The index t is often interpreted as time. 
An evolving hypergraph ∈G t t T{ ( ), } is a collection of hypergraphs that represent complex systems. The hyper-
degree of vi is defined as the number of hyperedges that connect to node vi.

A non-uniform model with an attractiveness is defined as follows: (i) The network starts from an initial seed 
of m0 nodes and a hyperedge containing m0 nodes. Suppose that new node batches arrive at the system according 
to a Poisson process N(t) with rate λ. Each node entering the network is tagged with its own attractiveness a. At 
time t, ηN t( ) and ξN t( ) are positive integers that are taken from the given probability density functions ηf ( ) and 
ξg ( ), respectively. (ii) When a new batch of ηN t( ) nodes is added to the network at time t, these ηN t( ) new nodes 

and ξN t( ) previously existing nodes are encircled by a new hyperedge, totally m (mm2 ≤  m0) new hyperedges are 

Figure 2. The simulation of the non-uniform model. α =  1, ηN t( ) is randomly selected from 1 ~ 3, ξN t( ) is 
randomly selected from 1 ~ 5. + denotes the simulation result, the line denotes the theoretical prediction.

Figure 3. The simulation of the non-uniform model. α =  1, ηN t( ) is randomly selected from 1 ~ 2, ξN t( ) is randomly 
selected from 1 ~ 4. + denotes the simulation result, the line denotes the theoretical prediction.
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constructed with no repetitive hyperedges. The probability that a new node will connect to the jth node of the ith 
batch, is proportional to a sublinear function of the hyperdegree h t t( , )j i  and attractiveness a such that

Π =
+

∑ +
.

α

αh t t
h t t a

h t t a
( ( , ))

( ( , ) )
( ( , ) ) (1)

j i
j i

ij j i

where ti denotes the time when the ith batch of nodes enters into the network, that is to say, the birth time of the 
ith batch of nodes is ti. The symbol h t t( , )j i  denotes the hyperdegree of the jth node of the ith batch. And  
α (0 ≤  α <  1) is a constant, ∫ η η η= < ∞m f d( )1 , ∫ ξ ξ ξ= < ∞m g d( )2 . The evolving process of the model is 
shown in Fig. 1.

By a preferential attachment mechanism, it means that the higher the node hyperdegree is, the more prob-
ability it will be connected. The preferential probability of the old nodes will be higher than that of new nodes, 
namely, the phenomenon that “the rich get richer.” For example, in the scientific collaboration networks, nodes 
and hyeredges denote the authors and the papers they have written, respectively. The node with higher hyper-
degree might be a famous author in his field who has written many papers. When new authors enter into the 
network, they tend to cooperate with those famous authors in order to gain their own fame.

Supposing that h t t( , )j i  is a continuous real variable which is proportional to probability Π h t t( ( , ))j i . Then, by 
using techniques of continuous technique, it can be seen that h t t( , )j i  satisfies the following dynamical equation.

ξλ
∂

∂
=

+

∑ +

α

α

h t t
t

m
h t t a

h t t a
( , ) ( ( , ) )

( ( , ) ) (2)

j i j i

ij j i

Figure 4. The simulation of the non-uniform model. α = 2
3
, ηN t( ) is randomly selected from 1 ~ 3, ξN t( ) is 

randomly selected from 1 ~ 5. + denotes the simulation result, the line denotes the theoretical prediction.

Figure 5. The simulation of the non-uniform model. α = 1
2

, ηN t( ) is randomly selected from 1 ~ 3, ξN t( ) is 
randomly selected from 1 ~ 5. + denotes the simulation result, the line denotes the theoretical prediction.
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where ξ is a random variable taken from the probability density function ξg ( ).
The symbol N(t) denotes the total number of batches of nodes at time t. By employing the Poisson process 

theory, we have λ=E N t t[ ( )] . Let

∑λ= + α

→∞
x

t
h t t alim 1 ( ( , ) )

t ij
j i

then we have,

ξ∂

∂
=

+
.
αh t t

t
m h t t a

xt
( , ) ( ( , )) )

(3)
j i j i

The solution of this equation, with the initial condition that a node in the ith batch at its birth time satisfies 
=h t t m( , )j i i , is

α ξ η=
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+ +









− =α
α
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−

h t t m
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where x satisfies the following equation

∫ ∫ξ ξ α
ξ




− + +







= .α
α
α∞ − −

m g d m
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u m a
u

du x( ) (1 ) ln ( ) 1
(5)1
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The Eq. (5) is called the characteristic equation of hyperdegree of the model.
From Eq. (4), it follows that

≥ =



≤





α ξ
−
−

+ − +α α− −

P h t t k P t te( ( , ) )
(7)j i i

x
m

k a m a
(1 )

( ( ) ( ) )1 1

Notice that the arrival process of node batches is a Poisson process having rate λ. Therefore time ti follows a 
gamma distribution with parameter(i, λ), and thus we have

Figure 6. The simulation of the non-uniform model. α =  0, ηN t( ) is randomly selected from 1 ~ 3, ξN t( ) is 
randomly selected from 1 ~ 5. + denotes the simulation result, the line denotes the theoretical prediction.

Figure 7. Schematic illustration of the evolving process of the weighted model. (a) is the initial network, (b) 
is the second time step, (c) is the third time step. The weight of each new hyperedge is w0.
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=

−
P t x e x

l
( ) 1 ( )

!i
x

l

i l

0

1

From Eq. (7), we have
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From Eq. (8), we obtain
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From Eq. (9), it follows that the stationary average hyperdegree distribution is:

∫ ξ
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Figure 9. The simulation of the weighted model for node hyperdegree with m1 = 3, m2 = 1, m = 2, w0 = 5, 
δ = 1. + denotes the simulation result, the line denotes the theoretical prediction.

Figure 8. The simulation of the weighted model for node hyperdegree with m1 = 2, m2 = 1, m = 2, w0 = 1, 
δ = 1. + denotes the simulation result, the line denotes the theoretical prediction.
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where x is a common positive solution of Eq. (5). This result shows that the hyperdegree distribution not only 
depends on the exponent α of the nonlinear preferential attachment, but also relates with the distribution of the 
number of chosen existing nodes.

When α =  1, since η ξ η λ λ∑ + ≈ ∑ + + ∑ = + +h t t a m a tm m m tam( ( , ) ) ( ) ( )ij j i i i i i i 1 2 1
we can directly obtain

= + + .x m m m am( ) (11)1 2 1

Substituting Eq. (11) into Eq. (10) yields,

∫ ξ
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When α =  1, η ξ= =m m,1 2, from Eq. (12), we have
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Equation (13) exhibits the scale-free property of the evolving hypergraph, and the hyperdegree distribution 
behaves as ∝ γ−P k k( ) , where
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+
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, then the characteristic equation Eq. (5) is reduced to,
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where n is a nonnegative integer.
If α =  0, from Eq. (15), we have x =  m1. From Eq. (10), we obtain

∫ ξ ξ ξ= ξ
− −P k m

m
e g d( ) 1 ( )

m
m

k m1 ( )1

If α =  1/2, from Eq. (15), we obtain

= + + + + .x m m a m m a m m m1
2

( ( ) ( ) 2 ) (16)1 1
2

1 2

Substituting Eq. (16) into Eq. (10) yields,

Figure 10. The simulation of the weighted model for node hyperdegree with m1 = 3, m2 = 1, m = 2, w0 = 1, 
δ = 0.5. + denotes the simulation result, the line denotes the theoretical prediction.
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If α =  2/3, from Eq. (15), we obtain the characteristic equation of hyperdegree of the model

∫ ξ ξ ξ− + − + − =x m m a x m m a mm x m m g d( ) 2
3

( ) 2
9

( ) 0 (18)
3

1
2/3 2

1
1/3

2 1
2 2

In the following simulations, the parameters are set as follows: the number of initial nodes m0 =  10, the num-
ber of hyperedges m =  2, the attractiveness a =  1. The simulations are performed with scale of N =  100000 (the 
total number of nodes is 100000), and each simulation result is obtained by averaging over 30 independent runs. 
The simulation results are shown from Figs 2 and 6 in double-logarithmic axis. As the figures show, the theoretical 
prediction of the hyperdegree distribution is in good agreement with the simulation results.

Weighted Evolving Hypergraphs
The mathematical definition of weighted evolving hypergraphs is given as follows. The concept of weighted hyper-
graphs generalizes that of simple weighted graphs by allowing for edges of higher cardinality. Formally, we define 
a weighted hypergraph as a triple =H V E W( , , ),  where = V v v v{ , , , }n1 2 ,  = E E E E{ , , , }l1 2  
( = E v v v{ , , , }i i i ik1 2

 ∈ = v V j k( , 1, 2, , )i j
), = .W w w w{ , , }l1 2  (w is a map from Ee into the set R of real 

numbers, denoted by =w w E( )e e ) are the sets of nodes, edges and weights, respectively. In the weighted hyper-
graph, two nodes are said to be adjacent if there is a hyperedge that contains both of these nodes. Two hyperedges 
are said to be adjacent if their intersection is not empty. If the cardinality V  of V and the cardinality E  of E are 
finite, respectively, H is said to be a finite weighted hypergraph. If  = = E i Lk( 1, 2, , )i , then =H V E W( , , ) 
is a k-uniform weighted hypergraph. Suppose Ω = V E W( , , ) is a finite weighted hypergraph and G is a map from 
= + ∞T [0, ) into Ω; for any given t ≥  0, =G t V t E t W t( ) ( ( ), ( ), ( )) is a finite weighted hypergraph. The index 

t is often interpreted as time. A weighted evolving hypergraph ∈G t t T{ ( ), } is a collection of weighted hyper-
graphs. The hyperdegree of vi is defined as the number of hyperedges that connect to node vi. For the hyperedges 
that are connected to vi, the sum of their hyperedge weights is called the hyperstrength of vi.

In the BBV (Barrat-Barthelemy-Vespignani) model28,29 of complex networks, nodes enter into the network 
one by one, and the edges formed by one new added node and one old node. This model plays an important role 
in complex networks. However, it can only represent relations between a pair of nodes. However, edges in many 
real-world problems should involve information such as cooperation, trade or interaction among more than two 
actors. In addition, the interaction strength (the weight) of the edge characterizes real networks. For instance, the 
scientific collaboration network4 can be viewed as a weighted evolving hypergraph, where the weight of hyper-
edges should be the number of papers cooperated by co-authors. In airline networks, the weight of edges is used 
to represent passenger flow volume. Similarly, in trade networks the weight of edges is used to represent total 
trade between countries. In transportation networks, metro lines are always added with more than one node at 
each time step. These networks are different from simple weighted networks. Thus, this paper proposes a model 
of weighted evolving hypergraph to describe the weighted hyperedge growth caused by batches of newly added 
nodes. The theoretical analysis result and simulations are obtained. The definition of weighted models is based 
on two coupled mechanisms: the topological growth and the weights’ dynamics. The weighted model is defined 
as follows:

Figure 11. The simulation of the weighted model for node hyperstrength with m1 = 2, m2 = 1, m = 2, w0 = 1, 
δ = 1. + denotes the simulation result, the line denotes the theoretical prediction.
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(i) Growth: The network starts from an initial seed of m0 nodes and a hyperedge containing m0 nodes, and the 
hyperedge is assigned with weight w0. Suppose that nodes arrive at the system according to a Poisson process with 
rate λ. If m1 new nodes arrive to the network at time t, one new hyperedge is formed by these new nodes and m2 
previously existing nodes, totally m (mm2 ≤  m0) new hyperedges are constructed with no repetitive hyperedges.

(ii) Hyperstrength driven attachment: The new batch of nodes preferentially chooses nodes with larger hyper-
strength, i.e., the probability that the new batch nodes will connect to previously existing node vij (the symbol vij 
denotes the jth node of the ith batch) is proportional to the hyperstrength s t t( , )j i  of node vij, such that

∏ =
∑

s t t
s t t
( , )

( , )
,

(19)

j i

i j j i,

where = ∑ ∈s t t w( , )j i e v E eij e
 is the hyperstrength of vij. (iii) Weights’ dynamics: The weight of each new hyperedge 

is initially set to a given value w0. A new hyperedge of node vij will trigger only local rearrangements of weights on 
the previously existing neighbors ∈v Nrl vij

, where N vij
 represents the neighbors of vij, according to the simple rule

→ + ∆w w w , (20)e e e

where δ∆ =we
w

s t t( , )
e

j i
, ∈v v E,ij rl e, δ =  const is defined as updating coefficient. The evolving process of the model 

is shown in Fig. 7. h t t( , )j i  denotes the hyperdegree of node vij. When a new batch arrive at the system, an already 
present node vij can be affected in two ways: (a) It is chosen with probability Eq. (19) to be connected to the batch 
of new nodes, then its hyperdegree increases by 1, and its hyperstrength by w0 +  δ. (b) One of its neighbors 
∈v Nrl vij

 is chosen to be connected to the batch of new nodes, then the hyperdegree of vij is not modified, but we 
is increased according to the rule in Eq. (20), and thus sij is increased by δ w

s t t( , )
e

l r
. This dynamical process is modu-

lated by the respective occurrence probabilities 
∑

s t t

s t t

( , )

( , )
j i

i j j i,

 and is thus described by the following evolution equa-

tions for s t t( , )j i  and h t t( , )j i :
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Since δ δ∑ =∈ ∈ ∑ ∑
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w
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s t t, 2
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, the following is obtained

δ= +
∑

ds t t
dt

mm w
s t t

s t t
( , )

( 2 )
( , )

( , ) (23)

j i j i

i j j i
2 0

,

Substituting Eq. (22) into Eq. (23) yields

Figure 12. The simulation of the weighted model for node hyperstrength with m1 = 3, m2 = 1, m = 2, w0 = 5, 
δ = 1. + denotes the simulation result, the line denotes the theoretical prediction.
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δ= +
ds t t

dt
w

dh t t
dt

( , )
( 2 )

( , )j i j i
0

Since node vij arrives at the system at time ti, we have =s t t m( , )j i i  and =s t t mw( , )j i i 0. Then integrating the 
equation above from ti to t produces

δ δ= + −s t t w h t t m( , ) ( 2 ) ( , ) 2 (24)j i j i0

and probability Eq. (19) is modified as follows:

∏ =
−

∑ 


− 


δ
δ

δ
δ

+

+

h t t m

h t t m

( , )

( , ) (25)

j i w

i j j i w

2
( 2 )

,
2

( 2 )

0

0

By comparing Eqs (25) and (1), it can be inferred that the attractiveness of the evolving hypergraph model is as 
follows,

δ
δ

= −
+

.a
w

m2
2 (26)0

The probability of the preferential attachment in this model can be modified as ∏ =
+

∑ +

h t t a

h t t a

( , )

( ( , ) )
j i

j j i
, which is in 

accordance with that of the model with an attractiveness. Substituting Eq. (26) into Eq. (13) yields the stationary 
average hyperedegree distribution of the weighted model:

δ
δ δ δ

≈
+ 


 +

+








 + −






δ+
+

P k w
mw

m w
m w

mw
w k m

( ) 2
( 2 )

1
( 2 ) 2 (27)

m w
m w

0

0

1 0

2 0

0

0

( 2 )
21 0

2 0

Moreover, from Eq. (27), it follows that the hyperdegree distribution behaves as ∝ γ−P k k( ) , where

γ
δ

= +
+

m
m

w
w

2
2 (28)

1

2

0

0

Therefore, the hyperdegree distribution of the weighted model can be obtained directly from the results of the 
model with an attractiveness.

When η ξ= =m m,1 2, from Eqs (8), (24) and (26), we have

∑ λ< =





















λ δ−
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− +


 +
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 +
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!
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1 2
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2

0
0 2

1
2

0

0

Hence, the density function of sj(t, ti) is

Figure 13. The simulation of the weighted model for node hyperstrength with m1 = 3, m2 = 1, m = 2, w0 = 1, 
δ = 0.5. + denotes the simulation result, the line denotes the theoretical prediction.
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So, the density function f(x) of the stationary average hyperstrength distribution can be deduced from Eq. (30) 
as follows:
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 +
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(31)
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1 2
2 21

2
0

0

1
2

0

0

Evidently, from Eq. (31), we know that the stationary average hyperstrength distribution of the weighted model 
is a power-law distribution.

The following simulations are performed with the scale of N =  5000, and each simulation result is obtained 
by averaging over 30 independent runs. The simulation results for node hyperdgree and node hyperstrength are 
shown in Figs 8–10 and Figs 11–13 respectively, all in double-logarithmic axis. As the figures show, the simulation 
results are quite consistent with the theoretical conclusions. The hyperstrength versus hyperdegree for various 
values are shown in Fig. 14. It can be seen that hyperstrength is positively correlated with hyperdegree.

Conclusion
This paper proposes a non-uniform model with nonlinear preferential attachment and a weighted model in evolv-
ing hypergraphs. In the non-uniform model, at each time step, both the size of new nodes and the randomly 
selected existing nodes in one hyperedge are random variables. It is clear that non-uniform evolving hypergraphs 
can better describe real-life systems. We obtain the characteristic equation of hyperdegree and the stationary 
average hyperdegree distribution of the model. Our theoretical analysis is then verified by numerical simulations. 
When the model degenerates into a uniform model, the hyperdegree distribution has the form of a generalized 
power-law, where the power exponent is equal to γ = + +2 (1 )m

m
a
m

1

2
. The weighted model takes into account 

the fact of topological growth and the dynamic mechanism of the weights. It is found that the weighted model  
is a special case of the non-uniform model. The study of evolving hypergraphs is necessary for future multidisci-
plinary research. Applications of these evolving hypergraphs in the study of real-life systems are also worth fur-
ther investigation. We expect that our results can help accelerate the development of evolving hypergraphs. In this 
perspective, the models presented in this paper appear as a general starting point for the realistic modeling of 
weighted evolving hypergraphs.
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