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Letter to the Editor

7T Magnetic Resonance Imaging Quantification of
Brain Glutamate in Acute Ischaemic Stroke
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Dear Sir:

Glutamate has a role in cellular injury in ischaemic stroke and
may be implicated in post-stroke complications, including sei-
zures.! Magnetic resonance spectroscopy (MRS) and glutamate
weighted chemical exchange saturation transfer (GIuCEST)?
imaging offer non-invasive methods of quantifying brain glu-
tamate levels. Here, we explored the use of 7T MRS and Glu-
CEST to quantify glutamate levels in stroke patients.

We recruited adult patients with radiologically confirmed
cortical ischaemic infarct within 14 days of onset. The study
was approved by the Melbourne Health Human Research and
Ethics Committee (HREC 2017.135) and all patients provided
written informed consent.

We recorded clinical characteristics including National Insti-
tutes of Health Stroke Scale (NIHSS) score on admission, treat-
ment received, and time from onset to magnetic resonance
imaging (MRI). Image acquisition, processing and segmentation
were performed according to described methods.® The GluCEST
acquisition slab was aligned with the axial slice where the in-
farct was largest, as identified by diffusion-weighted imaging
(DWI). Single voxel 'H MRS was performed with a 15x15x15
mm voxel overlapping the 5 mm GIuCEST slice, and a contra-
lateral mirror reference voxel. GIUCEST regions of interest (ROI)

included the ischaemic lesion, a mirror ROl in the contralateral
hemisphere, and MRS voxel locations. Averaged GIuCEST con-
trast intensity for each ROl was quantified as percent contrast
intensity. MRS data was analysed using LCModel.* Glutamate
concentration, scaled to water, was calculated in mmol/L. An
ipsilateral to contralateral ratio was calculated for MRS gluta-
mate concentration and GIuCEST contrast.

Statistical analysis was performed using GraphPad Prism
version 7.00 for Windows (GraphPad Software, San Diego, CA,
USA). Paired T-tests compared MRS concentrations and Glu-
CEST contrast between hemispheres. Independent T-tests com-
pared ratios between patients. P<0.05 denoted a significant
result. GIUCEST contrast and glutamate concentration within
voxels were compared by linear regression. Correlation be-
tween concentration ratio and both NIHSS and time to MRI
was analysed with Pearson's (or, if nonparametric, Spearman's)
correlation.

Nineteen patients participated (Table 1). MRI scans were
performed between 2 and 13 days after stroke onset. Eleven
patients underwent both GIuCEST and MRS, seven underwent
GIuCEST only and one patient MRS only. Three patients were
subsequently excluded from the GluCEST analysis due to arte-
fact from haemorrhagic transformation. Overall, MRS gluta-
mate concentration was lower in the ipsilateral than contralat-
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GIuCEST contrast (%)

GIuCEST contrast (%)

Diffusion weighted imaging and chemical exchange saturation transfer (CEST) images from patient 8 (A) and patient 11 (B) demonstrating regionally
increased and decreased glutamate weighted chemical exchange saturation transfer (GluCEST) contrast ipsilateral to the infarction. The asymmetry in Glu-
CEST contrast in regions distant to the infarction may be due to brain positioning asymmetry.

eral hemisphere (mean difference, standard deviation [SD]
1.97+1.70 mmol/L; P=0.002), and numerically lower in 11/12
patients. There was no difference between ipsilateral and con-
tralateral GIuCEST contrast (mean difference, SD 0.61+2.19;
P=0.30), with ipsilateral GIuCEST contrast higher in 3/15 pa-
tients, lower in 9, and similar (ratio 0.8 to 1.2) in 3. Figure 1
shows DWI and GIuCEST images from patients 8 and 11. Those
with higher GIuCEST contrast had all presented with high NI-
HSS on admission (Table 1), and 2/3 had high final infarct vol-
umes. Across the population however there was no significant
correlation between NIHSS and glutamate concentration ratio
(R=0.11, P=0.74 for MRS; Spearman's Rho=0.31, P=0.26 for
GIuCEST). There was no correlation between MRS concentra-
tion ratio (ipsilateral divided by contralateral) and time to MRI
(R=0.25, P=0.43). Concentration ratio did not differ according
to whether treatment was received (mean concentration ratio
0.67 vs. 0.62, P=0.80). There was a significant but modest cor-
relation between MRS glutamate concentration and GluCEST
contrast across all ROl (R=0.50, P=0.018).

Using 7T MRI, we observed decreased MRS glutamate con-
centration ipsilateral to stroke and a more heterogeneous pat-
tern of GluCEST contrast suggestive of both increased and de-
creased glutamate concentrations within the population. The
highest GIUCEST contrast ratios were seen in those with more
severe strokes, consistent with dysregulation of glutamate ho-
meostasis.

A previous 3T MRS study® found no difference in glutamate
concentration between ipsilateral and contralateral hemi-
spheres, although voxels were placed in perilesional tissue and
scans were performed at 24 hours. Our scans are likely to have
occurred after the peak in glutamate concentration,® and ani-
mal studies observing relatively lower MRS glutamate concen-
trations have cited the inability of MRS to differentiate be-

https://doi.org/10.5853//j0s.2020.04784

tween intracellular and extracellular glutamate.” GIuCEST con-
trast may also be affected by pH,” with tissue acidosis possibly
contributing to increased contrast in two patients with large
strokes. Our study limitations include small sample size, clinical
heterogeneity, and variability of time to MRI. A consecutive se-
ries was not recruited, potentially biasing the population to-
ward those with milder strokes. Bo and B; artefacts are recog-
nised technical limitations of 7T MRI and nuclear Overhauser
effect can result in negative CEST contrast.® GIuCEST signal is
only appreciable at high field strengths, limiting its translation
to clinical practice until access to 7T is more widely available
outside the research setting.

Further research may include use of newer imaging tech-
niques to rapidly acquire 3-dimensional CEST images,” allowing
coverage of greater brain regions and combination with se-
quences to define the revascularised penumbra, where gluta-
mate may be increased due to oxidative stress. Methods of
correcting for Bo artefact in the setting of stroke are also
emerging.'® Further study is required to delineate the effects of
infarct size, reperfusion, and time to scan acquisition as deter-
minants of brain glutamate concentration.
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