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Dear Sir:

Glutamate has a role in cellular injury in ischaemic stroke and 
may be implicated in post-stroke complications, including sei-
zures.1 Magnetic resonance spectroscopy (MRS) and glutamate 
weighted chemical exchange saturation transfer (GluCEST)2 
imaging offer non-invasive methods of quantifying brain glu-
tamate levels. Here, we explored the use of 7T MRS and Glu-
CEST to quantify glutamate levels in stroke patients.

We recruited adult patients with radiologically confirmed 
cortical ischaemic infarct within 14 days of onset. The study 
was approved by the Melbourne Health Human Research and 
Ethics Committee (HREC 2017.135) and all patients provided 
written informed consent. 

We recorded clinical characteristics including National Insti-
tutes of Health Stroke Scale (NIHSS) score on admission, treat-
ment received, and time from onset to magnetic resonance 
imaging (MRI). Image acquisition, processing and segmentation 
were performed according to described methods.3 The GluCEST 
acquisition slab was aligned with the axial slice where the in-
farct was largest, as identified by diffusion-weighted imaging 
(DWI). Single voxel 1H MRS was performed with a 15×15×15 

mm voxel overlapping the 5 mm GluCEST slice, and a contra-
lateral mirror reference voxel. GluCEST regions of interest (ROI) 

included the ischaemic lesion, a mirror ROI in the contralateral 
hemisphere, and MRS voxel locations. Averaged GluCEST con-
trast intensity for each ROI was quantified as percent contrast 
intensity. MRS data was analysed using LCModel.4 Glutamate 
concentration, scaled to water, was calculated in mmol/L. An 
ipsilateral to contralateral ratio was calculated for MRS gluta-
mate concentration and GluCEST contrast. 

Statistical analysis was performed using GraphPad Prism 
version 7.00 for Windows (GraphPad Software, San Diego, CA, 
USA). Paired T-tests compared MRS concentrations and Glu-
CEST contrast between hemispheres. Independent T-tests com-
pared ratios between patients. P<0.05 denoted a significant 
result. GluCEST contrast and glutamate concentration within 
voxels were compared by linear regression. Correlation be-
tween concentration ratio and both NIHSS and time to MRI 
was analysed with Pearson’s (or, if nonparametric, Spearman’s) 
correlation.

Nineteen patients participated (Table 1). MRI scans were 
performed between 2 and 13 days after stroke onset. Eleven 
patients underwent both GluCEST and MRS, seven underwent 
GluCEST only and one patient MRS only. Three patients were 
subsequently excluded from the GluCEST analysis due to arte-
fact from haemorrhagic transformation. Overall, MRS gluta-
mate concentration was lower in the ipsilateral than contralat-
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eral hemisphere (mean difference, standard deviation [SD] 
1.97±1.70 mmol/L; P=0.002), and numerically lower in 11/12 
patients. There was no difference between ipsilateral and con-
tralateral GluCEST contrast (mean difference, SD 0.61±2.19; 
P=0.30), with ipsilateral GluCEST contrast higher in 3/15 pa-
tients, lower in 9, and similar (ratio 0.8 to 1.2) in 3. Figure 1 
shows DWI and GluCEST images from patients 8 and 11. Those 
with higher GluCEST contrast had all presented with high NI-
HSS on admission (Table 1), and 2/3 had high final infarct vol-
umes. Across the population however there was no significant 
correlation between NIHSS and glutamate concentration ratio 
(R=0.11, P=0.74 for MRS; Spearman’s Rho=0.31, P=0.26 for 
GluCEST). There was no correlation between MRS concentra-
tion ratio (ipsilateral divided by contralateral) and time to MRI 
(R=0.25, P=0.43). Concentration ratio did not differ according 
to whether treatment was received (mean concentration ratio 
0.67 vs. 0.62, P=0.80). There was a significant but modest cor-
relation between MRS glutamate concentration and GluCEST 
contrast across all ROI (R=0.50, P=0.018). 

Using 7T MRI, we observed decreased MRS glutamate con-
centration ipsilateral to stroke and a more heterogeneous pat-
tern of GluCEST contrast suggestive of both increased and de-
creased glutamate concentrations within the population. The 
highest GluCEST contrast ratios were seen in those with more 
severe strokes, consistent with dysregulation of glutamate ho-
meostasis. 

A previous 3T MRS study5 found no difference in glutamate 
concentration between ipsilateral and contralateral hemi-
spheres, although voxels were placed in perilesional tissue and 
scans were performed at 24 hours. Our scans are likely to have 
occurred after the peak in glutamate concentration,6 and ani-
mal studies observing relatively lower MRS glutamate concen-
trations have cited the inability of MRS to differentiate be-

tween intracellular and extracellular glutamate.7 GluCEST con-
trast may also be affected by pH,2 with tissue acidosis possibly 
contributing to increased contrast in two patients with large 
strokes. Our study limitations include small sample size, clinical 
heterogeneity, and variability of time to MRI. A consecutive se-
ries was not recruited, potentially biasing the population to-
ward those with milder strokes. B0 and B1 artefacts are recog-
nised technical limitations of 7T MRI and nuclear Overhauser 
effect can result in negative CEST contrast.8 GluCEST signal is 
only appreciable at high field strengths, limiting its translation 
to clinical practice until access to 7T is more widely available 
outside the research setting. 

Further research may include use of newer imaging tech-
niques to rapidly acquire 3-dimensional CEST images,9 allowing 
coverage of greater brain regions and combination with se-
quences to define the revascularised penumbra, where gluta-
mate may be increased due to oxidative stress. Methods of 
correcting for B0 artefact in the setting of stroke are also 
emerging.10 Further study is required to delineate the effects of 
infarct size, reperfusion, and time to scan acquisition as deter-
minants of brain glutamate concentration.
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