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Abstract

Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression
profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed
genes have been accomplished using various versions of clustering approaches that often result in a number of false
positives.

Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their
similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic
we term ‘progressive construction of contigs’ that constructs local chains of related elements by sequentially rearranging
margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and
compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using
simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data.

Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both
simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more
accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a useful
method for the analysis of gene expression data whose applicability should be further pursued.
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Introduction

With the advent of high throughput technologies, large-scale

gene expression studies have become routine in many biological

laboratories. Two conceptually different approaches to high

throughput gene expression profiling are microarrays [1] and

tag sequencing-based methods, such as Serial Analysis of Gene

Expression (SAGE) [2]. While both of these gene expression

platforms can generate large genome-wide expression data sets,

making full use of the data is still an important bioinformatic

challenge [3]. A common aim of high throughput gene expression

studies is to identify genes with similar expression profiles since

such genes may be functionally related and thus may be used to

predict functions of unknown genes. This aim has been most often

addressed by various versions of clustering analysis that group

genes into clusters with correlations among their expression values

[4,5]. Currently available clustering methods show variable success

at identifying functionally-relevant gene groupings [6–8].

While microarray studies assess gene expression levels by

measuring hybridization intensities to the relevant probes [1],

SAGE studies use portions of cDNA transcripts known as SAGE

tags that are concatenated, cloned, and sequenced to provide a

quantitative measure of the transcripts levels in the cell [2]. The

use of SAGE had been until recently limited by the sequencing

cost and laborious steps inherent in the cloning procedure.

However, with modern advances in sequencing technologies,

SAGE-related methods have become more cost-effective and are

gaining popularity owing to some technological advantages they

offer over microarrays [9]. In particular, SAGE does not rely on

previous knowledge of gene structure. In addition, it has been

suggested that SAGE studies are more robust, and require fewer

replicates than microarray studies [9,10]. Generally, SAGE data

have been subjected to the same clustering methods as microarray

data [11]. However, more appropriate distance measures

accounting for the discreet, Poisson-distributed structure of SAGE

data have been shown to produce better clustering results than

those achieved with conventional Euclidian or Pearson similarity

measures routinely used in microarray data clustering [12]. A

successful clustering method for SAGE termed PoissonC accounts

for the categorical structure of SAGE data by using the Chi-square
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statistic and the Poisson distribution in a K-means clustering

procedure [12].

A notorious feature of gene expression datasets affecting the

performance of cluster analysis is high data dimensionality whereby

the expression of many genes is assayed over a small number of

experimental conditions (time points). This leads to failure of

common statistical methods to distinguish real correlation patterns

from spurious ones [3,5], and necessitates the development of

alternative approaches for identifying co-expressed genes. Here we

explore whether a reordering rather than grouping approach can be

used for the identification of co-expressed genes in gene expression

data, and whether such an approach would yield fewer false

positives than achieved by grouping genes into sets with clustering.

Seriation is a statistical method for simultaneously ordering rows

and columns of a symmetrical distance matrix for the purposes of

revealing an underlying one-dimensional structure [13]. An

assumption in seriation analysis is that there is an order (or distinct

sub orders) in the data that are biologically meaningful. The

inherent orders may represent any sequential structure among the

data (e.g. their dependence on time or another variable). Seriation

in its different flavors has been successfully applied in multiple fields,

including archeology, psychology, and operational research; for

instance, in archaeology it has been used to uncover the

chronological order of archaeological deposits [14,15]. The

application of seriation for the analysis of high throughput biological

data has been limited. One application in gene expression analysis is

finding an optimal leaf ordering of a hierarchical clusterogram

[16,17]. In these studies global seriation was conducted after

hierarchical clustering to aid in finding an optimal solution. In

contrast, the present study examines whether the detection of local

ordered structures in the data can be used in place of clustering for

the identification of co-expressed genes.

Since finding the exact solution to seriation is known to be a

nondeterministic polynomial time (NP)-hard problem [18], several

heuristics have been developed to achieve an acceptable ordering

solution [17]. We developed an original seriation heuristic we term

‘progressive construction of contigs’, which is based on step-wise

reordering of the correlation matrix to produce chains or ‘contigs’

of related correlation values. We applied the seriation heuristic to

analyses of both simulated and experimental SAGE data and

showed that our approach can be used to effectively identify

groups of co-expressed genes, and the relationships among these

groups in a robust manner. We found that seriation performed

better than a SAGE-specific clustering method on SAGE data

containing spurious expression patterns that would arise due to

measurement uncertainties and small number of experimental

conditions compared to the large number of genes [3,5]. Global

patterns in the data revealed by seriation are easily detectable by

eye from the reordered correlation matrix and can be interpreted

biologically.

Results

Seriation using the progressive construction of contigs
heuristic

Motivated by the opportunity to improve upon current methods

for analyzing large scale expression datasets, we set out to explore

the use of seriation as a substitute for clustering for identifying co-

expression patterns in SAGE data. Seriation seeks the best

enumeration order among objects based on their similarity

according to a chosen criterion. Since the problem is NP-hard,

we developed a novel heuristic specifically for the SAGE data

analysis task. The ‘progressive construction of contigs’ heuristic

attempts to put the most similar objects side by side without

breaking already established chains of closely related elements we

term ‘contigs’. Here we use pairwise correlations between

expression vectors (normalized tag counts for a particular tag

across all libraries) as the criterion for defining similarities between

tags; however, in principle, other similarity criteria can be used for

this task. The pairwise correlations between tag expression vectors

x and y are calculated using the standard correlation coefficient

function, R(x,y)~C(x,y)=sqrt(C(x,y) � C(y,x)) where C(x,y)~
E x�xð Þ� y�yð Þ½ �; x̄ and ȳ are the means of expression vectors x

and y, and E is the mathematical expectation. The correlation

values are subsequently arrayed into a symmetric matrix, which is

subjected to the following progressive seriation procedure.

In the first step, the tag pair with the highest correlation value is

found and marked as the beginning of the first contig. At each

subsequent step the tag pair with the next highest correlation value

is identified. If one of the members of the tag pair is involved in a

previously formed contig, the columns of the matrix are

reorganized to place the other member at the nearest edge of

the same contig; since the matrix is symmetrical, the rows are

reordered accordingly. Importantly, previously reordered elements

are kept intact in this process. If it is impossible to add the

similarity maximum of the current step to a contig given the

restriction on the previously-moved objects or if the tag pair with

the correlation maximum does not involve any of the members of

the formed contigs, the current similarity maximum is used to start

a new contig. The seriation process continues until all elements

have been processed. The result is the production of contigs of

similar correlation values that can be displayed along the diagonal

of the correlation matrix representing internal topologies in the

data. Theoretically, in the case of a Robinson data structure,

whereby the data are from a unimodal distribution, the contigs are

merged into one and the obtained result is the most optimal single

seriation solution [14,17].

A key algorithmic difference between the seriation algorithm

described above and a procedurally similar hierarchical clustering

algorithm (such as the hierarchical clustering method developed in

[19] and implemented in [4]) is the treatment of vectors after the

highest pairwise correlation value has been identified at each step. In

clustering, the vectors are averaged together into a new vector using a

linkage rule (for instance, average linkage clustering) and this new

vector is represented by a node in the hierarchical clusterogram. In

contrast, in the case of seriation, no new vector or node is formed, and

the rows and columns of the correlation matrix are merely reordered

to reflect underlying patterns in the data as described above.

Therefore, no linkage rule is required in seriation in addition to the

distance metric used to define similarities.

In the current implementation of the seriation algorithm,

ordered structures (contigs) are revealed by color-coding the

reordered correlation matrix according to the magnitude of the

correlation value. In this manner, visual inspection of the matrix

allows for the selection of ordered contigs for further inspection.

Due to the visualization component, the algorithm is able to

analyze up to 4000 genes at a time (tested on 1.7 IBM PC Pentium

4, Z60t laptop) and is suitable for the analysis of pre-selected sets of

genes. Importantly, the algorithm produces a robust solution for

each seriation run (in other words, equivalent solution is produced

upon repeated seriation of the same data set).

Performance of seriation on simulated SAGE data
To test the performance of the seriation heuristic we generated

a simulation dataset containing 500 expression vectors of

dimension 5 (corresponding to 500 SAGE tags expressed over 5

different time points or conditions). Since expression data for a

gene collected under different experimental conditions or at

Seriation of SAGE Data
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different time points are not completely independent, distinguish-

ing genes with similar expression profiles in which the dynamics of

gene expression changes is considered is of biological interest [5].

We designed the expression vectors to represent 10 different

expression profiles that might be of potential biological interest

(Figure S1).

To test the dependence of algorithm performance on the

amount of noise in the data, we initially seriated three of these

expression profiles with increasing numbers of noise tags. Pattern 2

corresponds to tags whose expression slightly peaks at time point 2

and then at time point 5; pattern 3 includes tags with a single

expression peak at time point 2; and pattern 1 corresponds to tags

with an expression peak over time points 3 and 4 (Figure S1). To

closely simulate actual SAGE data, we added ‘noise’ or singleton

tags whose expression profiles do not conform to any of the three

patterns. Such expression profiles are common in gene expression

datasets, particularly ones with few experimental conditions

sampled relative to the number of genes [5]. Since it has been

previously shown that SAGE data can be approximated by a

Poisson distribution [12], we used Poisson-based rules for our

simulations (see methods). Genes with similar expression profiles

were modeled by a Poisson distribution with the same l [12]. In

contrast, genes that do not belong to any of the three patterns of

interest (i.e. noise) were simulated by constructing expression

profiles based on a Poisson distribution with random l, obtained

from a uniform distribution [1, 300]. We tested the performance of

seriation as well as the PoissonC clustering algorithm, a successful

K-means clustering algorithm previously developed specifically for

SAGE data [12] on the simulation data set in three rounds, each

time increasing the amount of noise present among the profiles of

interest (Table S1). In each round, seriation yielded three clear

contigs along the diagonal corresponding to the three patterns of

interest (Figure 1A). Importantly, increasing the amount of tags

corresponding to noise from 34 (round 1) to 384 (round 3) did not

significantly affect the performance of the seriation algorithm

(Table 1). We also applied the PoissonC algorithm to the

Figure 1. Performance of seriation on simulated SAGE data. (A). Seriation results of the three rounds of simulations with increasing amounts
of noise from round 1 (34 tags) to round 3 (384 tags). The dark red squares along the diagonal indicate tags with the expression patterns 1–3 that
were grouped together by seriation. (B). Seriation of 10 expression profiles with limited amount of noise. The dark red squares along the diagonal
indicate tags in each expression profile that were grouped together. The numbers indicate expression patterns from Figure S1 that were grouped
into each contig. Note that two contigs in the middle (5 and 1) appear more similar to each other than any other contig pair indicating similarity of
the corresponding expression patterns.
doi:10.1371/journal.pone.0003205.g001
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simulation data using the same design. The optimal value of K was

determined as described [20] and was set to K = 4 for each round.

Values of K = 5 and K = 6 were also tested for round 2 and round

3 simulations, but did not produce significantly different results

from those generated with K = 4. Interestingly, the performance of

PoissonC declined with increasing amounts of noise (Table 1)

illustrating the common problem with clustering analysis of gene

expression data sets [3].

Overall, it can be noted that both algorithms performed well on

data with relatively little noise (round 1); however, as the amount

of noise in the data increased, seriation appeared more robust than

clustering at identifying correct expression groupings. Importantly,

both algorithms correctly grouped tags with similar expression

profiles together in all three rounds (true positives), and the

reduction in performance of PoissonC was due to an increase in

false positives being incorporated into co-expression clusters.

Having established the excellent performance of seriation on

noisy SAGE data containing a few expression profiles of interest,

we went on to evaluate the dependence of performance on the

number of expression profiles to be identified in the analysis. For

this experiment, we used 10 expression profiles (Figure S1) and

conducted the analysis as described above. We seriated 50 tags

corresponding to each of the 10 expression profiles and 50 tags

corresponding to noise. The resulting color-coded correlation

matrix is shown in Figure 1B, and the comparative performance of

PoissonC and seriation on the data is summarized in Table 2. The

10 expression profiles were grouped into 10 contigs along the

diagonal by seriation. In addition to reordering tags according to

the correct expression profile, seriation analysis was able to detect

similarities among the profiles themselves. For instance, two

squares in the middle of the matrix are distinct yet appear more

similar to each other than any other pair of consecutive contigs.

These contigs correspond to profiles 5 and 1 which are indeed very

similar (Figure S1). Such additional information can not be

revealed by clustering with PoissonC.

Performance of seriation on previously-published
experimental SAGE data

To test the performance of seriation on previously analyzed

experimental SAGE data, we applied the algorithm to reorder

genes expressed in mouse retinal SAGE libraries based on

similarity of their expression profiles [20]. The SAGE data were

generated from mouse retinal tissues at 10 different developmental

stages ranging from E12.5 (Theiler stage 20) to post natal day 10

(P10) and adult; the data were originally analyzed using the

PoissonC algorithm with K = 24. We subjected the same dataset to

seriation using the progressive construction of contigs procedure.

The algorithm produced 10 contigs, including 2 contig groupings

called ‘supercontigs’ (Figure 2). Most of the contigs were composed

of members of one or several clusters from Blackshaw et al. [20]

(Figure 3A; Table 3). The expression profiles of genes in the 24

clusters generated by Blackshaw et al. [20] are provided in Figure

S2. It can be noted that as a result of seriation, clusters with similar

expression patters were grouped together into contigs. For

instance, clusters 8, 22, and 24, which contain genes whose

expression peaks at post natal day 10, were grouped into contig8.

Similarly, contig9 included clusters 1, 10, 22, and 24, which

contain genes that are highly expressed in the adult library

(Figure 3). For a full list of contig memberships of genes expressed

in the retinal libraries see Figure S3.

Significantly, Gene Ontology (GO) enrichment analysis indi-

cated that clusters grouped into the same contig contained the

same or similar enriched GO categories (Table 3) suggesting that

they were somewhat functionally redundant. As an example, all

but one of the clusters that fell into contig9 had ‘vision’ as the top

enriched GO category. In addition to ordering co-expressed genes

to form a contig, seriation provides insight into the relationship

among the contigs. Here, it can be noted that the left-most contigs

tend to contain genes whose expression peaks at earlier

developmental stages, whereas the right-most contigs contain

genes whose expression peaks in the late postnatal or adult

lilbraries (Figure 3B). This ordering of contigs is temporal and

biologically relevant, since the enriched GO categories of

neighboring contigs are related. For instance, contigs 1, 2 and 3

that form supercontig1 are all enriched in genes that have a

ribosomal function. Similarly, contigs 8 and 9 (supercontig2) are

highly enriched in genes that function in vision (Table 3).

Therefore, we argue that seriation provides an overview of the

global biologically-relevant patterns in the data. Here, the results

indicate that the retinal tissues contain two highly represented

functional groups of genes, those involved in the ribosome

functionality and those related to vision and light perception.

Table 1. Effect of the amount of noise in SAGE data on the
performance of seriation and PoissonC.

Pattern1 Pattern2 Pattern3

TP FP TP FP TP FP

Round 1: 34 noise
tags

Seriation 41 1 38 4 37 4

PoissonC 41 2 38 2 37 5

Round 2: 120 noise
tags

Seriation 41 6 38 6 37 3

PoissonC 41 13* 38 14* 37 15*

Round 3: 384 noise
tags

Seriation 41 5 38 3 37 3

PoissonC 41 43* 38 99* 37 61*

Seriation and PoissonC were applied to a simulated SAGE data set containing
three expression patterns and increasing amount of noise tags. The dataset is
described in more detail in the text and in Table S1. TP (True Positives) include
tags that were correctly classified as belonging to the correct expression group
(expression pattern 1, 2, or 3 or noise) by assigning them to the cluster
(PoissonC) or contig (seriation) containing other members of the expression
group. FP (False Positives) include noise tags that have been erroneously
assigned to a cluster or contig with tags that conform to the expression pattern
1, 2, or 3.
*The false positive rate is significantly higher for the PoissonC algorithm than it
is for seriation mostly due to the erroneous assignment of noise tags to an
expression pattern (p,0.05).

doi:10.1371/journal.pone.0003205.t001

Table 2. Comparative performance of seriation and PoissonC
on a simulated SAGE data set with 10 expression patterns.

Algorithm TP FP

Seriation 549 1

PoissonC 528 22*

Seriation and PoissonC were applied to the analysis of a simulated SAGE data
set containing 10 expression patterns each including 50 tags, and 50 noise tags.
TP (True Positives) are tags that were correctly classified as belonging to the
right expression pattern or noise. FP (False Positives) are tags that were
assigned to the wrong pattern or noise tags that were assigned to an
expression pattern.
*The false positive rate is significantly higher for the PoissonC algorithm than it
is for seriation (p,0.05).

doi:10.1371/journal.pone.0003205.t002
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These groupings are easily recognized from the color-coded

seriated correlation matrix (Figure 2) as the two supercontigs.

While it is possible to extract similar information from the

clustering results, seriation provides a means to organize it in a

relevant easily-interpretable and visualizable manner.

As evident from the simulation study, seriation is more

discriminative than clustering analysis at grouping co-expressed

genes together resulting in more accurate results. On the other

hand, clustering analysis forces all the tags to belong to a cluster

thereby resulting in more false positives. Here, many genes in the

seriation experiment were not captured in the contigs (Figure 2) as

they are presumably not sufficiently similar to any of the patterns

present in the contigs. It can be noted that all the GO categories

that were found to be enriched in Blackshaw et al. [20] clusters

were also present in the contigs (Table 3) suggesting that

Blackshaw et al. [20] clusters were somewhat redundant and

may contain false positives.

Performance of seriation on novel experimental SAGE
data

We next applied the seriation algorithm to the analysis of SAGE

libraries we generated as part of the Mouse Atlas Project (www.

mouseatlas.org). The Mouse Atlas Project aims to produce a

collection of SAGE libraries derived from various mouse tissues

representing different developmental stages, ranging from embry-

onic stem cells to post-natal day 84 [21]; currently the resource

contains over 200 different libraries. Due to our interest in the

transcriptional regulation of pancreatic development we focused

on analyzing the expression of transcription factors expressed in

six SAGE libraries representing various stages of pancreatic

endocrine cell development ranging from Theiler stage 17 (TS17)

to post-natal day 70 (P70). Transcription factors are regulatory

proteins that are presumed to be responsible for the coordinated

expression of functionally-related genes. Transcription factors are

at the top of the regulatory hierarchies that drive pancreatic

development and enable beta cell maturation [22]. Thus, global

analysis of transcription factor expression may provide insight into

the mechanisms of pancreatic development and the misregulation

of the mechanisms in disease.

SAGE expression profiles of 319 transcription factors expressed

in six pancreatic libraries were subjected to seriation analysis. The

algorithm yielded five contigs of transcription factor SAGE tags

with similar expression profiles (Figure 4). For this analysis, we

chose contigs as groupings of co-expressed genes (red squares

along the diagonal, Figure 4A) with at least 10 members. Contigs

of transcription factors expressed in the pancreatic libraries are

provided in Figure S4. Annotation analyses of the resulting contigs

suggested that they were functionally relevant based on the

Figure 2. Seriation of genes expressed in mouse retinal SAGE libraries. SAGE data from Blackshaw et al. [20] were subjected to seriation
analysis as described in the text. The resulting reordered correlation matrix containing correlation coefficients for each tag pair computed to measure
the similarity of their retinal expression profiles is color-coded red to blue to represent decreasing correlation values. Ten contigs, including two
supercontigs, recognizable as the squares of high (red) correlation values along the diagonal, are evident from the color-coded correlation matrix. The
Figure on the right provides a zoomed-in view of the contigs.
doi:10.1371/journal.pone.0003205.g002
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enrichment for GO category, SwissProt keyword and Kyoto

Encyclopedia of Genes and Genomes (KEGG) annotations

(Table 4, Figure S5). It was also evident that the contigs contained

transcription factors that were expected to be grouped together

based on their known membership in the same pathway. For

instance, transcription factors implicated in islet cell type

specification as part of FoxO signaling, Neurod1 and Foxa2 [23]

were grouped together into contig1. In addition, Pax6 which was

Figure 3. Analysis of seriation contigs of genes expressed in mouse retinal SAGE libraries. (A). Comparison of seriation contigs to the
original clusters from Blackshaw et al. [20]. Seriation contigs are color-coded and plotted on the x-axis of the 3D graph. The peaks on the z-axis
represent the percent cluster members (y-axis) present in the particular contig. Most seriation contigs are composed of one or several predominant
clusters (also see Table 3). (B). Expression profiles of genes in seriation contigs. The relative expression levels from 0% to 100% are plotted on the y-
axis for each contig while the retinal libraries derived from developmental stages E12.5, E14.5, E16.5, E18.5, P0.5, P2.5, P4.5, P6.5, P10, and adult are on
the x-axis. The ordering of contigs is temporal such that genes expressed in earlier developmental stages tend to be in the first contigs, while genes
expressed in later stages are in later contigs. This partitioning is particularly evident from the expression patterns of genes in the supercontigs.
doi:10.1371/journal.pone.0003205.g003

Seriation of SAGE Data
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recently shown to be a target of Neurod1 [24] was placed in the

same contig. Similarly, Neurogenin-Neurod cascade members

implicated in endocrine development [25] together with a

downstream transcription factor Nkx2-2 [26] were grouped into

contig2. Smad3 and Smad4, known TGF-beta targets [23] were

placed into contig4, which was enriched for TGF-beta signaling

pathway annotation. These results suggest that transcription factor

groupings produced by seriation are biologically relevant and

recapitulate the transcriptional circuitry involved in the control of

pancreatic development.

Previous studies have shown that genes with similar expression

profiles are functionally related; moreover, co-expression has been

reasonably successfully used to predict function of unknown genes

[8,27]. Therefore, the identified contigs of transcription factors can

be used to gain insight into the functionality of unknown

transcription factors in pancreatic development. For instance,

Hand1, a major regulator of heart development which has been

also implicated in vascular development [28], was placed into

contig3 together with other basic helix-loop-helix (bHLH)

transcription factors, Hox and Pax genes. Homeobox (Hox) and

paired box (Pax) transcription factors have been presumed to

function together to regulate a variety of developmental processes

[29]. Our seriation analysis suggested that these transcription

factors together with another bHLH family member Hand1 may

function together during pancreatic development, a possibility that

can be tested experimentally in the future. In addition, a crucial

regulator of pancreatic development, Pax4, was placed into

contig5 together with members of the Stat family of transcription

factors, suggesting a potential interaction between Pax4 and the

JAK/STAT pathway.

Discussion

Clustering analysis has been the approach of choice for most

gene expression studies. However, due to high dimensionality of

gene expression datasets, many clustering algorithms are prone to

producing false positive expression-based interactions [3]. SAGE

data have been particularly poorly exploited by statistical analyses

owing to the domination of the gene expression field by

microarrays that produce continuous data as opposed to discreet

count-derived data produced by SAGE. With the advent of next-

generation sequencing technologies, sequence tag-based methods

have been gaining popularity for gene expression analysis thereby

necessitating the development of statistical methods for analyzing

discreet expression data. To date, a few clustering algorithms

designed to exploit the digital data structure have been developed

for SAGE data analysis, and shown to perform favorably

compared to conventional microarray clustering algorithms [12].

However, these methods are still subject to the inherent limitations

of the clustering approach itself.

We explored the use of local seriation for the identification of

co-expression patterns in SAGE data. The primary goal of

seriation methods is finding an optimal ordering of a set of objects

based on a similarity criterion. Since there are n! ways to order a

set of n objects, finding the most optimal seriation order becomes

computationally expensive with the increasing size of the data set;

therefore, heuristics have been developed to achieve an optimal

ordering solution [17]. We developed a novel bottom-up heuristic

we termed ‘progressive construction of contigs’ specifically

designed for seriation of gene expression vectors according to

their similarity. The ‘progressive construction of contigs’ heuristic

is based on a greedy process that does not question the previous

steps, and thus is fast and can, in principle, be implemented with

large datasets. We tested the performance of seriation on both
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simulated and experimental SAGE data, and compared its

performance with that of the PoissonC K-means clustering

algorithm, a current state-of-the-art method in the field of SAGE

data analysis [12]. We demonstrated that seriation was able to

identify contigs of co-expressed genes that were related to clusters

of co-expressed genes obtained by PoissonC (Table 3). We showed

that the co-expression contigs were enriched for genes with similar

functions as defined by both Gene Ontology and SwissProt

keyword annotations as well as the known memberships in the

same pathway. Therefore, we provided an empirical demonstra-

tion that the results from the two approaches are related and are

complementary to each other. We further showed that in contrast

to clustering, seriation could detect relationships among contigs of

co-expressed genes, such as their temporal order, whenever such

relationships were present in the data. Moreover, based on the

simulation results, seriation appeared less sensitive to noisy data

than PoissonC, and produced fewer false positives.

The major conceptual difference between seriation and

clustering underlying the differential performance of the methods

on noisy SAGE data stems from the different primary goals of the

two methods. The primary goal of seriation is reordering during

which inherent patterns in the dataset (e.g., presence of groups of

elements that are related to one another) are revealed. On the

other hand, the primary goal of clustering is partitioning the

dataset into groups of similar elements. A key advantage of

ordering over grouping is that ordering allows for the discovery of

gradual progressions in the data while such gradual information is

lost in grouping analyses. For instance, Robinson properties in the

data can be revealed by seriation but not by clustering [14]. Gene

expression changes over various experimental conditions are often

of a gradual nature rendering seriation a useful tool for the

discovery of similar expression profiles. In other words, the

identification of groups of related elements is a consequence of

seriation while it is the primary goal of clustering. Due to this fact,

following clustering analysis of gene expression datasets, all genes

are assigned to the most appropriate cluster based on a generic

linkage rule. In contrast, following seriation analysis that does not

require a linkage rule, contigs of genes with high pairwise

correlation coefficients are revealed by reordering. Real versus

spurious co-expression interactions can be thus gauged from the

color-coded reordered correlation matrix (e.g., Figure 1, Figure 2,

Figure 4A) wherein clear tightly-formed red squares along the

Figure 4. Seriation of transcription factors expressed in Mouse Atlas pancreatic libraries. SAGE data for transcription factors expressed in
the pancreatic libraries from the Mouse Atlas project were subjected to seriation analysis as described in the text. The reordered correlation matrix
containing correlation coefficients for each tag pair computed to measure the similarity of their pancreatic expression profiles is color-coded red to
blue to represent decreasing correlation values. (A). 5 contigs recognizable as red squares along the diagonal are evident. (B). Expression profiles of
transcription factors in contigs in (A). The relative expression levels from 0% to 100% are plotted on the y-axis for each contig while the pancreatic
libraries derived from stages TS17, TS19, TS20, TS21, TS22, and P70 are on the x-axis.
doi:10.1371/journal.pone.0003205.g004
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diagonal reveal groupings of co-expressed genes while the rest of

the matrix represents tags that do not belong to any of the contigs.

Overall, we showed that seriation is a useful tool for pattern

discovery and visualization in SAGE datasets. The method allows

one to estimate the number of co-expression patterns present in the

dataset (estimated from the number of formed contigs) as well as the

amount of ‘noise’ or spurious expression profiles (estimated from the

number of tags that do not appear to belong to a contig). We showed

that seriation correctly detected groups of simulated expression

profiles, correctly identified enriched GO categories obtained by

PoissonC, and correctly revealed a number of known transcription

factor interactions from pancreas SAGE data. Therefore, we suggest

that the application of seriation for the identification of co-expressed

genes in tag-based gene expression studies should be explored further.

Materials and Methods

Simulation study
The simulation design was influenced by a previously described

design for short-term time series microarray expression data [5].

However, we used the Poisson distribution that has been shown to

be suitable for modeling SAGE data [12] instead of the uniform

distribution used in [5] to model microarray data. In brief, we

generated a simulation dataset containing 500 expression vectors

of dimension 5. The expression profiles for each tag (v0, v1, v2, v3,

v4) belonging to one of 10 expression patterns defined by setting

(m0, m1, m2, m3, m4) to (0, 1, 0, 0, 2) for pattern 1; (0, -1, 1, 1, -1)

for pattern 2; (0, 2, 1, 0, 0) for pattern 3; (0, 1, -1, -1, 1) for pattern

4; (0, -1, 0, 0, -2) for pattern 5; (0, -2, -1, 0, 0) for pattern 6; (0, 1,

-1, 1, -1) for pattern 7; (-1, 1, 1, -1, 0) for pattern 8; (2, 0, 0, 1, 0) for

pattern 9; and (0, 0, 1, 2, 0) for pattern10 in the equation below,

were determined as follows:

v0~Poisson(l) where l * Uniform 1,300½ �

vi~vi{1(2m
i � m

i{1
)zZ , for i~1,:::,4

where Z takes on the values of -1, 0 or 1 with equal probability of 1/

3 and represents errors in tag count measurements. l was kept the

same for all genes in the same expression pattern group as suggested

in [12]. The resulting expression profiles of the 10 groups are

displayed in Figure S1. The noise was modeled using the same rule

as above but selecting a random l , Uniform [1, 300] to model the

expression profile of each tag. Simulations were conducted over

three rounds with increasing amount of noise (Table S1). Seriation

algorithm was run several times for each round and produced the

same result. PoissonC algorithm was run over 100 iterations and the

iteration results were combined into consensus clusters.

Experimental SAGE data
The retinal dataset was obtained from Blackshaw et al. [20] and

was processed as described by the authors. The mouse pancreatic

SAGE libraries SM161/SM244, SM231, SM243/SM160,

SM225/SM249, SM232 and SM017 were obtained from the

Mouse Atlas web site (www.mouseatlas.org). The libraries were

built as described in [21] and in [30]. All tag processing, including

the removal of linker-derived tags, quality filtering (95% sequence

quality cutoff was used) and mapping was done in DiscoverySpace

4.0 software as described [31]. The tag counts in each library were

normalized to the depth of 100,000.

Mouse transcription factors
We obtained the list of mouse transcription factors by selecting

Ensembl genes containing DNA-binding domains from Pfam
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[32,33]. The sequences were selected based on the mouse genome

NCBI build 32 and are analyzed in O. Morozova and T.R.

Hughes. Patterns of transcription factor evolution in vertebrates.

Proceedings of the Third Canadian Student Conference on

Biomedical Computing (CSCBC), 2008. We found that out of 994

transcription factors expressed in the Mouse Atlas libraries, 319

were present in the pancreatic libraries with a tag count of 4 or

higher.

GO category, SwissProt keyword and KEGG pathway
enrichment analysis

GO category analysis of retinal SAGE clusters and contigs was

performed using EASE software as described [34]. GO category,

SwissProt keyword and KEGG pathway enrichment analysis of

transcription factor contigs was performed using the web-based

FatiGO+ tool [35]. P-values of less than 0.05 were considered

statistically significant for both analyses.

Clustering analysis
K-means clustering analysis was performed according to the

PoissonC algorithm [12]. The within-cluster dispersion was

calculated as described [20]. The java implementation of the

clustering algorithm and the within-cluster dispersion calculation

was kindly provided by Li Cai (Rutgers University, NJ).

Seriation algorithm and its implementation
Seriation was conducted on simulated, retinal or Mouse Atlas

SAGE data using the custom MATLAB implementation. The

algorithm was run three times on each experimental dataset to

ensure the seriation result was robust. The analysis of simulated

SAGE data was done as described above. The implementation of

the algorithm can be made available to interested academic users

upon request.

Supporting Information

Figure S1 Composition of the simulation dataset during three

rounds of simulations.

Found at: doi:10.1371/journal.pone.0003205.s001 (0.86 MB TIF)

Figure S2 Expression profiles of genes in 24 clusters from

Blackshaw et al. [20]. The relative expression levels from 0% to

100% are plotted on the y-axis for each cluster while the retinal

libraries derived from developmental stages E12.5, E14.5, E16.5,

E18.5, P0.5, P2.5, P4.5, P6.5, P10, and adult are on the x-axis.

Found at: doi:10.1371/journal.pone.0003205.s002 (2.79 MB TIF)

Figure S3 Contig membership of genes expressed in retinal

SAGE libraries.

Found at: doi:10.1371/journal.pone.0003205.s003 (0.12 MB

XLS)

Figure S4 Contig membership of transcription factors expressed

in pancreas.

Found at: doi:10.1371/journal.pone.0003205.s004 (0.04 MB

XLS)

Figure S5 Annotations enriched in contigs of transcription

factors expressed in pancreas.

Found at: doi:10.1371/journal.pone.0003205.s005 (0.03 MB

XLS)

Table S1 Composition of the simulation dataset during three

rounds of simulations. Simulated SAGE datasets were constructed

to include three different expression patterns of potential biological

interest (depicted in Figure S1, patterns 1, 2, and 3) and modeled

as described in Materials and Methods. To simulate actual SAGE

data, we included singleton tags that do not strictly conform to any

of the three expression patterns (referred to as ‘noise’). The

simulation was conducted over three rounds with constant

numbers of tags in each expression category (rows 1–3) and

increasing numbers of noise tags (row 4). The expression profiles in

each category are shown in column 5 and explained in Materials

and Methods.

Found at: doi:10.1371/journal.pone.0003205.s006 (0.03 MB

DOC)
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