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Pattern recognition based on machine learning
identifies oil adulteration and edible oil mixtures

Kevin Lim® "™, Kun Pan?, Zhe Yu? & Rong Hui Xiao?

Previous studies have shown that each edible oil type has its own characteristic fatty acid
profile; however, no method has yet been described allowing the identification of oil types
simply based on this characteristic. Moreover, the fatty acid profile of a specific oil type can
be mimicked by a mixture of 2 or more oil types. This has led to fraudulent oil adulteration
and intentional mislabeling of edible oils threatening food safety and endangering public
health. Here, we present a machine learning method to uncover fatty acid patterns dis-
criminative for ten different plant oil types and their intra-variability. We also describe a
supervised end-to-end learning method that can be generalized to oil composition of any
given mixtures. Trained on a large number of simulated oil mixtures, independent test dataset
validation demonstrates that the model has a 50" percentile absolute error between
1.4-1.8% and a 90th percentile error of 4-5.4% for any 3-way mixtures of the ten oil types.
The deep learning model can also be further refined with on-line training. Because oil-
producing plants have diverse geographical origins and hence slightly varying fatty acid
profiles, an online-training method provides also a way to capture useful knowledge presently
unavailable. Our method allows the ability to control product quality, determining the fair
price of purchased oils and in-turn allowing health-conscious consumers the future of
accurate labeling.
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ver the last century there has been a significant shift to

using plant oils rather than animal fats in human diets.

This shift has prompted numerous scientific investiga-
tions on the characterization of fatty acid profiles in the com-
monly consumed plant oils culminating in a rather large
database!. However, notwithstanding our knowledge on the fatty
acid profiles of specific plant oil types?3, it has not been possible
to deduce and identify a plant oil when given the fatty acid
profile. In addition, once two or more plant oils are mixed, the
resulting fatty acid profile also changes. In many cases, the fatty
acid profile of a blended oil mixture can mimic that of a high-
quality product. Taking advantage of this possibility, counter-
feiters sell low-value blended oils as high-value products and
profit from the price difference; moreover, they even change the
blending formulae in response to changes in market prices owing
to macroeconomic factors.

The UC Davis olive center reported that up to 69% of Cali-
fornia olive samples labeled as extra virgin olive oil failed to meet
USDA standards mainly, because of adulteration with cheaper
refined olive oil amongst many other reasons?. In another inde-
pendent report, 82% of avocado oil sold in the US market were
either expired or adulterated®. In Taiwan, olive oil sold to con-
sumers was reported to be 98% palm oil®. Such adulterations led
to the degradation of sensory quality without significant health
effects. Moreover, in some cases, the consequence of adulteration
can also pose public health issues. For example, in India, mustard
oil adulterated with argemone oil has been reported to cause
epidemic dropsy’. Adulterations of edible oils are more rampant
in countries where regulatory bodies lack the resources and
methods to assess and verify the quality of marketed products
raising issues of food safety and security. Recent trend to promote
nutritional guidance at a personal level further highlights the need
for accurate and unadulterated labeling®. For example, a con-
sumer who is at a higher risk of cardiovascular disease may prefer
to have specific dietary fatty acid requirements provided by
specific plant oil types. The ability to detect oil adulteration
therefore has both economic and health consequences.

A number of chemometric methods to detect adulterated oil
using fatty acid profiles has been described®12. Usually these
methods deal with a simple mixture of 2-3 oil types and are often
qualitative in nature (e.g, PCA). When the methods provide
quantitative information relating to the volume proportion of the
major oil types (e.g., PLS1), the results would further require
human interpretation when more than two oil types are being
considered. This is because prevalent chemometric methods for
quantifying oil adulteration assume a single target variable by
considering the volume proportions of a mixture of only two oils.
Even so, extending this simple methodology to a combination of
mixtures of more than two oils, requires additional intermediate
preprocessing because such models ignore correlations between
multiple targets. Whereas single-target variable prediction che-
mometric methods also exist, extending chemometric methods to
encompass multiple-targets (PLS2) resulted in a decrease in
accuracy, when these two-oil mixtures are considered in a gen-
eralized context of multiple possible oil combinations (Supple-
mentary Tables 1-4). Consequently, these models are seldom
implemented in a practical setting due to the lack of an end-to-
end solution.

Here, we report a machine learning method that is able to
uncover discriminative fatty acid profile patterns between oil
types. We use an unsupervised model to further identify sub-
clusters within the larger oil types and narrow down specific fatty
acid differences between the subclusters. Using the insights dis-
covered, in silico simulation of oil mixtures provides a large
training examples for a supervised end-to-end deep learning
model to decipher quantitative compositional status of the oils.

Independent blind test set based on genuine oil mixtures
demonstrates the model’s ability to learn and generalize to real-
world mixtures. To improve the general applicability of the
model, we describe an online machine learning method!? that
updates the model based on fatty acid profiles of future oils. This
ability to continuously extend the utility of the model to oils with
new fatty acid profiles provides a valuable unified resource for the
industry to establish common standards for food safety and
security.

Results

The fatty acid profiles of ten edible oils types. We extracted
lipids from 19,583 oil samples covering ten edible oil types
obtained from Wilmar production plants: groundnut oil (GNO),
high-erucic acid rapeseed oil (HERSO), high-oleic acid sunflower
oil (HOSFO), low-erucic acid rapeseed oil (LERSO), linseed oil
(LNO), low-oleic acid sunflower oil (LOSFO), maize oil (MZO),
rice bran oil (RBO), soybean oil (SBO), and sesame oil (SSO)
(Table 1). Fatty acids were derivatized and identified as fatty acid
methyl esters (FAMES) by gas chromatography with flame ioni-
zation detector (GC-FID), which allowed the identification and
quantification of at least 18 different fatty acids. The availability
of this large data set enabled us to study the variation between
and within the oil types. Comparison of fatty acid profiles among
different oil types showed the presence of predominant fatty acids
in some oil types (Fig. 1). For example, groundnut oil exhibited
unique C20:0 and C22:0 profiles, high-oleic acid sunflower oil
exhibited strong C18:1 profiles and linseed oils exhibited unique
C18:3 profiles (Fig. 1a). However, we also noted considerable
overlap in fatty acid profiles as well as fatty acid abundances
across many other oil types. In addition, the presence of multiple
modes across the fatty acid profiles suggested pattern hetero-
geneity and possible resolution of each oil species into subtypes
(Fig. 1a). Subsequent data visualization using state-of-the-art
dimensionality reduction algorithm!4 supported this hypothesis
as some large oil groups were found to disperse into smaller
islands (Fig. 1b). By contrast, traditional chemometric methods
are not able to clearly resolve all the oil clusters (Supplementary
Fig. 1).

g\/\/e extensively validated this hypothesis by fitting a Gaussian
mixture model (GMM) on the data, assuming that the data points
can be generated from a mixture of finite number of Gaussian
distributions. Results from the expectation-maximization algo-
rithm were further optimized by Bayesian Information Criterion,
producing a total of 16 clusters (Fig. 1c). The clustering was
mapped back to the dimensionality reduced latent space and the
results largely corroborated the identities of the ten pure oil types.
The identities inferred by the unsupervised GMM model achieved
a precision and sensitivity rates of 99.9%, assuming that some of
the oil types were divided into smaller subclusters (Table 2). As a

Table 1 Sample information.

Sample statistics (Number of samples)

Groundnut (GNO) Al
High-erucic acid rapeseed oil (HERSO) 2727
High-oleic acid sunflower oil (HOSFO) 169
Low-erucic acid rapeseed oil (LERSO) 3454
Linseed oil (LNO) 55
Low-oleic acid sunflower oil (LOSFO) 1319
Maize oil (MZO) 2658
Ricebran oil (RBO) 609
Soybean oil (SBO) 6728
Sesame oil (SSO) 693
Total 19,583
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Fig. 1 Characterization of ten edible oil types. a The fatty acid distributions of ten plant oils, groundnut (GNO), high-erucic acid rapeseed (HERSO), high
oleic acid sunflower (HOSFO), low-erucic acid rapeseed oil (LERSO), linseed (LNO), low-oleic acid sunflower (LOSFO), maize (MZO), ricebran (RBO),
soybean (SBO) and sesame seed (SSO), in relative abundance stratified across 16 fatty acids C16:0 to C24:1. b Ten plant oils visualized in the latent space.
Clusters are colored by the oil types. € GMM clusters colored in the same latent space. d The empirical distributions of the subclusters labeled with
numerical suffices, the major fatty acid changes are highlighted in red boxes.
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Table 2 Precision and sensitivity of GMM clusters.
GNO HERSO HOSFO LERSO LNO LOSFO MZO RBO SBO SSO Sensitivity

1 0 0 0] 0 0 0 1798 0 0 0 1

2 0 5 0] 615 0 0 0 0 0 0 0.992
3 0 0 0 0 0 0 0] 0 3263 0 1

4 0 0 0 0 0 0 0 609 0 0 1

5 0 0 0 0 0 0 860 0 0 0 1

6 0 570 0 0 0 0 0 0 0 0 1

7 0 0 0 0 55 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 2001 0 1

9 0 0 0] 0 0 0 0] 0 1464 0 1

10 0 0 0 0 0 1319 0 0 0 0 1

n 0 0 0 0 0 0 0] 0 0 693 1

12 0 752 0 0 0 0 0 0 0 0 1

13 m7n 0 0] 0 0 0 0] 0 0 0 1

14 0 1 0 2831 0 0 0 0 0 0 0.999
15 0 0 169 0 0 0 0] 0 0 0 1

16 0 1399 0 8 0 0 0 0 0 0 0.994
Precision 1 0.998 1 0.998 1 1 1 1 1 1
consequence, we obtained 16 subclusters from ten larger clusters . o . . 100 + n—1
with samples in the same subcluster spatially colocalized in the 35518 each of the 100% into n oils, requires 100

dimensionally reduced embedding. This colocalization suggested
that the Euclidean distance in the original fatty acid space within
subclusters was smaller than across the subclusters, further
supporting the idea that the heterogeneity previously observed
was a result of specific fatty acid differences.

To further uncover patterns described by the within-oil
subclusters, we compared the GMM parameters with the
empirical distributions of the subclusters (Fig. 1d). We used the
high-oleic variant of sunflower oil as a positive control as it was
markedly higher in the C18:1 content compared to the low-oleic
variant. Similarly, the high-erucic acid variant of rapeseed oil was
more pronounced in C22:1 compared to the low-erucic acid
variant (high-lighted green boxes). These observations supported
the idea of subclusters, as the high-oleic and high-erucic acid oils
can considered as originating from a single cluster, diverging as a
consequence of evolution or selective breeding!®>-17. In fact, the
high-erucic acid rapeseed and low-erucic acid rapeseed oils could
be further separated into three and two subclusters, respectively.
The subcluster HERSO.2, which was spatially closer to the LERSO
clusters, contained fatty acids (C18:1, C20:1) with abundances
resembling those of the LERSO types (Fig. 1d), suggesting that
erucic acid was not the only discriminative feature of the two
rapeseed oil varieties. Within the other subclusters, SBO.1, SBO.2,
and SBO.3 displayed a coordinated shift in fatty acids C18:0 and
C18:1. This result is consistent with published reports of a FAD2
mutant!® in which reducing C18:1 levels were correlated with
increasing C18:0 levels. Some shifts in abundance across the
subclusters were also visible with other uncommonly profiled
fatty acids, e.g., C17:0 (Fig. 1d, highlighted red boxes). Taken
together, our results showed that these oils are phenotypically
different with changes in multiple fatty acids. Whether the
differences can be attributed to geographical origins or due to the
use of different processing methods remain to be investigated.

Simulation of oil mixtures. The problem of oil mixtures has
combinatorial roots. For any n types of oil, there are 2™ possible
combinations to describe the compositional makeup of the oil
mixtures. To enumerate the quantitative value of these compo-
sitions we only considered discrete mixing at 1% steps. Then, this
problem can be reduced into another combinatorial problem of
fitting 100 indistinguishable balls into n identifiable baskets,
commonly referred to as weak composition in mathematics. To

combinations. For the space of ten different oil types, this works
out to be about 4.26 trillion, making it an intractable problem.
Notwithstanding this, each oil type also has its own biological
variability thereby enlarging the total space even more.

Fortunately, because of the insights and patterns discovered,
the parameters learned can be used to simulate oil samples from a
multinomial distribution. To approximate the compositional
space, we first sampled pure oils from the GMM parameters and
the quantitative compositional ratios through a Dirichlet
distribution and combined the fatty acid profiles by a linear
combination. By this method, an infinite number of training
samples could be generated for learning the composition of an
unknown oil mixture. This in silico method of sample generation
prompted the question whether the biological variance of the
pure oil types propagated through the oil mixtures presented itself
as a noise or a consistent and generalizable signal. The latter
would be important for constructing a robust machine learning
model that is practical for real-world scenarios.

To investigate data patterns from the simulated oil mixtures,
we compared about 100,000 simulated oil mixtures across the ten
oil types. In the latent space, red epicenters denoted oils that were
pure and blue regions denoted severely adulterated oil mixtures.
The pie charts denoted the compositional arrangements of the oil
mixtures (two-mixtures Fig. 2a, b; three-mixtures Fig. 2¢, d; four-
mixtures Fig. 2e, f). Most oil type started off at their respective
epicenters and gradually merged with other epicenters depicting
the fact that the purity of oil transitioned from one type to
another. We observed that as the complexity of the mixtures
increased, ie., from two-mixtures to four-mixtures the same
pattern was preserved albeit some epicenters became fuzzy. This
simulation result suggested that broad mixture trends can be
captured by further supervised modeling, and larger errors were
expected for complex mixtures.

Deep learning model of oil composition. Recently, deep neural
networks have been applied successfully to solve biological pro-
blems!®. Compared to traditional chemometric methods they are
more accurate and generalizable to unseen data?’. Therefore, we
generated a total of 12 million oil mixtures for construction and
evaluation of the deep learning neural network model. A sche-
matic describing the machine learning workflow is shown in
Fig. 3. For a fatty acid profile of any unknown oil, the model must
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Fig. 2 The latent spaces of two-way, three-way, and four-way oil mixtures. GMM simulated pure oil samples were mixed by linear combination of ratios
drawn from a Dirichlet distribution and visualized in the latent space. Gradient legend (blue to red) used for (a-c), denoting the purity of oil measured
against the major oil. Ten colors were used (d-f) to represent relative proportion of mixtures in the pie charts. a, b Ten epicenters in the two-way mixtures
describe the ten edible oils in the purest form (red). The purity shifts to 50% (blue) as two oils are mixed in equal proportions, and then shifting back to
red, in the epicenter of another pure oil type as indicated by the pie charts. ¢, d Three-way and e, f four-way mixtures exhibit the same patterns, even

though the epicenters become fuzzier due to the complexity of mixtures.

be able to determine not only the compositional arrangement
across the oil types, but also have only small enough errors from
the ground truth mixing ratios. To understand the performance
better, we stratified the results according to the composition of 36
different possible two-mixtures (note that even though the data is
visualized this way, the model is agnostic to this and must
independently elucidate the oil composition without confusing
other possible types). For each stratification, we summarized the
results in terms of absolute error statistics based on the test set,
e.g., the 50th percentile refers to the median absolute error (half
of the test population has lower/higher than this absolute error).
Our results showed that in most mixture types, the median
absolute error is between 0.4 and 1.5%. The 90th percentile
absolute error is between 1-5.8%, and can be a better gauge of
generalizability (i.e., 90% of the test samples will have less than
this absolute error), when a much stringent requirement is
imposed on the predicted values for real-life quality control
purpose (Fig. 4). In some cases where oil mixtures were harder to
differentiate, higher margins of error were found, e.g., soybean
and sesame oil mixtures had a 99th percentile absolute error of
9%. By contrast, traditional chemometric models trained by
partial-least squares (PLS2) to differentiate the ten different oil
types had errors ranging between 2.6 and 21.5% at the median
and 9.1 and 40.1% at the 90th percentile. (Supplementary Fig. 2).

This finding further demonstrates that the deep learning model
has more power to generalize and discriminate unknown oil types
based on fatty acid profiles.

A single model that can quantify any two-way mixtures
without any prior knowledge to its composition can address the
practical problem of simple oil adulteration. Generalizing the
two-way model to three-way and other complex mixtures would
also allow quick identification of these adulterants. We further
demonstrated the general applicability of the deep learning model
in two ways. First, independently generated three-way blends
continued to show similar performance, albeit at a slightly higher
error rate. As the number of three-way blends was huge, we
showed the results obtained with common adulterants to
groundnut oil; the 50th and the 90th percentile absolute errors
were between 1.4 and 1.8% and 4-5.4%, respectively (Fig. 5). By
contrast, traditional chemometric methods are not able to cope
when complexities increase (Supplementary Fig. 3). In general, n-
way blends can also be ascertained in a similar fashion but the
practice of adulterating oils with too many components is
impractical and lacks commercial incentive. Second, we also
conducted a more realistic test to benchmark the model against
real-life oil mixtures, measured with GC-FID. Across 46
groundnut oils, mixed with maize, sunflower and rice bran oil
at varying degrees, the model performance had a median absolute
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Fig. 5 Deep learning results for three-way oil composition common to groundnut adulterants. The ground truth represented by the Gibb’s triangle, each
point in the triangle correspond to exact ratios between three oils that sum to unity (top). The colors are the triangle represent the purity and the shift in
color represents a mixture depending on the ratios between the other two oils. Results predicted by the three-way deep learning model are colored based
on the relative ratios, colors that are closer to the ground truth have lower errors (middle). Percentile absolute errors (bottom).

error of 1.35% and 90th percentile absolute error of 2.7%. These
results were very close to the simulated test error rates
(Supplementary Table 5).

Online-learning process. Although we have demonstrated that
the deep learning model performed well when benched mark
against both simulated test sets as well as real-life blind mixtures,
it is impossible to have a perfect training dataset due to biological
variations of the same plant species being grown in, e.g., different
geographical regions and subjected to varying environment
conditions during growth. In order to evaluate the performance
of the model built from oils that were sourced from production-
line factories in China (old-world oils), we collected an additional
56 pure groundnut oils from various regions of China, India,
Japan, North and South America, Africa and Middle East (new-
world oils). Unsupervised analysis showed that in general these
new oils clustered together with the groundnut oils from the
initial dataset but displaying regional colocalizations (Fig. 6).
Note that the Chinese and Japanese groundnut oils form a
separate subcluster from the other groundnut oils. In addition,
most of the new samples mapped to the boundaries of the larger
groundnut oil cluster suggesting that it is possible for region
specific fatty acid differences to introduce new information pre-
viously not detected.

The supervised deep learning model predicted a purity of
between 91 and 99.5% of these newly surveyed groundnut oils.
This deviation from the true purity could be due to the above-
mentioned reasons supported by the evidence from unsupervised
clustering around the edges of the large groundnut oil cluster.
Consequently, we conducted two independent blind tests of real-
life groundnut mixtures from two independent batches. We
obtained a median absolute error of 3.4% and 4.75%, respectively,
for the prediction of the major groundnut oil and 3.4% and 5.7%,
respectively, for the prediction of minor adulterant oil. The 90th
percentile absolute error was 7.54% and 8.24%, respectively for

the major groundnut oil and 7.54% and 13.5%, respectively for
the minor adulterant oil (Supplementary Table 6). An online-
update of the deep learning model parameters was possible by
supplying a smaller set of simulated oil mixtures made from the
newly introduced pure oils21-22, This process improved the model
prediction accuracy on real-life mixtures even though the actual
fatty acid profiles of the mixed oil was not made known to the
deep learning model. We found a median absolute error of 1.1
and 0.95% for predicting major groundnut oil (overall 64.8 and
61.9% reduction in errors, with 2.58 and 2.01% 90th percentile
absolute error) and a median absolute error of 1.2 and 0.95% for
predicting minor adulterant oil (overall 52.6 and 74.2% reduction
in errors, with 3.04 and 2.1% 90th percentile absolute error,
Supplementary Table 6). This update procedure assumes that the
newly surveyed oils belong to one of the oil types in the
preexisting database. In real life, completely new oil types can
surface at a later stage. In order to account for this, multivariate
clustering in the latent space can be used to identify new oil types
(novel oils) before online-learning, for example cotton seed oil
which was later added to the database shows as a separate cluster
(Supplementary Fig. 4). Alternatively, the GMM parameters can
also be used to compare the Mahalanobis distances between a
new sample to the centroids representing each oil type in the
database, for the detection of outlier oil types. The robustness of
on-line learning applied to newly added oil types was also tested
in our blind tests, where an actual groundnut oil mixed with
cotton seed oil was quantified with small errors (Supplementary
Table 6). These results demonstrate the utility of online-training
to enhance performance and extend the general applicability to
new and divergent oils.

Discussion

Due to the increasing importance of plant oils in human diet,
large databases have been established as a compilation of multiple
published work!?3. Consequently, the availability of these
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Fig. 6 Groundnut oil for online-training. Fifty-six newly sourced divergent groundnut oils in the latent space used for online-training. Samples collected
were geographically distributed as indicated on the map with the number of samples described in red circles.

databases has led to scientific endeavors to describe chemotaxo-
nomic data on phylogenetics trees, characterizing the maximum
yield of fatty acids across multiple taxa23. However, insightful
study to these fatty acid profiles is still hampered by incomplete
data across plant types (due to the compilation of different study
designs) and the unavailability of a large quantity of samples. In
addition, these characterization efforts also ignore multivariate
changes in fatty acid composition across plant types, making
inference of plant identities based on fatty acid profile difficult,
and further encumbering the prediction of oil composition when
a sample is presented as a mixture of multiple oils.

Utilizing a unified set of fatty acid profiles from a large number
of oil samples collected by us, we conducted a comprehensive
study to derive both inferential and predictive insights, enabled by
the integration of machine learning technologies. Our analysis
suggests that a new categorization of old-world plant oils is
possible as revealed by machine learning patterns. These newly
discovered subclusters of oil prompts further investigations to
whether these observations are a consequence of natural biolo-
gical evolution or human-assisted breeding efforts. Under-
standing of inter and intra variance between oil clusters also leads
to the capabilities of simulating theoretical oil mixtures. The
patterns generated from such mixtures was further exploited to
construct a stronger supervised model capable of learning com-
plex oil compositions.

Traditional supervised chemometric methods lack the feature
of generalizability. Previous studies have shown that fatty acid
profiles could be used to identify oil types via unsupervised
clustering and supervised classification®1%12 but these qualitative
models were not directly generalizable to quantitative predictions.
A recent work showed that a quantitative model for detecting
two-way sesame oil mixtures showed promising results but
exhibited higher errors when generalized to four-way mixtures!!.

Their results also could only be interpreted in the context of the
nine chosen sesame oils used to create oil mixtures. Our sup-
plementary experiments also show that generalizations of PLS led
to higher errors when evaluated against our large dataset (Sup-
plementary Tables 1-4). There are few existing methods that
apply neural networks to fatty acid datasets, one such report was
able to identify geographical origins of extra virgin olive oil*4, but
none that combines its discriminative power with large scale
simulation for discovering oil composition. There are two added
advantages of coupling the supervised deep learning machine to
the simulation process: first, the simulation process is able to
create independent mixtures for validating and optimizing the
deep learning model through gradient descent. A third inde-
pendent test set can also be easily generated to ensure that the
model generalizes well to new unseen data. Second, when new oils
are introduced, that are phenotypically different from those
currently available, the simulation process can be used to guide
updating of deep learning model parameters.

The utility of such predictions can be used in the area of food
safety and security, specifically in the area of oil adulteration
where oil prices across different plant oils are driven by market.
Consumer driven edible oil consumption have resulted in a wide
gap between the highly prized oil varieties and the less valued
ones. In 2019, China consumed 3.09 million MT of groundnut oil
priced at $14,500 CNY per metric ton’. Rarity also has an
influence on price. Camellia tea seed oil which is almost exclu-
sively produced in a region centered around the Yangtze river
basin has a small production capacity of 0.26 million tons
annually and is sold for $55,000 CNY per metric ton2°. Olive oil,
an oil with luxury status, is priced at $30,000 CNY per metric
ton?%. On the other hand, common oils like soybean, maize, and
sunflower oil are sold for much cheaper at CNY6,850, CNY7,400,
and CNY7,500 per metric ton, respectively!0-27.
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We foresee a larger scope of further studies in utilizing and
extending the model to include many other new-world oils.
Recent advances in physical technologies have also enabled rapid
analytical systems that do not require sample preprocessing and
therefore induce less chemical waste. For example, Fourier
transform near infrared (FT-NIR) had been used with PLS1 in the
detection of extra virgin olive oil adulteration28, Low-field nuclear
magnetic resonance (LF-NMR) was used with discriminant
analysis (DA) for the binary classification of adulterated peanut
0il?%, proton nuclear magnetic resonance was used with PLS1 for
the detection of Camellia 0il*? and excitation-emission matrix
fluorescence spectroscopy had been used with N-way PLS for the
detection of Camellia oil3!. However, these studies also used
traditional chemometric techniques and did not study the gen-
eralizability of their models across a large diverse set of samples.
Our framework achieves this generalizability by incorporating a
simulation module that scales up for complex mixtures with a
deep learning model. Adaptation of such a workflow to these new
technologies would be promising for future applications. The
additional capabilities of online-training also provide a practical
solution for incorporating new knowledge into the model.
Nevertheless, leveraging on pretrained data, the utility of this
model in quality control and assurance can provide a quick way
to value purchased oils especially in regions where adulteration is
prevalent. At a more basic level, the model can also be used to
unify quality standards in the edible oil industry and also provide
a more reliable way to label products and assisting food safety and
security.

Methods

Sample collection. Oil samples of the ten oil types that make up the database for
modeling were obtained from production plants in Yihai Kerry, China. These oil
samples were derived from raw materials in the production plants to guarantee
authenticity of purity and were collected over 5 years and across 30 factories in
various provinces of China to account for biological variance. The groundnut oils
used for real-life testing were crushed from raw materials sourced from USA,
Nicaragua, Argentina, Senegal, Nigeria, Sudan, India, China, and Japan. These oil
samples were processed in the laboratory with additional segregation in place so
that samples can be traced down to a single origin.

Fatty acid extraction and derivatization. Glycerol fatty acid ester were deriva-
tized into FAMES according to AOCS Ce 2-66 by adding 8 ml of 2% sodium
hydroxide in methanol solution, followed by 7 ml 15% boron-3-mofluororide in
methanol solution at 80 degrees Celsius. Twenty milliliter of n-heptane and
saturated sodium chloride solution were added to separate the mixture into organic
and aqueous phase. Five milliliter of the upper organic layer was transferred into a
25 ml test tube, and 3-5 g of anhydrous sodium sulfate was added to absorb water,
for subsequent gas chromatography analysis.

Preparation of real-life oil mixtures. Groundnut oil, sunflower oil, high-oleic
sunflower oil, maize oil, rice bran oil, and cottonseed oil were blended by different
proportions determined using a Mettler Toledo electronic scale, with a precision of
0.1 mg.

Gas chromatography flame ionization detector analysis. GC-FID was con-
ducted with a column which fused silica capillary 100 m and 0.25 mm i.d. coated
with SP-2560, 100% cyanopropylsilicone stationary phase to a thickness of 0.20 pm,
with the following temperature programs. Initial temperature 100 °C, hold for 13
min; 100-180 °C with 10 °C/min, hold for 6 min; 180-200 °C with 1 °C/min, hold
for 20 min; 200-230 °C with 4 °C/min, hold for 10.5 min. Carrier gas was nitrogen;
inlet temperature: 270 °C; split ratio: 50:1; injection volume: 1.0 pl; FID detector
temperature: 280 °C; FID detector hydrogen flow rate: 40 ml/min, air flow rate 400
ml/min, the makeup gas is nitrogen with a flow rate of 25 ml/min. Data was
analyzed using Chemstation software to quantify each FAMEs with peak nor-
malization method using ISO 12966-4-2015 standard.

Data simulation and modeling. GC-FID fatty acid data were normalized to
relative abundances and mapped to dimensionally reduced space using t-stochastic
neighborhood embedding with Barnes-Hut approximation, perplexity hyper-
parameter was chosen based on the sample size of the dataset. Gaussian mixture
model?® was fitted using expectation-maximization with the following model
parameterizations: diagonal distribution, equal volume and shape and the number

of clusters was optimized by Bayesian Information Criterion. Oil mixtures of two-
way (10C, combinations) and three-way (1C; combinations) mixtures were a
linear combination of simulated pure oil fatty acid profiles using the fitted GMM
model, with weights corresponding to a random sample from Dirichlet distribu-
tion, the simulated samples were balanced by group. Deep learning models were
trained with Keras3? using the TensorFlow3? backend, the optimizer, hyperpara-
meters: Ir and batch_size was tuned to reduce loss and training time without
overfitting?’”. Normalized GC-FID fatty acid data was scaled using MinMax and
used as inputs to the deep learning model, which comprises of a sequential stack of
layers configured with a ReLu activation function and the kernel weights con-
strained to unit normal to prevent overfitting. PLS2 was performed using a
NIPALS-based algorithm number of components was determined by tuning the
R2Y scores and Q2Y scores and bootstrapping was performed to check for model
overfitting by ensuring that Q2Y scores having a p-value of 0.05. PCA was per-
formed based on SVD and data inputs were centered and scaled prior to analysis.
All analysis was done using Python and R, using the following packages: Keras,
TensorFlow, mclust, gtools, ropls, and FactomineR.

Model evaluation. The GMM model was evaluated with the precision of each oil
type i and sensitivity of each cluster j, these statistics are defined as:

anmu, ‘Clusterc)
IN;]

(1)

Precision; =

Sensitivity, = M7 (2)
! IMj|

where N; refers to the number of samples of type i, max; refers to the clusters which

are maximally identified to be of type i, M; refers to the number of samples in

cluster j and max; refers to the maximal oil type within cluster j.

The deep learning model was evaluated with independently simulated
validation datasets. The absolute errors for two-way and three-way mixture
predictions were vectorized and stratified by the 19C, and 19C; mixture types. The
resulting 50th, 90th, 95th, and 99th percentile absolute errors were reported.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from Wilmar International
and Yihai Kerry Arawana Holdings but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly available.
Data are however available from the authors upon reasonable request and with written
permission from Wilmar International and Yihai Kerry Arawana Holdings, subject as the
case may be to certain restrictions.

Code availability
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academic researchers who might be participating in projects supported by commercial
entities whose requests may be denied.
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