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1  | INTRODUC TION

The global human population strongly increased across the 20th cen-
tury and is projected to further increase through the 21st century 
(Crutzen, 2002; UN/DESA, 2017). China has a long and well-known 

history of dense human settlement dating back around 4,000 years. 
In recent times, however, China has experienced a rapid population 
increase unparalleled anywhere else in the world. From 1950 to 2018 
alone, the Chinese population increased from 550 million to 1.4 bil-
lion (worldometers.info), making it the world's most populous country.
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Abstract
China is one of the most species-rich countries in the world, harboring many rare 
gymnosperms. Following recent human-led loss of forests, China is now experiencing 
increases in forest cover resulting from efforts of reforestation schemes. As anthro-
pogenic activities have previously been found to interact with topography in shaping 
forest cover in China and considering the large human population and the ongoing 
population increase of the country, it is important to understand the role of anthro-
pogenic pressures relative to environmental drivers for shaping species distributions 
here. Based on the well-established relationship between human population density 
and topography, we propose a hypothesis for explaining species distributions in a 
country dominated by human activities, predicting that species are more likely to 
occur in areas of steep topography under medium human population densities com-
pared to low and high human population densities. Using species occurrence data 
from the Chinese Vascular Plant Distribution Database along with a common SDM 
method (maximum entropy modeling), we tested this hypothesis. Our results show 
that steep topography has the highest importance for predicting Chinese gymno-
sperm species occurrences in general, and threatened species specifically, in areas 
of medium human population densities. Consequently, these species are more often 
found in areas of steep terrain, supporting the proposed hypothesis. Results from 
this study highlight the need to include topographically heterogeneous habitats 
when planning new protected areas for species conservation.
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China's large population increase and the associated development 
in agriculture and infrastructure have led to ecosystem degradation 
and deforestation, putting many species under severe pressure and 
causing a strong need for conservation and restoration efforts (Isbell 
et al., 2017; Li, 2004). One of the main drivers of deforestation in 
China has been the demand for wood products, both for national 
use and for export (Wang, Innes, Lei, Dai, & Wu, 2007). The decline 
of forests in China has been recognized since the 1950s, and policies 
have been implemented to counteract this development, albeit their 
effectiveness has been debated (Robbins & Harrell, 2014). In 1998, 
following a series of destructive floods in southwestern China, re-
sulting from logging operations beginning in the 1950s, new nation-
al-scale reforestation initiatives were introduced. The Natural Forest 
Protection Program (NFPP) and the Returning Farmland to Forest 
Program have since cooperated in protecting and restoring forests, 
through logging bans and plantations in many parts of China (Robbins 
& Harrell, 2014; Wang et al., 2007). Due to these policies—as well 
as socioeconomically driven land abandonment—China's forest 
cover increased from 8.6% in 1949 to 20% in 2003 (Liu, Liu, Chen, & 
Long, 2010; Robbins & Harrell, 2014; Zhang & Song, 2006), although 
mostly by species-poor plantations that do not represent the same 
level of biodiversity as natural forests (Hua et al., 2016). Despite the 
increasing focus on environmental protection, many plant species in 
China are continually threatened by human activities such as logging, 
harvesting of wild plants, and agricultural development (Volis, 2016).

Besides being the world's most populous country, China is 
also one of the most species-rich countries in the world, containing 
around 33,000 species of vascular plants whereof almost half are 
endemics (Huang, Chen, Ying, & Ma, 2011). Many of these endem-
ics are so-called paleo-endemics, relicts of formerly widespread taxa 
that declined due to late-Cenozoic climate changes (Crisp & Cook, 
2011; Eiserhardt, Borchsenius, Plum, Borchsenius, Plum, Ordonez, 
& Svenning, 2015), surviving the Quaternary glaciations in mountain 
ranges of southern China (López-Pujol, Zhang, & Ge, 2006). Paleo-
endemics are represented by both angiosperms and gymnosperms in 
China. Globally, gymnosperms represent one of the most vulnerable 
groups of living species with almost 40% of all species threatened ac-
cording to the International Union for Conservation of Nature (IUCN) 
Red List (Brummitt et al., 2015; Fragnière, Bétrisey, Cardinaux, Stoffel, 
& Kozlowski, 2015), and China is host to more than 10% of the most 
threatened evolutionary distinct species (so-called EDGE species) of 
this group (Forest et al., 2018). China thus constitutes a global hotspot 
for gymnosperm diversity, with ~250 species and many threatened, 
relict lineages such as Ginkgo biloba, Cathaya argyrophylla, and Taiwania 
cryptomerioides (Eiserhardt, Borchsenius, Sandel, Borchsenius, Sandel, 
Kissling, & Svenning, 2015; López-Pujol et al., 2006; Qian, 2001).

Historically, human activities such as land-use intensification and 
unsustainable exploitation of resources have been associated with local 
and regional extirpations of plant species in China (Feng, Mao, Benito, 
Swenson, & Svenning, 2017; Sun, Zhou, Zhang, & Chen, 2011). One 
example of this is the extinction of fir (Abies) in the Liupan Mountains 
in the past 2,000 years (Sun et al., 2011). In this case, regional climatic 
changes most likely caused a decrease in fir-tree numbers before 2,200 

years BP, after which human activities such as fire and logging likely 
caused a further decrease leading to very small, fragmented popula-
tions that were highly sensitive to disturbances, eventually going ex-
tinct. Xiang (2001) in Sun et al. (2011) reports that a number of Abies 
species in China have similarly small, fragmented populations, and as 
their distribution patterns are influenced by the interaction of climate 
with human activities, these species are especially vulnerable to ex-
tinction (Sun et al., 2011). Likewise, Tang et al. (2011) found the re-
maining population of the relict conifer Metasequoia glyptostroboides in 
China to be detrimentally affected by human activities.

Steep topography may buffer species against anthropogenic 
pressures (Sandel & Svenning, 2013; Silva, Metzger, Simões, & 
Simonetti, 2007). Recently, forest cover in China was found to be 
shaped by topographic slope and this association was affected 
by human population density, so that in areas with higher human 
population density, the association of forest cover with steep 
slopes was higher than in areas of lower human population den-
sity (Nüchel, Bøcher, & Svenning, 2019). Such an interactive effect 
has also been observed for mammals in China (Li, Pan, & Oxnard, 
2002; Li et al., 2015), and it is reasonable to suspect that a similar 
effect exists for Chinese gymnosperm distributions. In fact, relict 
tree species in China may be constrained to regions of rugged to-
pography not just from its protection against anthropogenic hab-
itat loss and overexploitation, but also because such areas have 
persistent long-term suitable conditions on deeper time scales 
(Feng, Mao, Sandel, Swenson, & Svenning, 2016; Tang, Ohsawa, & 
Yang, 2014) (Figure 1). An example of such threatened relict spe-
cies is the paleo-endemic relict conifer Cathaya argyrophylla that 
currently only exists on the rugged, steep slopes of Mt Bamian 
and Mt Jinfo in southern China (Tang et al., 2014; Xie, Chen, Jiang, 
Huang, & Zhu, 1994).

Based on the relationship between human population density 
and topography (Sandel & Svenning, 2013), we developed a hy-
pothesis for explaining the distribution of gymnosperms in a hu-
man-dominated country such as China. Most species rely on natural 
habitats for their survival and cannot survive in intensely used 

F I G U R E  1   Pine trees (Pinus sp.) growing on steep mountains in 
Zhangjiajie National Forest Park, Hunan Province, China (Photo by 
D. A. Jensen)
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agricultural and urban areas. In regions within the natural range of 
a species, a certain area of natural habitat exists where the species’ 
ecological requirements are met. The amount of natural habitat in 
a region is determined by the intensity of human activity in that 
region, and therefore more natural habitats are available in regions 
of low human activity compared to regions of high human activ-
ity. The natural habitats found in regions of low human activity are 
distributed more or less equally irrespective of topography. In re-
gions of medium human activity, however, remnant natural habi-
tats predominantly occur in areas of steep topography that are of 
limited utility for human use. In contrast, in regions of high human 
activity, land use is intense irrespective of topography and the lo-
cations of any remnant patches of natural habitat may be largely 
determined by societal contingencies. Based on this hypothesis, we 
expect species that occur in regions of medium human activity to 
be more associated with steep topography than species in regions 
of low or high human activity. Further, we expect human-sensitive 
(rare) species to show a stronger association with steep topography 
than common species, given their stronger dependence on natural 
habitats.

In the present study, we focus on how the interaction between 
environmental and human factors shapes the distribution of gymno-
sperm species in China. We are especially interested in the poten-
tially interacting effects of topography (habitat variation, mountain 
ranges, etc.) and human factors (population density, current and 
historic) on gymnosperm species distributions. Using species distri-
bution models (SDMs) to analyze the relative importance of human 
and environmental factors, we address the following hypotheses: (a) 
Rare, threatened species are more strongly associated with areas of 
steep terrain than common, nonthreatened species; and (b) if this 
association with steep terrain is human-induced, we expect to see 
a stronger association with steep topography in areas of medium 
human population densities compared to areas of low and high 
human population densities.

2  | METHODS

2.1 | Species distributional data

The species data were obtained from the Chinese Vascular Plant 
Distribution Database. The database has been assembled over the 
last 10 years by the Biodiversity and Biosafety Group at the Institute 
of Botany, Chinese Academy of Sciences. The database consists of 
native species occurrence records collected in the period 1900–pre-
sent time, with the majority of collections made after 1950, from 
both museum inventory reports and published literature such as flo-
ras and checklists at a national, provincial, and regional level (Huang 
et al., 2011). Standardization of taxonomic names in the database 
was done according to Catalogue of Life China (Checklist 2015, http://
www.sp2000.org.cn/) and Flora of China (http://foc.eflora.cn/). 
For this study, only gymnosperm species were considered and the 
dataset used here contains 243 species at species and subspecies 

level (covering all Chinese gymnosperms). Species occurrences are 
represented at the county level (2,380 counties), and each occur-
rence is considered a presence. In order to use these occurrences in 
species distribution modeling, the centroid of each county polygon 
was selected as species presence point data. To avoid uncertainties 
of using the centroid of each county as the presence of the species, 
counties with an area larger than 10,000 km2 were excluded leav-
ing 2,212 counties for further analysis, and consequently excluding 
much of the large desert areas in the northwestern part of China. In 
the first analysis, all species were considered, but prior to the species 
distribution modeling process, species with <10 occurrences were 
excluded to enhance the quality of model predictions, leaving 163 
species for modeling.

2.2 | Explanatory variables

Climate data were obtained from the bioclimatic variables avail-
able at WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), 
where a set of temperature and precipitation data was chosen based 
on the importance for year-round tree survival. Mean annual tem-
perature, with the bioclimatic variable code BIO1, and annual pre-
cipitation (BIO12) were chosen based on the common use of these 
data in describing species distributions on a large scale. Minimum 
temperature (BIO6), temperature seasonality (BIO7), and precipita-
tion of driest month (BIO14) were chosen based on the belief that 
they are more directly linked to species survival; for example, the 
minimum temperature is more likely to represent an environmental 
limitation for tree growth than the annual mean. Temperature sea-
sonality was calculated as the annual range in temperature between 
the maximum value of the warmest month and the minimum value 
of the coldest month.

Furthermore, a dataset containing elevation was gathered from 
WorldClim as well. Topographic range (TR) was estimated as the 
maximum difference in elevation within each county and used 
as a proxy for steep terrain (a larger TR equals steeper terrain) 
in the further analyses. To ensure congruence among the topo-
graphic range variable and other steepness indicators, analyses 
were performed comparing topographic range values with both 
topographic maximum values as well as standard deviation (SD) of 
the topographic range in each county. The Spearman correlations 
were >0.90 (range ~ maximum = 0.93, range ~ SD = 0.98), support-
ing the use of topographic range as a proxy for steep terrain. All 
the environmental data had a resolution of 30 arc seconds (~1-km2 
grid cells at the equator).

Human influence variables included population density esti-
mates, one current (2015CE) and three historic (2000BCE, 0CE, and 
1100CE) (Klein Goldewijk, Beusen, Van Drecht, & De Vos, 2011), as 
well as a human influence index (Hii). Despite human population data 
from 1975 CE being a better temporal match for the species occur-
rence data, we chose to use the 2015 CE human population den-
sity variable, since it is highly correlated with 1975 CE (Spearman's 
r = 0.97), and it likely has a higher accuracy as well.

http://www.sp2000.org.cn/
http://www.sp2000.org.cn/
http://foc.eflora.cn/
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The human influence index is constructed from several hu-
man-related data layers: human population density, built-up 
areas, nighttime lights, land use/land cover, coastlines, roads, 
railroads, and rivers; and provides a score from 0 to 72 where 0 
represents no human influence and 72 the maximum of human 
influence (Sanderson et al., 2002). The human population density 
data were retrieved from the HYDE database (HYDE v3.1, http://
thema sites.pbl.nl/tridi on/en/thema sites/ hyde/basic drivi ngfac 
tors/popul ation/ index-2.html), while the human influence index 
was obtained from the “Last of the Wild v2” collection (http://
sedac.ciesin.colum bia.edu/data/set/wilda reas-v2-human-influ 
ence-index-geogr aphic ).

Variables were processed prior to modeling to standardize data 
to the same projection, grid cell size, and spatial extent and to com-
pute the topographic range variable. Standard procedures (Zonal 
statistics) were used to combine the datasets into a resolution 
matching the coarsest dataset (county scale) by computing the mean 
of each variable within each county. To avoid multicollinearity prob-
lems, the final set of variables for the analyses was selected based 
on variance inflation factor (VIF) values, using a threshold of 5. The 
selected variables were temperature seasonality (BIO7), precipita-
tion of driest month (BIO14), topographic range, population density 
at 0CE, population density at 2015CE, and human influence index 
(Hii) (Table 1).

2.3 | Introductory analysis

2.3.1 | Species association with topography and 
human population density

To test the first hypothesis, that is, that rare species are on average 
more associated with steep terrain than common species, we split 
the species into three groups: very rare species (VR), rare species 
(R), and common species (C) based on species occurrence (Table 2). 
Within each group, we estimated the mean topographic range and 
the mean human population density for each species as the mean 
of that variable of all the counties where the species is present. A 
nonparametric analysis of variance (Kruskal–Wallis test) as well as 
a Wilcoxon test (Wilcoxon signed rank) was performed in order to 
compare group means and determine groups that are significantly 
different.

2.4 | Interacting effects of topography with 
human factors

2.4.1 | Species distribution modeling

All species distribution modeling was conducted using the maxi-
mum entropy algorithm (MaxEnt) within the “biomod2” package in 
R (Thuiller, Georges, Engler, Georges, & Thuiller, 2016). We chose 
MaxEnt as it is known to perform well with presence-only data, does 
especially well on datasets with few occurrences, and is not affected 
by locational error in the occurrences (Elith et al., 2006; Graham et al., 
2008; Wisz et al., 2008). As our dataset only contains presences of our 
species, we chose to create pseudo-absences for each species during 
the modeling process. Default modeling options as well as a number 
of fixed settings were used to create all species distribution models. 
Within the BIOMOD functions, a number of settings can be manu-
ally set before modeling. For each model, a defined number (1,000) 
of pseudo-absence points was selected using an intrinsic, random 
strategy within the “BIOMOD_FormattingData” function (Thuiller et 
al., 2016). This random method of selecting pseudo-absence data has 
been shown to provide better models when modeling species distri-
butions (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012). Further, for 
each model the data were split with 80 percent of the data used for 
training the model and 20 percent for testing the model performance. 
Performance testing was an intrinsic part of the modeling process and 
we chose to do two performance tests (evaluation runs) per model. 
Each evaluation run was composed of two runs based on the pseudo-
absence datasets and one run using the full dataset, resulting in three 
models for each evaluation run and thus six models for each species. 
From each model, variable importance and model evaluations, area 
under the curve (AUC), and true skill statistic (TSS) values were ex-
tracted. The metric of variable importance is obtained by a simple cor-
relation analysis between reference model predictions and predictions 
done by using a shuffled version of a given variable. The value of vari-
able importance is then 1 minus the correlation between the reference 
model predictions and the shuffled variable predictions, where a value 
of 1 represents the highest importance and a value of 0 represents 
the lowest importance. Variable importance estimates were averaged 
for all models having an AUC >0.80 (Thuiller et al., 2005). Response 

TA B L E  1   Variable names used for analyses

Variable explanation Variable name

Temperature seasonality (BIO7) TempSeason

Precipitation of driest month (BIO14) PrecipDM

Topographic range TR

Human population density at 0CE HPDHist

Human population density at 2015CE HPDCur

Human influence index Hii

TA B L E  2   Species groups considered in the introductory 
analyses

Group Explanation N species N counties

Very rare (VR) Species 
occurrence ≤ 10

80 179

Rare (R) Species occurrence 
11–99

84 703

Common (C) Species occurrence 
100–787

77 2006

Notes: Group = name of each group; Explanation = an explanation for 
the division of the groups; N species = the number of species in the 
group; and N counties = the number of counties that are covered by the 
group.

http://themasites.pbl.nl/tridion/en/themasites/hyde/basicdrivingfactors/population/index-2.html
http://themasites.pbl.nl/tridion/en/themasites/hyde/basicdrivingfactors/population/index-2.html
http://themasites.pbl.nl/tridion/en/themasites/hyde/basicdrivingfactors/population/index-2.html
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic
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curves were generated for selected variables based on model predic-
tions using the Loess regression method and these plots were then 
used to support and validate patterns obtained through the variable 
importance metric.

To address the possible interaction of topographic range with 
human factors, the explanatory data were split according to zones 
of human population density (0–200, 200–600, 600–1500 per-
sons/km2; Figure 2), that is, low, medium, and high human popula-
tion density (LowHPD, MediumHPD, HighHPD), respectively. We 
chose the cutoffs between the zones in order to represent the ex-
tremes in human population density better, as the aim of our study 
is to investigate the effect of human activity. This means that we 
made conservative cutoffs for the low- and high-human-popu-
lation-density zones, avoiding urban areas in the LowHPD zone 
while including only densely populated areas in the HighHPD zone. 
One species distribution model was created for each species for 
each zone. Not all species were present in all zones, so species that 
were only present in a single zone were excluded. Species-specific 

differences were explored by grouping variable importance es-
timates according to species IUCN status, reflecting their sensi-
tivity to human influence and climate change. Two groups were 
identified: nonthreatened (all species assessed as least concern, 
LC; or near threatened, NT) and threatened (all species assessed 
as vulnerable, VU; endangered, EN; or critically endangered, CR). 
For each group of species, the variable importance estimates were 
compared between the three human population density zones, 
and ANOVAs (Tukey's HSD method) were carried out to separate 
the zones according to significance levels. Response curves were 
generated for each of the two species groups as well as for each 
individual species within the threatened species group. To explore 
if current Chinese land-use policies regarding topography have ev-
ident effects in our data, we generated a new slope variable within 
each county (maximum slope) and plotted this variable against the 
model predictions.

To strengthen the analysis and for validating patterns within 
the results, a set of species were selected based on their relation 

F I G U R E  2   Map of China showing human population zones based on current population density. Only counties with an area less than 
10,000 km2 were considered. LowHPD = low human population density, which contains human population densities from 0 to 200 persons/
km2; MediumHPD = medium human population density, which contains human population densities from 200 to 600 persons/km2; and 
HighHPD = high human population density, which contains human population densities from 600 to 1,500 persons/km2. Insert shows the 
islands in the China South Sea. The map projection used here is the Albers Equal Area Conic projection

LowHPD

MediumHPD

HighHPD

South Sea Islands

Nine lines boundary

0 1.000 2.000500
Kilometers

0 530 1.060265
Kilometers
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to human activity, forming two groups that we named human-sen-
sitive and human-promoted species. The human-sensitive species 
group contains Abies ernestii and Taxus wallichiana, which are both 
slow-growing, late-maturing tree species with populations that are 
affected by human influence such as logging and other nonsus-
tainable use (Thomas & Farjon, 2011; Xiang & Rushforth, 2013). 
The human-promoted species group contains Pinus massoniana 
and Cunninghamia lanceolata, two species that historically have 
been favored by humans and thus are widely planted for forestry 
purposes in plantations, in parks, and on temple grounds (Dou et 
al., 2013; Farjon, 2013; Kuang, Sun, Wen, Zhou, & Zhao, 2008; 
Li & Ritchie, 1999; Xiang, Christian, & Zhang, 2013). Response 
curves for these species were used for validating the patterns 

of variable importance of the two IUCN groups, threatened and 
nonthreatened.

3  | RESULTS

3.1 | Introductory analysis

Very rare and rare species were found to generally occur in areas with 
steeper slopes and lower human population densities than common 
species (Figure 3, Table 3).

F I G U R E  3   Boxplots representing 
mean values of species in three groups: 
very rare, rare and common species. 
Panel (a) shows the distribution of species 
means of topographic range (TR) for 
the three groups. Panel (b) shows the 
distribution of species means of human 
population density (HPD) on a logarithmic 
scale for the three groups. Letters above 
boxes represent significant differences 
in mean values among the groups; that is, 
identical letters represent similar means 
and dissimilar letters represent different 
means, according to a Wilcoxon rank-sum 
test (Table 3) Species Group
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3.2 | Interacting effects of topography with 
human factors

After eliminating all models with AUC values below 0.8, the mean 
of the AUC values of the models used for analyzing the hypotheses 
were all above 0.9, while the mean of the associated TSS values were 
all above 0.79 (Table 4).
3.2.1 | All species

Topographic range had a higher importance as a predictor of spe-
cies occurrence at medium human population density than at low 
or high human population density (Figure 4, Table 5). Contrastingly, 
the human influence variables, current human population density 
and historic human population density had significantly lower im-
portance at medium human population density compared to low 
human population density, with the human influence index variable 
showing an opposite relationship (Figure 4, Table 5).

3.2.2 | Nonthreatened versus threatened species

Considering the nonthreatened species alone, the importance of 
topographic range was not significantly different between the 
human population density zones (Figure 5a, Table 5). Response 
plots for the topographic range variable however, showed a 

general positive response in all three zones, with the probabil-
ity of species occurrence increasing with increasing topographic 
range (Figure 6a). The two human influence variables current 
human population density and human influence index showed a 
significant difference in variable importance between the low- 
and medium-human-population-density zones (Figures 5a and 6a, 
Table 5).

In contrast, considering only the threatened species, the im-
portance of topographic range was significantly higher at medium 
human population density compared to low and high human pop-
ulation density (Figure 5b, Table 5). Similarly, the response plot for 
the topographic range variable showed a marked positive increase in 
probability of occurrence with increasing topographic range (steep-
ness) in the medium-human-population-density zone (Figure 6b). All 
human influence variables showed low variable importance, and we 
found no significant differences between the zones for any of them 
(Table 5, Figures 5b and 6b). Response plots for the topographic 
range variable, for each individual species in the threatened species 
group showed that at least some species have a threshold-like re-
sponse to topography and the linear trend that was seen for this 
group overall (Figure 6b) at least partially is a product of averaging 
across these individual species thresholds (Figures A1 and A2).

The plot generated to assess if there are evident effects of 
Chinese land-use policies (stating that slopes >15° are unsuitable for 
cultivation) on gymnosperm species occurrences shows that for all 
zones and for both species groups, there is an increase in the prob-
ability of occurrence with increasing slope values. For species in 
the medium-human-population-density zone, there is a shift in the 
probability of occurrence for the two groups at a slope value of ap-
proximately 15°, so that the threatened species are more probable 
to occur above this slope value (Figure 8), that is, as expected from 
the initial hypothesis that rare, threatened species are more strongly 
associated with steep terrain than common species.

3.2.3 | Validation of results using human-
sensitive and human-promoted species

We found a strong positive response to topographic range, with the 
strongest relationships for the human-sensitive species as well as 
for the human-promoted species C. lanceolata in the high-human-
population-density zone (Figure 7a,b).

TA B L E  3   Results of the pairwise comparison tests (Wilcoxon 
rank-sum test)

Pairwise comparisons, Wilcoxon rank-sum test

 Common Rare

Topographic range

Rare 0.0029 –

Very rare 0.0066 0.8827

Current human population density

Rare 2 × 10–7 –

Very rare 0.0046 0.4609

Notes: Top: Results from the first test comparing mean topographic 
range between species groups. Bottom: results of the second test 
comparing mean human population density between species groups. 
Group names are explained in Table 2. Numbers in bold show significant 
(p < .05) difference between groups.

Dataset Number of models AUC (SD) TSS (SD)

LowHPD 134 0.924 (0.038) 0.801 (0.104)

MediumHPD 89 0.911 (0.050) 0.792 (0.142)

HighHPD 47 0.905 (0.044) 0.799 (0.112)

All data 145 0.926 (0.043) 0.798 (0.121)

Notes: AUC and TSS values are presented as the mean of the selected models for all species 
within each dataset. SD represents the standard deviation of the mean. LowHPD = low-
human-population-density zone; MediumHPD = medium-human-population-density zone; 
HighHPD = high-human-population-density zone; All data = no zones.

TA B L E  4   AUC and TSS values of the 
models selected for further analyses
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Response plots for the human-sensitive species show a positive 
response to topographic range especially in the medium-human-pop-
ulation-density zone, while the response to human population den-
sity is generally negative or neutral (Figure 7a). Response plots for 
the human-promoted species show a mixed response to topographic 
range, generally neutral, but turning increasingly positive at high 
values of topographic range (Figure 7b). The responses to human 
population density range from neutral in the low-human-popula-
tion-density zone, a strong positive response for Cunninghamia lan-
ceolata in the medium human population density, to a strong positive 
response for Pinus massoniana in the high-human-population-den-
sity zone (Figure 7b).

4  | DISCUSSION

In this study, we used a common SDM method to investigate how 
environment and human activity interact in shaping gymnosperm 
species distributions in China. We were specifically interested in the 
interaction between steep topography and human activity, as these 
have previously been found to interact in, for example, shaping for-
est cover and the distribution of certain mammal species. The specific 
hypothesis that we wanted to test was that species (especially threat-
ened or rare) are more associated with a steep topography in regions 
of medium human activity because a large amount of natural habitat 
exist here but only in places of limited human activity, that is, on steep 

F I G U R E  4   Variable importance 
values for all species analyzed by human 
population density zone. Zone 1 = low-
human-population-density zone; zone 
2 = medium-human-population-density 
zone; and zone 3 = high-human-
population-density zone. Number of 
species in zone 1 = 129; number of 
species in zone 2 = 90; and number of 
species in zone 3 = 47. For variable names 
explained, see Table 1. Significance of 
the topographic range variable between 
the zones is displayed using the following 
significance levels: ns = p > .05, * = p ≤ .05, 
** = p ≤ .01, *** = p ≤ .001
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TA B L E  5   Results from ANOVA tests performed to explore differences in variable importance estimates obtained from SDM modeling

Zone Group

p-value

TR TempSeason PrecipDM HPDCur HPDHist Hii

L vs. M All species 1.86 × 10–3 1.5 × 10–4 0.918 0.006 0.020 0.008

Nonthreatened 0.469 0.020 0.502 0.011 0.083 0.007

Threatened 9.14 × 10–4 8.79 × 10–3 0.78 0.441 0.203 0.452

L vs. H All species 0.562 3.87 × 10–4 1.00 0.196 0.999 0.892

Nonthreatened 0.528 0.007 0.972 0.343 0.994 0.839

Threatened 0.956 0.155 0.923 0.531 0.587 0.53

M vs. H All species 1.08 × 10–3 0.857 0.958 0.749 0.107 0.153

Nonthreatened 0.128 0.726 0.778 0.574 0.172 0.010

Threatened 0.016 0.959 0.996 0.978 0.973 0.975

Notes: SDMs were fitted for each species group (all, nonthreatened, and threatened) within each zone (L, M, H). P-values from the ANOVA tests 
are reported here. Bold indicates p < .05. Zone = zones compared; for example, zone L versus M compares the low-human-population-density zone 
with the medium-human-population-density zone. Zone L = low human population density; zone M = medium human population density; and zone 
H = high human population density. For variable names explained, see Table 1.
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slopes. From the results, we find that rare species occur more often in 
areas with high topographic range and low human population density 
compared to common species. Our results further show that human 
activity does shape species distributions through interactions with 
topography, with a stronger importance of topography at medium 
human population densities, especially for threatened species, show-
ing that steep terrain provides partial refuge against human pressures.

4.1 | Species association with topography and 
human population density

Results from the introductory analyses addressing the question 
about species association with topography and human population 

density revealed that very rare and rare species are generally found 
in areas of higher topographic range and lower human population 
density than common species (Figure 3). This finding, that rare spe-
cies are more often found in areas of higher topography, is sup-
ported by the literature where rare species often occur in habitats 
that are unsuitable for human use, such as steep slopes in mountain 
areas (Lavergne, Thuiller, Molina, & Debussche, 2005; Zhang & Ma, 
2008). However, we cannot simply conclude that rare species are 
just naturally occurring in mountain areas nor that they have been 
constrained to these areas by human activity. Some rare species 
are considered naturally associated with certain habitats, although 
at least some of these species display this association because of 
historic anthropogenic activities as opposed to more natural causes 
(Cromsigt, Kerley, & Kowalczyk, 2012). However, it is not within the 

F I G U R E  5   Panel (a): Variable 
importance values for the nonthreatened 
species analyzed within zones of human 
population density. Panel (b): Variable 
importance values for the threatened 
species analyzed within zones of human 
population density. Zone 1 = low-
human-population-density zone; zone 
2 = medium-human-population-density 
zone; and zone 3 = high-human-
population-density zone. For variable 
names explained, see Table 1. Significance 
of the topographic range variable between 
the zones is displayed using the following 
significance levels: ns = p > .05, * = p ≤ .05, 
** = p ≤ .01, *** = p ≤ .001
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scope of this study to distinguish the cause of the association of rare 
species with topographic range, but rather to investigate the interac-
tion of this association with human activity.

4.2 | Interacting effects of topography with 
human factors

Results from the analysis addressing the possible interaction of 
topography with human activity, show that species in general and 
threatened species specifically, are more associated with steep to-
pography in areas of medium human population densities (Figures 4 

and 5b). Although there is no significant difference in importance of 
topographic range across the zones for the nonthreatened species 
group, response plots for both groups show a positive relationship 
with topographic range (Figure 6), suggesting that steep topography 
provide some level of buffering against human pressures for threat-
ened and nonthreatened gymnosperm species alike. These findings 
support our hypothesis that human activity creates a landscape of 
patchy natural habitats that leave most room for especially threat-
ened species in areas of steep topography in regions of medium 
human activity. In the regions of low human activity, natural habitats 
exist across the entire topographic range, and species are able to oc-
cupy their optimal habitat. In regions of high human activity, human 

F I G U R E  6   Response plots from 
maximum entropy (MaxEnt) models for 
the topographic range and the current 
human population density variables in 
the three human population density 
zones. LowHPD = low-human-population-
density zone; MediumHPD = medium-
human-population-density zone; and 
HighHPD = high-human-population-
density zone. Panel (a) shows response 
plots for the group of nonthreatened 
species while panel (b) shows response 
plots for the group of threatened species. 
Regression lines display the mean (± 
1STD) response of all the species in the 
zone using the Loess regression method
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land use is intense regardless of topography, and natural habitats 
exist in patches within this matrix of human land use so that species 
are forced to occupy any available habitats. In these cases, we did 
not expect to see a high association with mountain ranges, and our 
results support this as the importance of topographic range is signifi-
cantly lower in the low- and high-human-population-density zones 

compared to the medium-human-population-density zone (Figures 
4 and 5b). In the regions of medium human activity, however, natu-
ral habitats exist in largest amounts where conditions do not allow 
for human utilization, for example, steep slopes. In this case, we ex-
pected to see a high association of species occurrence with topog-
raphy, and our results do show a higher importance of topography in 

F I G U R E  7   Response plots from maximum entropy (MaxEnt) models. Panel (a): human-sensitive species, Abies ernestii and Taxus 
wallichiana. The species only occurred in two of the three human population density zones. Colors denote zones: light blue = low-human-
population-density zone; and dark blue = medium-human-population-density zone. Line type denotes species: hard line = Abies ernestii; and 
broken line = Taxus wallichiana. Panel (b): human-promoted species, Pinus massoniana and Cunninghamia lanceolata. Colors denote zones: dark 
blue = low-human-population-density zone; dark purple = medium-human-population-density zone; and light blue = high-human-population-
density zone. Line type denotes species: hard line = Cunninghamia lanceolata; and broken line = Pinus massoniana. Regression lines display the 
mean (± 1STD) response using the Loess regression method
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the medium-human-population-density zone for all species in gen-
eral and threatened species specifically (Figures 4 and 5b).

It has previously been established that human activities have had 
a direct impact on species distributions in China. For example, range 
contractions and extinctions of certain Chinese mammals have been 
linked to the expansion of the human population as well as inten-
sified human activities (Li et al., 2015; Zhao, Ren, Garber, Li, & Li, 
2018). These findings support the idea that anthropogenic pressures 
have the ability to shape species distributions. In this study, we find 
that species, especially threatened species, display a higher associ-
ation with topographic range at medium human activity. An asso-
ciation with steep topography is not necessarily a human-induced 
effect though, since rare species are often naturally associated with 
mountain ranges (Sandel et al., 2011). However, given the interaction 
of the topographic effect with threat status and with human popu-
lation density, it is likely that some of these species that are thought 
to naturally occur in mountain ranges/steep slopes could really be 
so-called refugee species (Kerley, Kowalczyk, & Cromsigt, 2012). 
Refugee species are species that have been forced into marginal 
habitat by historical human activity. From their current range, these 
species might seem to prefer a certain kind of habitat, although 
their performance here may be suboptimal. In reality, these species 
might perform better in other habitats, but to identify their natural 

preferences requires historical data and experimental approaches 
(Cromsigt et al., 2012). Chinese examples of such species include the 
giant panda (Ailuropoda melanoleuca) and the snub-nosed monkeys 
(Rhinopithecus), all of which are considered to be constricted to their 
current ranges because of historical human activities (Han et al., 
2019; Nüchel, Bøcher, Xiao, Zhu, & Svenning, 2018; Wei et al., 2015).

In terms of our study, it seems that there are two scenarios that 
can lead to species having a strong association with topographic 
range – one natural and one human-induced. If it were natural, we 
would not expect to see the strength of this association change 
across the human population density zones. On the other hand, if 
the association were human-induced, we would indeed expect to 
see an interaction of human activity with this association as we do 
in this study (Figures 4 and 5b). A recent study finds a similar inter-
action between slope and tree cover that is affected by human pop-
ulation density (Nüchel et al., 2019). Here, the authors suggest that 
steep slopes might act as refuge for forests since land use in these 
areas is less intense. Another study on Chinese gibbons finds an as-
sociation with topography, similar to our study, where populations 
of gibbon persisted longer at higher elevations and disappeared ear-
lier from the northern and eastern parts of China, consistent with 
the demographic expansion of humans (Turvey, Crees, & Di Fonzo, 
2015). Results from our study similarly suggest that especially 

F I G U R E  8   Plot showing the MaxEnt model predictions plotted against the maximum slope value of each county. Regression lines show 
the mean (± 1STD) and were generated using the Loess method for both threatened (T) and nonthreatened (NT) species in each of the 
human population density zones. Line type denotes species group. Color denotes human population density zone where HZ1 = low-human-
population-density zone; HZ2 = medium-human-population-density zone; and HZ3 = high-human-population-density zone. The background 
points represent all species within all three groups (colors are the same as for the lines). The red vertical line indicates slope = 15 degrees
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threatened species are strongly associated with steep topography, 
and because of the interaction with human population density, this 
association is possibly human-induced or exacerbated. Human land 
use is central to the degradation of natural habitats (Foley et al., 
2005) and it is reasonable to expect to see effects of human land 
use on Chinese gymnosperm species association with topography. 
Studies on Chinese land use in hilly regions, suggest that farmland 
in sloped terrain >15° should be abandoned due to increased soil 
erosion and nitrogen loss (Dong, Liu, & Shi, 2010; Fu et al., 2004). 
Evaluating model predictions from our study against maximum slope 
in each county, suggest that threatened species, more often than 
nonthreatened species, find refuge on steep slopes where human 
cultivation is advised against (Figure 8). This result further supports 
the theory that the association of threatened gymnosperm species 
with steep topography is indeed related to human activity.

To validate the patterns described above, we chose specific spe-
cies known to be either sensitive to human activity or promoted by 
human activity to represent the threatened versus the nonthreat-
ened species groups. Response plots for the human-sensitive spe-
cies show a positive response to topographic range especially in 
the medium-human-population-density zone supporting our idea of 
species being more associated with steep areas here. Further, both 
species show neutral or negative responses to human population 
density in both zones likewise supporting this idea (Figure 7b). In 
contrast, we found a strong positive response to human population 
density in the medium- and high-population-density zones for C. lan-
ceolata and P. massoniana, respectively (Figure 7b). A response like 
this is in line with these species being favored by human activities, 
having often been used in reforestation projects aimed at, for exam-
ple, carbon sequestration and soil-erosion mitigation, or planted in 
parks and temples. Indeed, large parts of the afforestation and re-
forestation efforts in China have been focused on the hilly southern 
regions, where soil erosion following forest logging has been a major 
problem (Zheng et al., 2008).

The resolution of data used for modeling species distributions 
is important to consider. Depending on the specific question that is 
addressed, the resolution needs to match as changes in grain size can 
influence the patterns of species presences (Guisan, Graham, Elith, & 
Huettmann, 2007). The use of coarse-grained data when modeling 
species distributions has in many cases proved to yield similar model 
performances as using finer grained data. In a study investigating 
the influence of grain size on the performance of species distribu-
tion modeling, the authors found that a 10-fold coarsening of the 
grain size did not have a substantial effect on model performance 
(Guisan et al., 2007). Likewise, another study looked at the effect 
of increasing grain size on the size and location of predicted species 
distributions, and found that changes in resolution below 16-fold 
only slightly affected model performance (Seo, Thorne, Hannah, & 
Thuiller, 2009).

The use of coarse-grained species occurrence data could po-
tentially limit the ability of the SDMs to capture the range of each 
explanatory variable and convey more fine-scale topography- and 
climate-related microhabitats that are important for especially 

threatened plant survival and persistence (Austin & Van Niel, 2011). 
However, several studies have found that the effects of topogra-
phy operate at regional to continental scales and at coarse grain 
sizes. One study found that topographic indices better explained 
Rhododendron richness at coarse scale (grain size >1°), while another 
study similarly found that bird species richness was better explained 
at coarse grain sizes (40 and 80 km resolution) owing to climate, to-
pography and human land use operating on these scales (Yamaura, 
Amano, Kusumoto, Nagata, & Okabe, 2011; Yu et al., 2015). Likewise, 
a recent study found that topography acted as a refuge for wolves 
(Canis lupus) at several spatial scales (Grilo et al., 2019). As the choice 
of grain size depends on both the available species and environmen-
tal data and the modeling objectives, we argue that using a coun-
ty-level resolution in this study matches the study question since 
we expect to see the effects of topography at this landscape level.

5  | CONCLUSIONS

The results of this study suggest that gymnosperm species in China in 
general, and threatened species specifically, are affected by human ac-
tivity in such a way that they are more often found in habitats of steep 
topography in regions where human activity is at medium level, in line 
with a buffering effect of steep topography against human pressures 
up to moderate intensity of land use, allowing for natural habitat to exist 
primarily in mountain areas. Many of the Chinese gymnosperm species 
are vulnerable to human impacts and risk extinction, and conservation 
measures should be undertaken to secure the future existence of these 
species in their natural habitats. However, caution should be taken to 
determine if the current habitat of the species is in fact optimal for 
the species in question or if the species qualifies as a refugee species 
and its current range is instead a result of historical human activity. To 
determine this with certainty requires further studies into individual 
species performance in their current habitats (Cromsigt et al., 2012; 
de Medeiros, Hernández-Lambraño, Ribeiro, & Sánchez Agudo, 2018). 
One specific conservation measure to consider is the introduction of 
threatened gymnosperm species into reforestation programs, thus es-
tablishing new populations in areas where deforestation has been the 
major issue. For a long time, reforestation programs have focused on 
planting species-poor stands of trees with fast growth and high yield, 
such as non-native species of Populus and Eucalyptus, but the effect is 
only short-lasting (Cao et al., 2011; Hua et al., 2016; Liu, 2008; Stone, 
2009). Using native species in a mixed-forest setting instead could 
possibly contribute to a longer lasting effect as well as provide higher 
economic and ecological benefits and at the same time, it would serve 
to conserve species distributions in their native range (Hua et al., 2016; 
Stone, 2009). Because of limited enforcement of conservation meas-
ures in China's currently protected areas, species are under a constant 
threat of logging and collecting from local rural communities even 
there (Sang, Ma, & Axmacher, 2011). Therefore, it will also be impor-
tant to enhance enforcement of protection of already protected areas 
to avoid losing the remaining populations of threatened species (Pan et 
al., 2016). Considering ongoing climate change, focus on conservation 
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in areas with varied topography will be vital since such areas better 
allow for species to track climate (Sandel et al., 2011). For this reason, 
protection of current-, along with establishment of new protected 
areas containing a high degree of topographic heterogeneity should be 
a central component in the development of systematic spatial conser-
vation planning in China as well as abroad (Ackerly et al., 2010; Suggitt 
et al., 2018; Theobald, Harrison-Atlas, Monahan, & Albano, 2015).
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APPENDIX 
This appendix contains information regarding the individual response curves generated from the maximum entropy models for each species 
of the threatened species group. The aim was to investigate the mean trend of this group as is seen in Figure 6b, to identify possible threshold 
values that were not evident from this mean trend.

As is seen in Figure A1, threatened species display a range of different responses to topographic range. Some species seem to exhibit a 
threshold in their response that disappears when averaging the responses as in Figure 6b. We did a systematic plot of the threshold values 
(visually estimated from each response plot) of those species exhibiting this behavior in the medium-human-population-density zone and 
found that 11 out of 37 species had this threshold-like response. The systematic plot of these threshold values is shown in Figure A2.

F I G U R E  A 1   Response plots from maximum entropy (MaxEnt) models for each species in the threatened species group within 
each human population density zone. Colors represent individual species. LowHPD = low-human-population-density zone; 
MediumHPD = medium-human-population-density zone; and HighHPD = high-human-population-density zone. Regression lines display the 
mean (± 1STD) response using the Loess regression method
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F I G U R E  A 2   Threshold values from 
individual species response curves as 
estimated visually. 11 out of the 37 
species in the threatened species group 
exhibited this response. Values on 
the x-axis represent threshold values 
of topographic range for each of 11 
threatened species. Values on the 
y-axis are the associated probability of 
occurrence obtained from the original 
response curves
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