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Abstract Cryptosporidium species has been identified as

an important pediatric diarrheal pathogen in resource-lim-

ited countries, particularly in very young children

(0–24 months). However, the only available drug (nita-

zoxanide) has limited efficacy and can only be prescribed

in a medical setting to children older than one year. Many

drug development projects have started to investigate new

therapeutic avenues. Cryptosporidium’s unique biology is

challenging for the traditional drug discovery pipeline and

requires novel drug screening approaches. Notably, in

recent years, new methods of oocyst generation, in vitro

processing, and continuous three-dimensional cultivation

capacities have been developed. This has enabled more

physiologically pertinent research assays for inhibitor dis-

covery. In a short time, many great strides have been made

in the development of anti-Cryptosporidium drugs. These

are expected to eventually turn into clinical candidates for

cryptosporidiosis treatment in the future. This review

describes the latest development in Cryptosporidium biol-

ogy, genomics, transcriptomics of the parasite, assay

development, and new drug discovery.
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Abbreviations

C. hominis Cryptosporidium hominis

C. parvum Cryptosporidium parvum

WGS Whole-genome sequencing

GEMS Global enteric multicenter study

CDPKs Calcium-dependent protein kinases

CHIM Controlled human infection model

NTZ Nitazoxanide

AZR Azithromycin

CFZ Clofazimine

CpLDH C. parvum Lactate dehydrogenase

CpGPI C. parvum Isomerase glucose-6-phosphate

IMPDH Inosine 50-monophosphate dehydrogenase

CpCDPK6 C. parvum Calcium-dependent protein kinase

6

BKIs Bumped-kinase inhibitors

NCEs New chemical entities

HTS High-throughput screening

Introduction

Cryptosporidium is second only to rotavirus as a leading

global cause of moderate-to-severe diarrhea in children

younger than two years (Kotloff et al. 2019, 2013). Apart

from being an unfortunate contributor to childhood mor-

tality, Cryptosporidium can also cause persistent infection,

cognitive issues, malnutrition, and stunted growth (Khalil

et al. 2018; Platts-Mills et al. 2015). These adverse effects

are probably mediated by environmental enteric disruption,
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leading to local chronic inflammation and barrier disrup-

tion. Disruption of barriers might lead to recurrent infection

and hence nutrient malabsorption (Checkley et al. 2015).

Considering the severity of these outcomes and the

unavailability of safe drugs or vaccines, the pathogen has

emerged as of utmost public health importance.

Cryptosporidium is a protozoan apicomplexan parasite.

First observed by Ernest Edward Tyzzer in 1907 (Tyzzer

1907), Cryptosporidium was initially considered harmless

until the 1970s, when it got its reputation as a causative

agent of diarrhea (Nime et al. 1976). After the early reports

of cryptosporidiosis in humans in 1976 (Tzipori et al.

1980), it was later associated with HIV/AIDS, causing life-

threatening cryptosporidiosis in hepatobiliary, respiratory,

and gastrointestinal tract infections (Cama et al. 2007; Ma

and Soave 1983). Of the various Cryptosporidium species,

in humans, Cryptosporidium hominis and Cryptosporidium

parvum are responsible for over 90% of cases (Sow et al.

2016). Cryptosporidium spreads specifically through the

fecal–oral route, primarily via contaminated food or water

(Efstratiou et al. 2017). It has also been documented to

spread by person-to-person routes. By invading the

microvillus layer of the gastrointestinal epithelium, it

infects a large range of vertebrate hosts (Checkley et al.

2015; Deng et al. 2004a, b; O’Handley and Olson 2006).

Various in vivo studies now point towards altered tight

junction protein expressions during Cryptosporidium

infections aiding the barrier disruption (Kumar et al. 2018).

The parasite often spends most of its life within a specific

‘‘parasitophorous vacuole,’’ which also helps the pathogen

evade the host immune defense system (Lendner and

Daugschies 2014; Schmid-Hempel 2009). Parasite-induced

pattern recognition receptors and inflammasome activation

have also been described (Laurent and Lacroix-Lamandé

2017; Sateriale et al. 2021). Though infections are not

always associated with clinical symptoms in most animals

and are often considered a self-limiting illness (Checkley

et al. 1997; Osman et al. 2016), they take a lethal turn in

severely immunocompromised individuals with a risk of

recurrent infections (Sparks et al. 2015). Infected individ-

uals show a wide range of clinical presentations, such as

watery diarrhea, vomiting, nausea, abdominal cramps, and

a low-grade fever (Hunter and Nichols 2002). Children

may have multiple stages or phases of cryptosporidiosis,

indicating short-lived or incomplete acquired immunity

from this infection. The Global Enteric Multicenter Study

(GEMS) indicates that in seven countries of sub-Saharan

Africa and South Asia, Cryptosporidium is a major con-

tributor to infant diarrheal incidents (Kotloff et al. 2013). In

many developed countries, water-borne or food-borne

cryptosporidiosis may also occur in adults. In addition,

because of the minimally invasive feature of the pathogen,

i.e., it does not penetrate deep into the host mucosal layer,

the infection can spread into different parts in the case of

immunocompromised individuals (López-Vélez et al.

1995; Miyamoto and Eckmann 2015). Moreover, asymp-

tomatic fecal shedding of C. parvum oocysts has also been

depicted elsewhere (Eibach et al. 2015; Zambriski et al.

2013). Since several studies have depicted a poor clinical

outcome with currently approved therapeutics in mal-

nourished and immunocompromised individuals (Amadi

et al. 2009; Ashigbie et al. 2021), a new array of drugs with

enhanced efficacy should be developed by properly

understanding the biological processes of the parasite.

Biology of Cryptosporidium

Considering the problems with the parasite and the public

health hazard status, seeking answers to the fundamental

questions about infection pattern, virulence, genomics, and

proteomics, is necessary for developing successful drugs or

vaccine candidates against the pathogen.

Cryptosporidium life cycle

Based on the developmental phases, the life cycle of

Cryptosporidium can be sub-divided into six groups. The

first stage is the excystation phase that releases infectious

sporozoites, leading to the second stage of asexual prolif-

eration within the host cell, called merogony. The third

stage of gametogony refers to the formation of the micro-

and macro-gametes, followed by the fourth phase of fer-

tilization of these gametes. The fifth stage constitutes the

formation of oocyst walls to create an environmentally

tolerant stage for the transition of the infection from one

host to the next. The sixth and final stage of sporogony

refers to the formation of infectious sporozoites (Current

and Garcia 1991; Dumaine et al. 2020; Miyamoto and

Eckmann 2015). The parasite stays within a closed com-

partment named ‘‘parasitophorous vacuole’’ composed of

the host cell plasmalemma and acquires nutrients from the

host cell through an apicomplexan-specific feeder orga-

nelle (Thompson et al. 2005; Tzipori and Ward 2002).

Cryptosporidium has a monoxenous life cycle. Sporulated

oocysts, once ingested or inhaled by the susceptible host,

come into contact with the reducing environment of the

human digestive tract where a combination of pH, pan-

creatic enzymes, and salts induces the process of excysta-

tion (Fayer et al. 1984; Tzipori and Ward 2002), marking

the beginning of the six-phased life cycle. The stages of the

parasite life cycle are depicted in Fig. 1.
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Genomics of Cryptosporidium species

Tyzzer first acknowledged the existence of multiple species

forms within the Cryptosporidium genus. He thoroughly

illustrated the C. muris species from the gastric glands of

laboratory mice by publishing a comprehensive life cycle

report and later also describing another Cryptosporidium

species (Tyzzer 1910; Tzipori and Widmer 2008). Cryp-

tosporidium was used in early whole-genome sequencing

(WGS) projects as a pathogen of interest to public health

with two reference strains as members of the genome: C.

hominis TU502 and C. parvum Iowa, and has been rean-

notated (Isaza et al. 2015). Their genome sequences were

seen with almost similar genome sizes of 9.16 Mb and

9.11 Mb with reported sequence divergences of 3–5%,

respectively (Abrahamsen et al. 2004; Xu et al. 2004). It

has also been reported that Cryptosporidium retains certain

genes for mitochondrial biosynthesis but lacks an api-

coplast, unlike other apicomplexans (LaGier et al. 2003).

Unusual nuclear protein-dependent degenerate mitochon-

dria and mitochondrial-derived compartments have puz-

zled researchers ever since their discovery (Henriquez et al.
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Fig. 1 Cryptosporidium parvum life cycle. a The excystation of a

single oocyst releases four infective sporozoites. Using gliding

motility as a means of locomotion, the sporozoites ultimately reach

the microvilli of the intestinal epithelial cells. b The parasite remains

in the microvillar region inside a parasitophorous vacuole in the

plasma membrane of the host. c The sporozoites develop into

spherical trophozoites. d Trophozoites undergo merogony, to form

Type-I meront, consisting of 8 merozoites. Meront ruptures and

infective merozoites are released to infect other nearby cells. e Type-
II meront formed from a type-I meront contains four merozoites, but

instead of continuing the infection cycle, each merozoite now

undergoes gametogony, giving rise to either a (f) microgamont or a

(g) macrogamont. h Each micro or macro gamont ultimately gets

fertilized to produce a zygote. The zygote, after undergoing sporo-

gony, produces an oocyst containing four sporozoites. It is covered

with either a thick or a thin wall. i The thick-walled oocyst is released

into the intestinal lumen eventually being excreted out, ready to infect

a new host (j) The thin-walled oocyte, on the other hand, can re-infect

the same host in a process called autoinfection. (Adapted with

modification from CDC, Atlanta, GA, USA.

https://www.cdc.gov/dpdx/cryptosporidiosis/index.html). The fig-

ure was created with the help of Adobe Illustrator 2020 software
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2005; Keithly et al. 2005; Xu et al. 2004). Further, mito-

somes have also been recently reported to contain the Fe-S

biosynthesis machinery in the parasite (Miller et al. 2018).

The genomic studies revealed highly streamlined path-

ways, a lack of some cell structures, and metabolic path-

ways seen in other apicomplexans (Barta and Thompson

2006; Bouzid et al. 2013). Energy metabolism is primarily

via glycolysis, with the availability of both aerobic and

anaerobic components, thus providing versatility for the

parasite (Barta and Thompson 2006). After the availability

of WGS data of C. muris, biological differences among

different species were realized (Wang et al. 2012). C.

muris, a gastric species of rodent, was found to have a

genome size of 9.2 Mb and is equipped with all enzymes of

the TCA cycle and a conventional respiratory chain, unlike

the other two Cryptosporidium species (Mogi and Kita

2010). Due to advanced scientific approaches, unlike in

previous WGS analyses, now the oocysts can directly be

isolated from stool specimens, purified, and whole genome

amplification of the genomic DNA can easily be performed

(Guo et al. 2015a; Morris et al. 2019). Illumina and Roche

454 high-throughput sequencing technologies have been

used in WGS analyses of field and clinical isolates

(Andersson et al. 2015; Feng et al. 2017; Guo et al. 2015b;

Hadfield et al. 2015; Troell et al. 2016). High genomic

diversity and high recombination rates were also observed

by WGS of C. hominis samples collected from Bangladesh

(Gilchrist et al. 2018). There are differences between

Cryptosporidium species in terms of total length, number

of genes with introns, GC content, number of tRNAs,

proteins with transmembrane domains, and so on, and such

comparative genomic analysis of Cryptosporidium have

been extensively reviewed elsewhere (Fan et al. 2019;

Khan et al. 2018; Xu et al. 2019).

Transcriptomics study of Cryptosporidium species

Despite challenges regarding parasite cell culture and the

presence of multiple life cycle stages, thanks to recent

advancements, transcriptome analysis from different stages

of the parasite have advanced our understanding of the

host-parasite interactions. Considering the minimalistic

metabolism pathways of the parasite, the survival of

oocysts in open environments has puzzled the researchers.

Zhang et al. developed a specific microarray chip for C.

parvum for transcriptome analysis and found around 2000

upregulated genes, of which more than 50% of the genes

were hypothetical (Zhang et al. 2012). Other upregulated

genes were found associated with transcription, RNA

synthesis, metabolism, and modification. The authors

found an active expression of genes involved in ubiquitin/

proteasome-mediated protein degradation and post-

translational modification, implying the recycling of pro-

teins to overcome the parasite’s inability to endogenously

synthesize amino acids (Zhang et al. 2012). The highest

level of energy metabolism-associated gene expression was

identified in the lactate dehydrogenase (LDH) gene in

sporozoites (Matos et al. 2019). Since LDH is often asso-

ciated with the parasitophorous vacuole, drug targets

against the enzyme could be of therapeutic advantage,

which will be discussed in subsequent sections. RNA-seq

analysis has revealed stark transcriptomic differences

between the intracellular and extracellular stages of the

parasite (Lippuner et al. 2018). Genes associated with

biosynthetic processes such as mucin (gp40/15 and gp900)

were found upregulated in intracellular stages. There are

also specific genes that are expressed throughout all stages

of the parasite, such as calcium-dependent protein kinases

(CDPKs), which could be potential drug targets against the

parasite (Hulverson et al. 2017a). However, this approach

might be challenging as the parasite has five different

CDPKs and they vary in their expression profiles in dif-

ferent parasite stages and biological importance.

After in vitro parasite infection of the human ileocecal

adenocarcinoma (HCT-8) cells, RT-PCR was used to

assess the temporal gene expression patterns. Two hours

post-infection at the early trophozoite stage, sugar-nu-

cleotide transporter genes, transcription, and DNA-associ-

ated genes were upregulated, which indicates that the

parasite obtains nutrition from the host (Matos et al. 2019).

At the late trophozoite stage at 6 h post-infection, an

increase in genes encoding for translation, protein folding,

transport, and proteasome was observed, indicating the

formation of meronts. At 12 h, with the appearance of early

type-I meronts, genes encoding for cytoskeletal proteins

and micronemes/rhoptries get upregulated, signifying

merozoite travel to adjacent cells (Mauzy et al. 2012).

After 24 h of infection, the appearance of matured type-I

meront is observed, along with the upregulation of genes

encoding for translation and other metabolic pathways.

Depending on the cell type, a slight difference in gene

expression patterns can be observed (Relat and O’Connor

2020). After 36 h of infection, high gene expression per-

taining to Rab-GDP dissociation inhibitor is observed,

which indicates nutritional transport to the newly formed

microgamonts (Mauzy et al. 2012; Relat and O’Connor

2020). At 48 h post-infection, sexual stages begin to take

over the culture setting, and enrichment of genes coding for

meiosis-related proteins and oocyst wall formation was

observed, implying the formation of micro- and macroga-

metes (Tandel et al. 2019). After 72 h of infection, genes

encoding for pyruvate decarboxylase and other necessary

wall-producing proteins were found overexpressed (Heo

et al. 2018).
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The parasite can also affect the host transcriptome, and

studies have shown an upregulation in cell cytoskeleton

arrangement-related proliferation, inflammation, and

apoptosis-related genes (Deng et al. 2004a, b). However,

later RNA-seq data of infected pig intestinal monolayer

cells suggested no changes to stress or apoptosis-associated

host genes, indicating the host was not much affected by

the parasite infection (Mirhashemi et al. 2018). Moreover,

a recent microarray study on long non-coding RNAs

(lncRNAs) depicted an upregulation of inflammatory fac-

tors (TNF and interleukins), cell proliferation factors, Wnt-

signaling pathway, hedgehog pathway, and tight junction-

associated proteins (Liu et al. 2018). Recent studies have

demonstrated the production and transport of lncRNAs into

the host cell nucleus during infection. One such transcript

of C. parvum, Cdg7_FLc_0990, interacts with the host cell

chaperone heat shock protein 70 (hsp70) to get delivered

into the host nucleus (Wang, et al. 2017a). Such transcripts

affect the host cell transcriptome by upregulating pro-in-

flammatory genes and hijacking the host histone regulation

system (Wang et al. 2017b). Other putative lncRNAs were

also reported, projecting lncRNAs as a mechanism of

parasite-induced host transcriptome regulation (Li et al.

2021; Ming et al. 2018; Zhao et al. 2018).

CryptoDB (https://cryptodb.org), a robust genome

database, acts as a public repository for sequences of the

Cryptosporidium genome (Heiges et al. 2006). This data-

base provides access to various tools that allow genes to be

retrieved on the basis of text, motif queries, and sequence

similarity (Warrenfeltz and Kissinger 2020). Researchers

have demonstrated that Cryptosporidium and other species

share more than 150 ancestral apicomplexan proteins,

predominantly involved in eukaryotic host cell interactions

and apical complex biogenesis (Gordon and Sibley 2005;

Templeton et al. 2004). The Cryptosporidium comparative

transcriptomics and genomics fields are still at an early

stage in comparison to other apicomplexan pathogens such

as Plasmodium. Therefore, there is a need to obtain addi-

tional WGS data from diverse pathogenic and zoonotic

Cryptosporidium spp. to have a clear view of the genetic

basis of virulence, host infection, and transmissibility

(Nader et al. 2019; Widmer et al. 2012). In the wake of new

bioinformatics genotyping tools developed for quality

control, classification, and analysis of sequence chro-

matograms, it would be possible to initiate drug candidate

searches against the parasite by understanding its genome

biology (Yanta et al. 2021).

Cryptosporidium virulence factors and host
immune system intervention

Several virulence factors are known to initiate processes of

infection and disease maintenance by the parasite. Host

factors also play a significant role in the outcomes of the

pathogen-host interactions. A few reports have classified

the factors responsible for initiating, developing, and per-

petuating Cryptosporidium infection. Usually, Cryp-

tosporidium does not induce systemic inflammation or

reach into deep tissues; rather, the parasite is localized on

the apical surface of the intestinal epithelium in membrane-

bound compartments (Okhuysen and Chappell 2002;

Valigurová et al. 2008). Hence, the absence of some api-

complexan-conserved cellular invasion components in

Cryptosporidium is not surprising (Valigurová et al. 2008).

Evolutionary analyses have also indicated that Cryp-

tosporidium has a unique combination of features from

Plasmodium and Toxoplasma as well as from gut-infecting

gregarine parasites (Aldeyarbi and Karanis 2016; Barta and

Thompson 2006). However, it does cause significant

defects in the absorptive and secretory functions of the gut.

These defects may result from direct damage to the

epithelial cells of the host or may be mediated by indirect

pathways connected to them (Smith et al. 2005). To date, it

has been difficult for researchers to effectively characterize

Cryptosporidium-specific virulence factors to establish

their roles as damage-causing agents or to prove that those

factors can be modified to reduce the severity of the dis-

ease. In contrast to other apicomplexan parasites (Plas-

modium and Toxoplasma), in the case of Cryptosporidium,

it remains difficult to use reverse genetic engineering

techniques in in-vivo or in-vitro culture settings. Difficulty

in knocking down or knocking out specific genes to

investigate virulence has limited the crypto-specific drug

research field (Vinayak et al. 2015). In recent years, several

advanced gene manipulation techniques like CRISPR-Cas9

have been employed in the case of Cryptosporidium to

overcome the hurdle of novel anti-parasitic drug discovery

(Vinayak et al. 2015). Various novel in vivo animal models

for parasite infection has been depicted elsewhere (Costa

et al. 2012; Lee et al. 2019; Sateriale et al. 2019). A recent

review describes a controlled human model named CHIM

(controlled human infection model) in volunteers for

accelerated and robust drug discovery (Jumani et al. 2021).

Despite initial success in animal model-related studies, host

specificity of the parasite, different symptoms, and diverse

infection patterns should be kept in mind while addressing

the issue in humans. Cryptosporidial factors of putative

virulence were established as genes involved in the initial

interactions with host epithelial cells of Cryptosporidium

oocysts and sporozoites. It also includes the formation of
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the parasitophorous vacuole, attachment, excystation,

invasion, intracellular maintenance, membrane lysis, glid-

ing motility, and damage to host cells (Bouzid et al. 2013).

From an immunological response point of view, the

release of pro-inflammatory cytokines/chemokines (IL-8,

CXCL10, and CCL2) from the immune cells and up-reg-

ulated antimicrobial peptide (b-defensin) production has

been demonstrated after Cryptosporidium infection (Chen

et al. 2001; Zaalouk et al. 2004). Cryptosporidium parvum

infection activates the cellular toll-like receptors (TLRs)

and the TLR2 and TLR4-mediated NF-jB pathway,

accounting for anti-apoptotic properties, thereby helping

the parasite to propagate (Chen et al. 2005, 2001; Yang

et al. 2015). Researchers have also demonstrated that C.

parvum infection reduces the expression of key cellular

micro-RNA let-7i, which is associated with the upregula-

tion of TLR4 in cholangiocytes responsible for epithelial

cellular defense (Chen et al. 2007). Further, down-regula-

tion of let-7i during C. parvum infection is also associated

with the overexpression of SNAP23 and increased TLR4-

mediated exosome release from the epithelial cells.

Released apical exosomes were observed to contain

antimicrobial peptides dedicated to reducing infection

levels (Hu et al. 2013). By using genetically

tractable mouse models, the role of interferon-gamma

(IFN-c) during the early stage of Cryptosporidium infec-

tion and T-cell-mediated parasite clearance has been

demonstrated (Sateriale et al. 2019). During an infection,

IFN-c, which is secreted by macrophages, NK cells, and

dendritic cells, coordinates both the innate and adaptive

immune responses. Furthermore, IL-18 may protect against

C. parvum infection by increasing the secretion of IFN-c
and other anti-microbial peptides (Bedi et al. 2015;

Choudhry et al. 2012). Moreover, an immunocompetent rat

model has recently been described by the Tzipori group,

where rats are protected against secondary infection after a

primary intra-tracheal infection by sporozoites. This model

can be used for future vaccine development screening trials

against C. parvum and C. hominis (Dayao et al. 2020).

The role of the adaptive immune system during Cryp-

tosporidium infection is also poorly understood. Insightful

use of CD8 ? or CD4 ? T-lymphocytes has been recog-

nized to protect against Cryptosporidium infection in

immunodeficient mice (Kváč et al. 2011). Studies have

found an association between infection history and anti-

Cryptosporidium antibodies in humans (Wanyiri et al.

2014). Significantly, higher levels of CD4 ? T cells, cir-

culating IgG, and fecal IgA were observed in HIV-infected

patients with cryptosporidiosis (Wanyiri et al. 2014).

Increased levels of IgG, IgM, and IgA were also observed

in response to acute and asymptomatic Cryptosporidium

infections (Ajjampur et al. 2011). Future studies related to

immune system intervention should particularly focus on

the correlative role of inflammasomes and the humoral

immune system in asymptomatic and persistent parasite

infections.

Therapeutic avenues for cryptosporidiosis

Anti-parasitic treatments for cryptosporidiosis in a patient

who is suboptimal or immunocompromised along with

enhancement of cellular immune function should be the

key goal in the management of cryptosporidiosis (e.g.,

combined antiretroviral therapy for AIDS). During initial

treatment, avoiding mortality and malnutrition should be

the aim. Different drugs have been identified in animal

models and patients with action against Cryptosporidium

in vitro.

Anti-parasitic drugs repurposing

Nitazoxanide (NTZ) is a nitrothiazole benzamide broad-

spectrum anti-parasitic compound and is the only FDA-

approved drug for the treatment of cryptosporidiosis

(Checkley et al. 2015). In a study in Egypt, about 80% of

NTZ patients reported cessation of diarrhea compared with

41% of the placebo group (Rossignol et al. 2001). Simi-

larly, NTZ reduced mortality in malnourished children

infected with cryptosporidiosis in comparison to placebo

(Amadi et al. 2002). NTZ is postulated to inhibit the par-

asitic enzyme pyruvate-ferredoxin oxidoreductase (PFOR),

thereby hampering the anaerobic energy transfer reactions

(Fox and Saravolatz 2005). Though NTZ was reported to

be effective in non-HIV patients, depicting enhanced par-

asitic clearance, and reduced oocyst shedding (Rossignol

et al. 2006), however, it was found ineffective in the case

of HIV/AIDS patients, even at prolonged higher doses

(Amadi et al. 2002, 2009). The precise mechanism of

reduced efficacy of NTZ in immunocompromised indi-

viduals is still unknown and needs further research. The

side effects associated with higher doses of NTZ have also

been reported elsewhere (Lee et al. 2017).

NTZ has also been used with other antimicrobial drugs

and has shown promising results. NTZ, along with antibi-

otic azithromycin (AZR), has been used in a piglet model

of C. hominis (Lee et al. 2017). Though NTZ alone reduced

oocyst shedding and other symptoms, AZR alone or

AZR ? NTZ didn’t have any significant effect on early

oocyst shedding or mucosal injury reduction (Lee et al.

2017). Paromomycin is an amino-glycoside that has

effectiveness in AIDS patients with cryptosporidiosis. A

comparative analysis between NTZ and paromomycin

revealed that both the drugs were effective against the

parasitic infection in a neonatal mouse model (Blagburn
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et al. 1998). Clofazimine (CFZ), a lipophilic rim-

inophenazine drug used to treat leprosy and multidrug-re-

sistant tuberculosis, was found effective against

Cryptosporidium in an in vitro approach (Love et al. 2017).

However, it was later found to be unsuitable in a phase-2

human trial involving severely immunocompromised HIV

patients (Iroh Tam et al. 2020), due to poor absorbance of

CFZ in crypto-infected HIV patients.

Other antimicrobial drugs, such as clarithromycin, rifa-

butin, rifaximin, and roxithromycin, may also be effective

in controlling Cryptosporidium growth and outcome

(Amenta et al. 1999; Fichtenbaum et al. 2000; Holmberg

et al. 1998; Uip et al. 1998). One study reported that the

Halogeno-Thiazolides were more effective in inhibiting

Cryptosporidium growth and oocyst shedding (95%) in

immunosuppressed Mongolian gerbils compared with NTZ

(47%) (Gargala et al. 2013). Other studies have also indi-

cated the effectiveness of natural product extracts such as

Citrus maxima and pomegranate (Punica granatum) peel

against C. parvum in murine models of infection (Al-

Mathal and Alsalem 2013; Hafez and Hamed 2021).

However, extended in vivo research is necessary to estab-

lish the proper therapeutic effect of such treatments.

Apart from AIDS patients, Cryptosporidium infection

also appears to be problematic for organ transplant recip-

ients. A French multicenter study in organ transplant

recipients reported cryptosporidiosis as a post-transplanta-

tion infection that can be eradicated without an absolute

reduction in immunosuppression (Lanternier et al. 2017),

with the administration of NTZ and immunosuppressive

agents (Bhadauria et al. 2015). Several reports show that in

organ transplant recipients, Cryptosporidium infection

should routinely be tested owing to the parasite’s seasonal

pattern, and long-term therapy with NTZ is often found

effective (Krause et al. 2012; Legrand et al. 2011).

Recently, we found that KDU731 is a lead chemical, and

has been shown to exhibit substantial in-vitro activity

against C. parvum and C. hominis (Love and Choy 2021).

It is also effective against mouse and calf models of

cryptosporidiosis, along with rat toxicity investigation

(Manjunatha et al. 2017). Further in-vitro activity profiling

revealed that a similar analog, KDU691, was parasiticidal

at its EC90 and its MoA (mechanisms of action) was a

hindrance to merozoite formation (Funkhouser-Jones et al.

2020). This is most likely because of lipid membrane

processing impairment caused by CpPI (4) K inhibition.

Interestingly, KDU731 pharmacokinetics in C. parvum-

infected calves revealed low systemic exposure, indicating

that it may not be necessary for clinical effectiveness in

this cohort.

The limited efficacy of these repurposed drugs against

the parasite in vulnerable and malnourished hosts has

paved the way for research into novel therapeutic agents.

However, some technical difficulties regarding the genetic

manipulation of the parasite and suitable in vivo experi-

mental models remain unresolved. Further, a lack of

knowledge regarding the host immune system’s interaction

with the parasite is also a major hurdle in developing novel

therapeutic targets. In the next section, putative therapeutic

candidates harnessing the benefits of a bioinformatics-

based discovery approach will be discussed.

Novel drug targets

Despite the challenges of animal model-based research and

in vitro culture, the availability of complete genome

sequences of Cryptosporidium species has opened up new

avenues for developing novel drug candidates. The

streamlined metabolic pathways of the parasite allow

greater opportunities for selective drug therapy (Striepen

and Kissinger 2004). Various in silico approaches have

been employed using comparative genomics analysis,

homology modeling, prioritization parameters, epitope

prediction, virtual screening, molecular docking, and sim-

ulation studies (Dhal et al. 2019; Panda and Mahapatra

2018). In the life cycle of apicomplexan parasites, the

regulation of Ca2? binding by calcium-dependent protein

kinases (CDPKs) is necessary for parasite secretion,

motility, and growth (Etzold et al. 2014). Therefore,

CDPKs are thought to be potential therapeutic targets

against the parasites (Su et al. 2022). After understanding

the crystal structures of CDPKs having a gatekeeper gly-

cine residue, specific bumped-kinase inhibitors (BKIs)

were developed that inhibit CDPK1 functions through the

hydrophobic pocket that opens up next to the glycine

residue (Huang et al. 2017; Hulverson, et al. 2017a, b; Van

Voorhis et al. 2021). Calcium-dependent protein kinase 6

(CpCDPK6) (cgd4_3330) is a hypothetical protein of the

CDPK family that regulates sporozoite invasion, gliding,

and parasite egress (Billker et al. 2009; Wernimont et al.

2010; Zhang et al. 2021). An in silico study that evaluated

potential inhibitors against the CpCDPK6 reported the Tres

Cantos Antimalarial Set (TCAMS) _11730 as potential

inhibitors (Dhal et al. 2020).

Similarly, inhibitors like pyrazolopyridines and imida-

zopyrazines have been employed against phosphatidyli-

nositol-4-OH kinase (PI(4)K) of Cryptosporidium. The

imidazopyrazines work by inhibiting PI(4)K’s ATP-bind-

ing pocket, hence changing the intracellular distribution of

phosphatidylinositol-4-phosphate (Manjunatha et al. 2017;

McNamara et al. 2013). The genome sequencing of C.

parvum shows that it neither has a functioning mitochon-

drion, or active Krebs cycle, nor has a cytochrome-based

respiration chain, but encodes all glycolytic enzymes

(Keithly et al. 2005; Yu et al. 2014). The parasite relies
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primarily on anaerobic glucose oxidation for energy

metabolism, and enzymes to generate ATP in the gly-

colytic pathways. The lactate dehydrogenase and isomerase

glucose-6-phosphate in Cryptosporidium (CpLDH and

CpGPI) have been found to be associated with the para-

sitophorous vacuole membrane formation and energy

dynamics (Madern et al. 2004; H. Zhang et al. 2015).

Therefore, LDH, GPI, and other glycolysis pathway

members could be potential therapeutic targets (Dhal et al.

2018; Eltahan et al. 2018).

Further, clan-CA cysteine proteases, expressed during

the sporozoite stage, are vital for surface protein process-

ing, hemoglobin hydrolysis, host cell invasion, nutrition

uptake, and are structurally different from their analogous

human counterparts (Kim 2004; Na et al. 2009). Cysteine

protease inhibitors effectively block the host cell invasion,

suggesting that cysteine proteases could be an appropriate

new chemotherapeutic target (Kang et al. 2012; Siqueira-

Neto et al. 2018). N-methyl-piperazine-Phe-homoPhe-

vinyl sulfone phenyl (K11777) has been used in an in vitro

setting as well as in immunocompromised mice to inhibit

the activity of cathepsin L-like or papain-like cysteine

proteases, thereby reducing the parasite growth (Ndao et al.

2013).

Another putative drug target could be the oxidoreduc-

tase inosine 50-monophosphate dehydrogenase (IMPDH)

essential for guanine synthesis in Cryptosporidium. Vari-

ous inhibitors for CpIMPDH have been reported (Kir-

ubakaran et al. 2012; Gorla et al. 2014; Sun et al. 2014;

Shigetomi et al. 2019; Asmare et al. 2022). Similarly,

another study reported the use of Phylomer� designed

peptides as an inhibitor of CpIMPDH, effectively reducing

Cryptosporidium growth (Jefferies et al. 2015).

Oleylphosphocholine- C23H48NO4P (OlPC) is structurally

similar to the antiparasitic drug miltefosine, and interferes

with the integrity of parasitic lipid biosynthesis, thereby

inducing parasite apoptosis (Hernández et al. 2014). OIPC

successfully inhibited C. parvum growth in infected HCT-8

cells and was able to cure infected mice (Sonzogni-

Desautels et al. 2015). In contrast to miltefosine, OIPC

demonstrated a better toxicity profile for HCT-8 cells

(Fortin et al. 2014; Sinkala et al. 2011; Sonzogni-Desautels

et al. 2015). Considering the importance of acyl-coenzyme-

A synthetase (ACS) enzymes in parasite fatty acid meta-

bolism (Chattopadhyay and Mahapatra 2019), inhibitors

like triacsin-C has been employed to reduce the develop-

ment of parasite oocysts (about 88%) in IL-12-KO mice

(Guo et al. 2014). The usefulness of elongation factor 2

(EF-2) protein as a therapeutic target has also been

described elsewhere (Dhal et al. 2022).

In an activity-centered drug repurposing screen

approach, out of a library of 727 FDA-approved drugs

tested in HCT-8 cells, 3-hydroxy-3-methyl-glutaryl-

coenzyme A (HMG-CoA) reductase was found to be a

suitable target (Bessoff et al. 2013). A group of anti-in-

flammatory lipid-lowering agents known as statins (HMG-

CoA reductase inhibitors) has been repurposed for handling

Cryptosporidium infections both in an in vitro and in vivo

setup by inhibiting the intermediates of the mevalonate

pathway (Parihar et al. 2019) (Madbouly Taha et al. 2017).

Putative drug candidates against the parasite discussed in

this section and their structures are provided in Fig. 2. In

another experimental setup, an existing drug library of 400

compounds against the apicomplexan Plasmodium falci-

parum from the Malaria Box (MMV) was tested against C.

parvum. The screen yielded about 19 compounds with

activity against C. parvum growth (Bessoff et al. 2014).

Other studies have also reported piperazine-based com-

pounds (MMV665917) from the Malaria Box as potential

drug candidates (Jumani et al. 2018). Moreover, the

ReFRAME library with 12,000 compounds has also been

evaluated for their efficacy against Cryptosporidium (Janes

et al. 2018). Several other novel inhibitors have been

described against Cryptosporidium containing specific new

chemical entities (NCEs), i.e., lysine tRNA synthetase

(KRS) inhibitors (Baragaña et al. 2019), phenylalanyl-

tRNA synthetase inhibitors (bicyclic azetidines) (Vinayak

et al. 2020), benzoxaboroles (AN7973) (Lunde et al. 2019),

and cleavage and polyadenylation specificity factor-3

(CPSF3) inhibitors (Swale et al. 2019). A comprehensive

list of drugs and putative drug targets against the parasite is

provided in Table 1.

Most of these NCEs have depicted superior in vitro anti-

cryptosporidial activity and in vivo efficacy in reducing

fecal oocyst burden. However, extended evaluation of

in vivo safety, efficacy, and pharmacological characteri-

zation are required for these compounds to enter human

trials. The active compound or the repurposed drugs should

be deemed effective in malnourished children and

immunocompromised individuals. The drug should also be

affordable and be available in heat-stable conditions so as

to be useful in low-resource settings (Ashigbie et al. 2021;

Manjunatha et al. 2016; Sow et al. 2016).

Advanced methods of oocysts generation, in vitro
processing, and drug testing

A powerful method to quantify the parasite load by real-

time PCR is the key to the in vitro evaluation of anti-

cryptosporidial drug efficacy. However, high-throughput

screening (HTS) of drugs against C. parvum was deemed

impractical by the labor-intensive traditional assays. A

simplified quantitative RT-PCR assay suitable for HTS of

compounds and for evaluating drug efficacy against the

growth of C. parvum in vitro has been described (Zhang
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and Zhu 2020). Parasite load assessment by qRT-PCR

provides several advantages when compared with qPCR.

The RNA used in qRT-PCR, due to its quick degradation,

better indicates cell viability than DNA. Total RNA iso-

lation is also easier by directly allowing the samples to be

used in a high-throughput analysis (Zhang and Zhu 2020).

Furthermore, hollow fiber technology is a powerful tool for

the culture of difficult-to-grow cells. Cryptosporidium

parvum has a multistage sexual and asexual life cycle that

has proved difficult to culture by conventional in vitro

culture methods (Baydoun et al. 2017; Morada et al. 2016).

This novel method enables the evaluation of potential

therapeutic compounds under in vitro conditions that

emulate the dynamic processes of the host, facilitating

preliminary pharmacokinetics and pharmacodynamics data

to be assessed (Yarlett et al. 2020).

Challenges involving in vitro and in vivo models during

the development of therapeutics for Cryptosporidium are

extensively reviewed elsewhere (Jumani et al. 2021;

Manjunatha et al. 2016). Briefly, using the mouse stem

cell-derived intestinal epithelial monolayers, long-term C.

parvum growth can be supported. Monolayers are usually

grown as spheroids and plated onto transwells, allowing for

separate basolateral and apical compartments. In the apical

chamber, the cell growth medium is removed to create a

mixed interface, enhancing host cell differentiation and

long-term C. parvum growth. Such stem-cell-derived set-

ups could serve as useful in vitro models of the natural

host’s intestinal niche (Heo et al. 2018; Wilke et al. 2019).

The complete life cycle of C. parvum has been grown in

human organoids (Heo et al. 2018). Human intestinal

enteroids (HIEs) are cultures containing stem cells isolated

from human biopsies. Such multi-cellular cultures can be

differentiated into different intestinal cells. In a three-di-

mensional matrix, HIEs spatially emulate the native host

intestinal epithelium. These scaffold-based models can be

used to grow Cryptosporidium and can also be used to

evaluate drug efficacy and pharmacokinetics (Bhalchandra

et al. 2020; Chen et al. 2017).

Fig. 2 Novel therapeutics

against Cryptosporidium.
a Structures of AN7973, a

benzoxaborole (Lunde et al.

2019), and b triacsin-C targeting

acyl-coenzyme-A synthetases

have been employed against the

parasite (Guo et al. 2014). c The
structure of compound K11777

targeting the cysteine proteases

has also been employed against

the parasite (Ndao et al. 2013).

d The structure of atorvastatin, a

statin compound, having

DrugBank database ID:

DB01076, in combination with

nitazoxanide (NTZ), has been

tested for a synergistic approach

against the parasite-infected

mice (Madbouly Taha et al.

2017). e Oleylphosphocholine

(OlPC), an

alkylphosphocholine, has also

been employed against the

parasite-infected

immunocompromised mice

(Sonzogni-Desautels et al.

2015)
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Conclusion

The drug discovery strategies for Cryptosporidium are

largely unexplored in relation to other neglected tropical

diseases. However, despite the many challenges unique to

Cryptosporidium biology, great deals of promising

advancements have been made in a comparatively short

period of time. The high risk of parasite resistance to

existing therapies illustrates the critical need for substi-

tutes, as well as new targets and new chemotypes for which

resistance has not yet been developed. The most promising

drug therapies are expected to have these. Several

developments in screening techniques to classify new anti-

cryptosporidium compounds and developments in Cryp-

tosporidium culture cultivation have resulted in the devel-

opment of new phenotypic assays to profile and prioritize

drug compounds. Robust and diverse pipelines for potential

cryptosporidiosis therapeutics have been established.

Novel compounds will need to be evaluated by these

pipelines and prioritized by their molecular mechanism of

action as compounds eventually occur in compound pro-

gression. Phenotypic screening is prioritized based on its

performance in related fields, especially in pathogens with

homologs in Cryptosporidium. A wealth of new chemical

Table 1 Comprehensive list of drugs and putative drug targets against Cryptosporidium effective here implies drugs reducing the oocyst

shedding, enhancing parasitic clearance, and alleviating symptoms)

Drugs/drug targets Outcome of the parasite Reference(s)

Nitazoxanide (NTZ) FDA-approved

Limited efficacy in reducing parasite

burden in non-AIDS patients

Non-effective in AIDS patients

Amadi et al. (2002, 2009), Rossignol et al. (2001, 2006)

Clofazimine (CFZ) Effective in an in vitro approach

Found ineffective in phase-2 human

trial

Iroh Tam et al. (2020), Love et al. (2017)

Azithromycin (AZR) AZR alone or AZR ? NTZ having

no significant effect

Lee et al. (2017)

Paromomycin Effective against the parasite in a

mouse model

Blagburn et al. (1998)

Halogeno-Thiazolides Found effective in

immunosuppressed Mongolian

gerbils

Gargala et al. (2013)

Rifabutin, Rifaximin, Clarithromycin,

Roxithromycin

Effective in vitro and in vivo (lack

of extended research)

Amenta et al. (1999), Fichtenbaum et al. (2000), Holmberg

et al. (1998), Uip et al. (1998)

Drugs against the calcium-dependent

protein kinases (CDPKs)

Effective in an in silico, in vitro, and
in vivo setting

Not entered human trials

Huang et al. (2017; Hulverson et al. (2017a, b), Van Voorhis

et al. (2021)

Phosphatidylinositol-4-OH kinase (PI(4)K)

and lactate dehydrogenase inhibitors

Deemed effective in an in silico and

in vitro setup

Dhal et al. (2018), Eltahan et al. (2018) Manjunatha et al.

(2017), McNamara et al. (2013), Zhang et al. (2015)

K11777 (Inhibitors of clan-CA cysteine

proteases)

In vitro and in vivo efficacy Ndao et al. (2013), Siqueira-Neto et al. (2018)

Statin (HMG-CoA reductase inhibitors) Atorvastatin found effective in

immunocompromised infected

mice

Bessoff et al. (2013), Kang et al. (2012), Madbouly Taha

et al. (2017), Parihar et al. (2019)

Inhibitors against IMPDH enzyme Effective in a mouse model and

other in vitro approaches

Gorla et al. (2014), Jefferies et al. (2015), Shigetomi et al.,

(2019)

Alkylphosphocholines

(Oleylphosphocholine-OIPC)

Effective in HCT-8 cell model and

mice

Sonzogni-Desautels et al. (2015)

Triacsin-C (inhibitor of acyl-coenzyme-A

synthetases)

Effective in immunocompromised

mice

Guo et al. (2014)

MMV665917 (a piperazine-based

compound repurposed from the Malaria

Box)

In vitro efficacy Jumani et al. (2018)

Benzoxaboroles (AN7973) and bicyclic

azetidines

Observed in an in silico study,

extended research warranted

Lunde et al. (2019), Swale et al. (2019), Vinayak et al.

(2020)
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tools with various objectives and mechanisms of action

have been created by the phenotypic screening of targeted

or repositioned chemical collections. As an underestimated

disease affecting mostly developing countries, cryp-

tosporidiosis attracts low funding opportunities and limited

commercial interest, keeping it in the category of neglected

diseases. In such a scenario, in silico methods of drug

development could generally boon due to the reduction of

expenses and time required for developing new therapeutic

candidates and treatment regimens.
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