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Abstract

Background: Identifying key components in biological processes and their associations is critical for deciphering
cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported
in Saccharomyces cerevisiae, and these have enabled systematic studies. Although a number of approaches have
been used to predict gene functions and interactions, tools that analyze the essential coordination of functional
components in cellular processes still need to be developed.

Results: In this work, we present a new approach to study the cooperation of functional modules (sets of
functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that
significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative
module pairs that significantly influence a cellular process and the correlated genes and interactions that are
essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module
associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network.
Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We
found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1,
late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential
regulators were also identified. These results are consistent with previous studies and demonstrate that our
methodology is effective for studying cooperative mechanisms in the cell cycle.

Conclusions: In this work, we propose a new approach to identifying condition-related cooperative interactions, and
importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the
cell cycle and the method can be used to discover the dynamic coordination properties of functional components in
other cellular processes.

Background
Identifying the essential components in a specific biological
process and detecting the associations among these com-
ponents in response to various conditions are important
for understanding cellular functions. Such components
consist of interacting proteins, DNA, and other molecules
such as complexes, pathways, and regulatory programs
[1-4]. Therefore, a set of genes encoding proteins that are

associated by functional related interactions, such as direct
physical interactions between members of a complex, cas-
cading interactions of a pathway, or regulatory interactions
between a factor and it’s targets, form a functional module
to facilitate a specific cellular function [2-4]. To conduct
a cellular process, module cooperation is necessary to
properly facilitate signal transduction, regulation, and
metabolism. This cooperation can be established by direct
interactions among components (crosstalk) or through
shared partners [5,6]. To adapt to changing environmental
conditions, the formation of functional modules and inter-
actions among these modules are likely to be dynamic and
condition-specific. To sustain cellular activities upon
changes in the extra- or intracellular environment, specific
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functional modules and interactions among modules are
induced by a series of signaling and regulatory cascades
[3,4,6-8]. For example, under low-nitrogen conditions,
crosstalk is observed between two signaling pathways in
Saccharomyces cerevisiae, the cAMP and MAPK pathways,
which are both downstream of the small GTPase Ras.
These pathways in turn control the cell surface glycopro-
tein Flo11 and are involved in invasive and filamentous
growth [9,10]. Therefore, discovering dynamically assem-
bling modules, associations among these modules, and
their condition-specific functions are critical for under-
standing the mechanisms of a biological process.
Large amounts of yeast two-hybrid, DNA microarray,

and other high-throughput data are now publicly available
[11-14]. These datasets not only provide information
related to gene function and direct interactions among
genes, but they also enable the use of clustering-based
methods to discover functional modules [3,15-20]. By
applying clustering algorithms to different datasets, various
types of functional modules, including protein complexes,
co-regulated modules, and signaling and metabolic path-
ways, can be extracted. In addition, with datasets derived
from specific experimental conditions, functional modules
with special properties, such as evolutionarily conserved
complexes and condition-related functional components,
can also be found [3,17,19,21]. Based on the identified
modules, researchers can use network measurement
approaches to further analyze the properties of a module
or to compare modules from different datasets to elucidate
various biological characteristics [16,19]. Clustering-based
approaches, however, only focus on module identification
and do not consider the connectivity between modules.
Therefore, these approaches do not readily provide infor-
mation about associations between modules such as mod-
ule cooperation.
Recently, several groups have developed approaches to

discover coordinated relationships between pairs of mod-
ules and to establish more complete frameworks for var-
ious cellular processes [5,22,23]. One type of approach
searches for crosstalk pathways that significantly interact.
By measuring the number of protein-protein interactions
among all possible pathway pairs from a database, such
as BioCarta, the pathway pairs with a statistically signifi-
cant number of protein interactions can be identified
[23]. Another type of approach aims to select module
pairs that are coordinated in their gene expression levels
by using data from Gene Ontology (GO) and DNA
microarrays [5,22]. Thus, these methods identify coordi-
nated relationships that are co-regulated by common reg-
ulators or are co-expressed under specific conditions.
Both types of approaches are suitable for characterizing
the properties of module association.
Although the above-mentioned methods can be used

to measure correlations between module pairs, they

ignore interactions mediated by genes that associate
with module pairs. These interactions are direct clues
used to interpret the influence, function, and mechan-
isms of module cooperation and, importantly, to esti-
mate the necessity of the cooperation between a module
pair. Moreover, as the modules evaluated by these meth-
ods are previously-defined gene sets, it is difficult to
identify dynamically assembled functional modules and
correlations between modules in a specific condition.
Therefore, tools still need to be developed to discover
and study cooperating module pairs that function in
important signal transduction, regulatory and metabolic
reactions under specific conditions.
In this paper, we propose an approach to study module

cooperation. We identified cooperating module pairs by
searching for functional module pairs that significantly
correlate with genes with important functions and genes
that mediate communication between functional compo-
nents of a process. To evaluate our approach, we also
analyzed the functions, cooperating genes, and mechan-
isms of each identified module pair. Using the yeast cell
cycle as an example, we identified cooperating module
pairs and predicted the mediators and interactions that
are important for module cooperation in each phase of
the cell cycle. The yeast cell cycle is divided into four
phases: G1, S (synthesis), G2, and M (mitosis). During
this cycle, a cell duplicates and divides into two daughter
cells through a series of regulatory events and checkpoint
mechanisms. Cell cycle-specific components dynamically
assemble and interact with specific factors to control pro-
gression through the cell cycle. For example, in G1 phase,
the major regulator Cdc28 combines with G1 cyclins and
associates with other G1-specific transcription factors,
such as the SBF complex (Swi4/Swi6), to regulate G1/S-
specific genes and prepare the cell for DNA replication
[24,25]. In S phase, specific component coordination
appears to promote DNA replication, bud emergence,
SPB duplication, and SPB separation [26]. In G2 and M
phases, Cdc28 and B-type cyclins form complexes that
induce chromosome condensation, spindle elongation,
and nuclear division [27]. In addition, to ensure that
events of the cell cycle finish completely, checkpoint
mechanisms coordinate multiple pathways to control
progression through the cell cycle [28]. Due to its com-
plex regulation and the dynamic interactions of its com-
ponents, studying the cell cycle requires a systematic
approach that analyzes cooperation among functional
components.
Rather than considering only one type of data, our

approach provides a platform that allows interaction and
expression data to be integrated. The expression data pro-
vide information about dynamic correlations among genes
in the yeast cell cycle, and the interaction data suggest
possible interactions among genes. This information can
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be used to predict genes and interactions that may func-
tion in the yeast cell cycle. Advantages of combining het-
erogeneous data were demonstrated by the studies of
functional association prediction. These approaches used a
probabilistic model to combine expression correlations
and physical interactions between genes measured from
different experimental data sets [29-31]. The combined
scores were used to establish a gene network to present
the functional associations between genes and to predict
gene function [29,31]. To identify functional modules and
the cooperating pairs that directly interact with genes
essential to the cell cycle, we used a different approach to
combine information from protein-protein interactions,
ChIP-chip data, and microarrays. We did not use com-
bined association scores between genes to construct the
gene network but instead used direct physical interactions
to represent links among genes. However, information
from expression correlation was used to measure the
essentiality of genes to the cell cycle. Therefore, we can
design an algorithm to search cooperating sub-networks
(modules) based on the physical interaction network. In
addition, we evaluated the importance of module coopera-
tion and only reported module pairs that significantly
influence the cell cycle process. To analyze the architec-
ture and special properties of module cooperation in the
cell cycle, the resulting module pairs were further used to
construct a cooperative module network (CMN). This
cooperative module network presents cell cycle-specific
modules and cooperative associations between the
modules.
To understand the functions and communication

mechanisms of each cooperative association, we also pre-
dicted genes related to each cooperative association (corre-
lated genes). Such genes could be regulators, signal
communicators, regulated genes, or members of a protein
complex. Based on interactions among these correlated
genes and genes within the modules, we further inferred
the functions and effects of the cooperative associations in
the cell cycle. Thus, we used a gene set consisting of genes
regulated in a specific phase of the cell cycle and regulators
of each phase to verify and explore cooperating interac-
tions of the identified module pairs functioning in specific
signal transduction, regulation and other activities of the
yeast cell cycle. Using this phase-regulated gene set, we
predicted phase-related interactions and genes mediating
cooperative associations in a specific phase and then dis-
covered dynamic changes in these interactions during the
cell cycle. Based on interactions of phase-specific regula-
tors, we constructed relationship graphs for each phase of
the cell cycle to identify possible crosstalk among modules
through phase-specific regulators and to attempt to explain
the roles of transcriptional regulators in controlling the
cooperation of and connections between modules. These
graphs present a dynamic view of the module interactions

in the yeast cell cycle. By comparing graphs, we gained
important insights into the changes in associations between
the different functional modules.

Results
To decipher how functional modules, such as protein
complexes and signaling pathways, can cooperatively
control the progress of the yeast cell cycle, we designed a
method to study communication mechanisms among
molecular components. The method developed in this
work is outlined in Figure 1 and was divided into three
steps: the first and second steps were designed to predict
cooperative module pairs during cell cycle progression
and to identify correlated genes that cooperate with each
identified module pair (Figure 1A, B), and the final step
was designed to evaluate our results and to analyze
phase-related cooperative interactions among the identi-
fied module pairs (Figure 1C). To predict and analyze
important cooperative associations among modules and
genes, we combined a wide range of experimental data,
including gene expression profiles, protein-protein inter-
actions and ChIP-chip data. These data were used to
construct a weighted physical interaction network (WPI
network). Nodes of the WPI network represent genes
and physical interactions between gene products are pre-
sented by links. The weight of each node represents the
degree of necessity for a particular gene in the cell cycle.
The flowchart of cooperative module identification and
correlated genes identification is shown in Figure 2.

Functional module
As mentioned, a module is defined as a set of genes
whose products are connected by functionally related
physical interactions that perform a specific cellular
function.

Cooperative module pair
We defined a cooperative module pair as two modules
that significantly cooperate in a cellular process with each
other and/or certain functional genes. Cooperation of a
pair of modules can depend on direct crosstalk interac-
tions or cooperative interactions through another gene
product such as cofactors or common targets. Based on
our method, a cooperative module pair can be identified
by searching two distinct sub-networks with a significant
number of cross-links or number of common interactions
to genes essential in the cell cycle in the weighted physical
interaction network.

Correlated genes
We defined the correlated genes of a cooperative module
pair as genes which have a significant amount of direct
physical interactions to both modules (i.e. genes that sig-
nificantly cooperate with both modules of a module pair).
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Cooperative interactions of module pairs can potentially
be mediated by these correlated genes. Correlated genes
were identified for each cooperative module pair (see
Figure 2 and Additional file 1 for details). We predicted
five types of significantly correlated genes with regard to
cooperative module pair modules M1 and M2 (Figure 3):
(1) genes that significantly interact with genes in one of
the modules via protein-protein interactions and are sig-
nificantly regulated by genes in the other module; (2)
genes that significantly interact with genes in one of the
modules via protein-protein interactions and regulate a
significant numbers of genes in the other module; (3)
genes that significantly interact with genes in M1 and M2

via protein-protein interactions; (4) genes that are simul-
taneously regulated by transcription factors in M1 and
M2; and (5) genes that regulate significant numbers of
genes in M1 and M2.
Identification of cooperative functional module pairs in the
cell cycle
Module cooperation can have significant effects on the
progression of a process because cooperative interactions
that are mediated by genes in two modules can be
required to activate or regulate genes with essential func-
tions in that process. These cooperative effects could be
achieved by transcriptional regulation, protein-protein
interactions, protein phosphorylation, formation of a

ChIP-chip data Protein-protein 
interaction data

Construct the weighted 
physical interaction (WPI) 
network 

Cell cycle microarray data

Construct the co-expression network 

Assign weights to genes

Identify putative 
cooperating module pairs

predict correlated genes of each 
module pair

Generate random networks

Phase-related module pairs 
analysis 

(phase-related cooperative 
module pairs and interactions)

Relationship graph 
analysis

(crosstalk interactions 
of each cooperative 
module pair)

Cooperative network 
analysis

(structure and features)

(A)

(B)

Phase-related regulators
Phase-regulated genes

(C)

to evaluate and analyze to evaluate and analyze

Figure 1 Overview of the methodology developed in this study. (A) Construction of the weighted physical interaction network (WPI
network). The WPI network was established from protein-protein interaction (PPI) data, cell cycle expression data, and genome-wide location
(ChIP-chip) data. Each node of the network indicates a gene, and each link indicates an interaction between two genes according to protein-
protein interaction data and ChIP-chip data. The weight of each node was estimated by the correlations of gene pairs. We first established a co-
expression network of nodes corresponding to genes and links corresponding to gene pairs with a Pearson correlation above 0.683 or below
-0.683, and then we used the degree of each node in the network as its weight. (B) Identification of cooperative module pairs and correlated
genes in each pair. Significantly cooperative module pairs were identified in the WPI network by a spanning algorithm. For each cooperative
module pair, genes significantly correlated with both modules were also reported. (C) Cooperative module network and phase-related
cooperation analyses. In this step, we evaluated our results and analyzed the structure and properties of the network generated by the
cooperative module pairs, their interactions through correlated phase-regulated genes, and crosstalk mediated by phase-specific regulators. In
addition, functionally cooperative module pairs and relationships in each phase of the cell cycle were inferred.
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protein complex, or a combination of regulation and acti-
vation by genes from each module. To identify cooperative
module pairs that are essential to cell cycle progression,
we evaluated the possibility that any two modules coop-
eratively relate to cell cycle-associated genes by investigat-
ing the interactions (protein-protein interactions and
regulatory interactions) that bridge both modules via other
intermediate genes within or outside the two modules in a
WPI network.

Weighted physical interaction network (WPI network)
The WPI network is shown as a weighted graph in
which nodes represent genes and links represent pro-
tein-protein interactions or regulatory interactions
between gene products. Links can be used to infer func-
tional modules and cooperation among those modules.

The weight of each node represents the degree of neces-
sity of that gene and was derived from the degree of the
node in the aforementioned co-expression network (see
the Methods section for more details). As significantly
co-expressed genes tend to be functionally related, the
Pearson correlation is a good scoring function used to
evaluate the intensity of the functional correlation of a
given pair of genes under specific conditions [15,32-34].
Furthermore, an essential role for most hub genes in a
co-expression network has been shown to be more pre-
valent than with other genes in previous studies [35-38];
therefore, we used the number of co-expressed partners
to estimate the probability that a gene is cell cycle-
related. Based on the WPI network, we identified genes
and their interactions that are likely to be significant
and involved in the cell cycle.

Start
1. Construct a weighted physical 
interaction network (WPI) (Figure 1A)

2. Select seeds (initial module pairs) 
according to the consistency score 
(CT_score)

3. Extend each seed to a module pair 
by applying our spanning algorithm to 
find a pair of sub-networks that 
maximizs the cooperation score 
(MCoop_score) in the WPI network

6. Generate random networks

7. For each identified cooperative 
module pair and each gene G in the 
WPI network, compare the number of 
physical interactions between G and 
genes contained in the module pair in 
the WPI network with that in each 
random network

8. For each identified module pair, 
select genes that significant cooperate 
with both modules

Cooperative module pairs 

Correlated genes of each cooperative 
module pair

Cooperative module pairs 

5. Remove module comprised of highly 
overlapped modules

4. Merge highly overlapped modules

Figure 2 The workflow of cooperative module identification and correlated genes identification. The input of the process is the weighted
physical interaction (WPI) constructed in the first step of our methodology (Figure 1A). Steps 1, 2, and 3 of the process are used to identify
cooperative module pairs. In step 1, a WPI network is constructed. Nodes of the WPI network represent genes and links represent direct physical
interactions between gene products. The weight of each node represents the degree of necessity of that gene in the cell cycle. In step 2, the
consistency score (CT_score) of each gene pair is calculated. Gene pairs with CT_score above the 99th percentile are selected as seeds. In step 3,
each seed is extended to a module pair. The spanning algorithm is used to search a pair of sub-networks in the WPI network that contain the seed
and maximize the module’ cooperation score (MCoop_score). The step 6, 7, and 8 of the process are used to identify correlated genes of each
cooperative module pair. In step 7, for each identified module pair and each gene G in the WPI network, the significance of the number of physical
interactions between G and genes contained in the module pair in the WPI network is evaluated by random network (see Additional file 1 for more
details). For each identified module pair, genes that are significant associated with both modules are selected in step 8.
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If the cooperation of two modules is important in the
cell cycle, genes associated with both modules by a signifi-
cant number of cooperating interactions are possibly cell
cycle-related. Thus, we designed the consistency score
(CT_score) to measure the difference between the weights
of genes correlated with a pair of modules and the weights
of genes that are related to only one of the modules in the
WPI network (Equation 1 in the Methods section). Higher
numbers of cooperating interactions among a module pair
and essential genes (within or outside the two modules) in
the cell cycle process increase the consistency score of the

module pair. In addition, to avoid local maxima and to
incorporate genes possibly playing essential roles in the
module but rarely linking to genes outside the module, we
designed the mediation score (CoopMed score; Equation 3
in the Methods section) to incorporate genes that mediate
interactions among genes within the module but has a few
links to genes outside the module.
Finally, we designed the modules’ cooperation score

(MCoop_score; Equation 4 in the Methods section) to
measure both the consistency score (CT_score; Equation
1 in the Methods section) of a module pair and the

Module Module

gene x(A)

Module Module

gene x(B)

Module Module

gene x(E)

Module Module

gene x(D)
Module Module

gene x(C)

Figure 3 Cooperation types of correlated genes. Figure 3 shows the types of cooperative correlations between a module pair and its
correlated genes predicted by our method. We predicted genes that mediate cooperative interactions between a pair of modules by evaluating
the significance of the number of direct physical interactions between each module of a module pair and genes in the weighted interactions
network (WPI network) with random networks (Figure 2). We used a yellow circle to indicate a gene and a green box to indicate a module.
Consider a gene x in the WPI network and an identified module pair. If the number of protein-protein interactions (or regulatory interactions
from ChIP-chip data) between x and a module is significant, the association was presented by a blue undirected line (or a red directed line)
between the circle and a box. We identified five types of correlative associations: (A) A significant number of undirected links between x and
genes in one of the modules and a significant number of directed links from genes in the other module to x in the WPI network. (B) A
significant number of undirected links between x and genes in one of the modules and a significant number of directed links from x to genes
in the other modules in the WPI network. (C) A significant number of undirected links between x and genes in each of the two modules in the
WPI network. (D) A significant number of directed links from genes in each of the two modules to x in the WPI network. (E) A significant
number of directed links from x to genes in each of the two modules in the WPI network.
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mediation score (CoopMed; Equation 3 in the Methods
section). The cooperation score was our scoring function
to estimate the possibility and importance of the coop-
eration of a module pair. A method that was designed to
identify cooperative module pairs essential for the yeast
cell cycle was illustrated in Figure 1A, B and 2 (see the
Method section for more details).
Structure and properties of the cooperative module
network (CMN)
After merging overlapped modules and the removal of
module pairs comprised of highly overlapped modules,
101 cooperative module pairs and 82 functional mod-
ules containing three or more genes were identified

(Figure 4; see Additional file 2 for results). In Figure 4,
we generated a node to represent each of the 82 mod-
ules and 101 undirected links to indicate the identified
cooperative relationships between modules and then
constructed a cooperative module network (CMN). To
analyze the functions and mechanisms of cooperative
module pairs, we used the GO Term Finder to identify
statistical significant enriched GO terms of a module
(p-value < 0.01) as its annotation [39] (see Additional
file 1 for details) and identified cell cycle-related genes
in each module using the cell cycle-related gene set.
The GO term with the most significant p-value was
chosen as the function of a module (see Additional file

Figure 4 The cooperative module network. The cooperative module network (CMN) was constructed from the identified significantly
cooperative module pairs. Modules are represented as circles and 101 identified associations between modules are represented as undirected
links. The size of the circles is proportional to the number of genes within the modules. Purple circles indicate modules that appear in greater
than or equal to four cooperative module pairs (Table 1). Genes contained in each module are listed in Additional file 2. Functions annotated
from Gene Ontology (GO) are listed in Table 1 and Additional file 3. Most modules, especially modules presented as purple circles, were
annotated as cell cycle related functions with significant p-values. Essential regulators that control cell cycle progression were also identified in
functionally corresponding modules. For example, module 0 (response to DNA damage stimulus) contains RAD53; module 30 (cell
morphogenesis) contains CLN4; module 3 (mitosis) contains MAD1; module 14 (regulation of transcription during G2/M-phase) contains FKH1;
module 32 (regulation of cell division) contains CDC28.
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3). The cell cycle-related gene set contains genes that
are cell cycle-regulated or whose functions are anno-
tated as cell cycle or DNA processing in MIPS [12,40]
(see the Methods section for details; genes are listed in
Additional file 4). Genes contained in a module and in
the cell cycle-related gene set were identified as cell
cycle-related genes of the module (see Additional file 5).
Information about modules that link more than three
modules in the cooperative module network is listed in
Table 1. For each of these modules, Table 1 presents its
function, a subset of cell cycle-related genes contained
in it, and the number of genes in it.
Furthermore, we measured the significance of gene corre-
lations within and between the putative cooperative mod-
ule pairs (see the Methods section for details). Two types
of correlation, physical interaction and co-expression,
were tested (see Additional file 6 for results). Our results
show that correlations within all the 82 modules were sig-
nificant and genes of each module are highly connected by
physical interactions. Highly significant crosstalk relation-
ships were also shown in our 50 predicted cooperative
module pairs, indicating their pivotal roles in communica-
tion among biological pathways. By comparing the num-
ber of co-expressed gene pairs in the cell cycle with that in
randomized expression datasets, we found that 67 out of
101 module pairs contain significant number of correla-
tions between modules. Moreover, 31 out of 82 modules
showed the significant number of correlations within
modules. These results suggest that most of the identified

module pairs (83 out of 101 module pairs) are significantly
correlated.
As shown, most modules, especially those in Table 1

(purple circles in Figure 4), were annotated as cell cycle-
related or other specific functions with statistical signifi-
cance (p-values < 0.01). Essential regulators that control the
progress of the cell cycle, such as CDC28, cyclins, transcrip-
tion factors, and checkpoint-related genes, were also identi-
fied in functionally corresponding modules. The main
cooperative relationships among modules and the basic
function of and implicit crosstalk interactions between
modules in the cell cycle are illustrated in Figure 4 and
Table 1. For example, we found that 57 of 82 modules con-
tain target genes of Cdc28 [41,42]. These results provide
evidence for potential cooperative interactions between
modules containing CDC28 and other modules. The
importance of these modules can be explicitly demon-
strated by the genes contained in them and the interactions
in the cooperative module network (Figure 4 and Table 1).
For example, module 0 (response to DNA damage stimu-
lus) contains genes whose products sense DNA damage,
activate the DNA repair system and pass this signal to
other functional components such as modules involved in
DNA replication [e.g., module 10 (maintenance of fidelity
during DNA-dependent DNA replication), and module 12
(DNA replication initiation)] to induce appropriate cell
responses. More results about cooperative interactions
through essential regulators are discussed in Additional
file 1.

Table 1 Modules in the cooperative module network (CMN).

ID No. genes1 Deg2 Function (p-value)3 Cell cycle-related genes4

0 91 34 response to DNA damage stimulus (3.93e-33) RAD24,RAD53,RAD9,DUN1,MEC1, MAD3,MRE11, MEC3,SGS1,CLB2

2 59 13 Golgi vesicle transport (5.21e-12) CDC50,GCS1,RGP1,SEC28,KAR2

30 27 13 cell morphogenesis (3.53e-09) CDC28,CLN4,PHO85,PCL2,SWE1, SWI4,FUS1,CDC12

3 42 8 mitosis (4.92e-14) BUB3,MAD1,MAD2,MAD3,BFA1, RAD53,CLN3

13 17 6 nucleosome assembly (1.99e-18) ABF1,ABF2,HTB1,HTB2,HHT1

39 13 6 protein amino acid acetylation (9.87e-12) GCN5,TAF1,TRA1,SPT8

22 15 5 nucleosome disassembly (4.47e-40) RCS1,RCS2,RCS4,RCS6,RCS8

28 24 5 lipid biosynthetic process (6.24e-09) LAC1,GAS3

4 27 4 ubiquitin-dependent protein catabolism (2.20e-30) RAD23,RPT1,RPT6,RPN11,RPN12

14 5 4 regulation of transcription (G2/M-phase) (1.83e-08) FKH1,FKH2,NDD1,ACE2,SWI5

32 11 4 regulation of cell division (1.55e-11) CDC28,CLN2,CLN3,STB1,FUS3

54 7 4 protein folding (0.00015) HAP1
1The number of genes contained in a module.
2The number of links of a module in the cooperative module network (CMN).
3For each module, we only listed the most significantly enriched functional GO categories (with p-value) (complete results are listed in Additional file 3).
4A subset of cell cycle-related genes contained in each module is listed in the last column (complete results are listed in Additional file 5).

Table 1 lists all modules that cooperate with more than four modules. For each module, we listed the most significantly enriched functional GO category (with p-
value). We found that all of these modules were annotated to cell cycle-associated or specific functions. To further analyze specific functions and interactions
mediated by each module, cell cycle-related genes reported in previous studies [40] were identified in each module (complete results are listed in Additional file
5). These genes include cell cycle-regulated genes and genes annotated in the functional categories of cell cycle and DNA processing. A subset of cell cycle-
related genes contained in each module is listed in the last column. Cell cycle-related genes in each module that control the progression of the cell cycle, such
as CDC28, cyclins, transcription factors, and checkpoint-related genes, are listed in the last column.
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Communication mechanisms and functions of phase-related
cooperative modules
In combination with the interactions represented in the
WPI network and identified correlated genes of each
identified module pair (see Additional file 7), we then
reconstructed a global map of the cooperative architec-
ture of module pairs. Using module 0 (response to DNA
damage stimulus) and module 4 (ubiquitin-dependent
protein catabolism) as examples, possible interfaces of
the two modules of an identified module pair and com-
munication with other modules could be inferred by
determining the direct physical interactions between the
correlated genes and genes within the modules in the
WPI network (Figure 5). The proteins in module 4 (ubi-
quitin-dependent protein catabolism), particularly Rad23
(YEL037C), are shown to interact directly with Module
0 (response to DNA damage stimulus) and members of
the 26S proteasome. These connections suggest that
Rad23 and Rad23-related ubiquitin/proteasome pro-
cesses are all necessary for nucleotide excision repair
and DNA damage checkpoints. In addition, Fkh1

(YIL131C) regulates both the DNA damage response
and ubiquitin-dependent modules, suggesting that the
function of these two modules might also be important
in the G2/M phases of the cell cycle. These cooperative
associations were also demonstrated in previous studies
[43,44].
One module may cooperate with different modules and
genes to promote progression through each phase of the
yeast cell cycle. We performed hypergeometric tests to
evaluate our results and to investigate cooperative mod-
ule pairs that significantly associate with cell cycle pro-
gression (see the Methods section for additional details).
Based on the tests, we found that 78 identified module
pairs significantly associate with the cell cycle process
and 67 identified module pairs significantly correlate
with genes that are regulated in a specific phase of the
cell cycle (complete results in Additional file 8). The
number of cooperative module pairs that significantly
correlate with genes that are functional in early G1, late
G1, S, G2, and M phase are 14, 36, 18, 15, and 20, respec-
tively (complete results in Additional file 8). To discover
the most essential cooperating module pairs and to deter-
mine their functions, we ranked the 67 phase-related
module pairs according to the number of their correlated
genes that are regulated in a specific cell cycle phase.
Genes regulated in a specific phase were identified with
the phase-regulated gene set from Cho et al. [45] (see the
Methods section for additional details; genes are listed in
Additional file 9). In this way, the top three module pairs
were chosen for each phase of the cell cycle (Table 2). To
analyze the mechanisms of the 15 phase-related coopera-
tive associations, we collected correlated genes of each
module pair that are regulated in the corresponding
phase of cell cycle and genes in the module pair that are
connected with these correlated genes by direct physical
interactions. In addition, we also collected genes that
mediate crosstalk links (direct physical interactions)
between two modules of a module pair.
As shown in Table 2, these cooperative associations
between cell cycle-specific components were verified in
previous studies. We also found that the interactions
among these modules and their phase-regulated corre-
lated genes occur mostly through regulators that control
the cell cycle and the transcription of phase-regulated
genes and checkpoint-related genes. As shown in our
results, cell cycle phase transitions are accompanied by
changes in the main functional modules and their inter-
actions (see Additional file 1 for more discussions).
Cooperative relationships of modules in each phase of
the cell cycle seem to be established differently by differ-
ent gene interactions within modules. For example, genes
that function in response to DNA damage stimulus
(genes in module 0) can communicate with genes related
to mismatch repair (genes in module 10) via Pol32 (late

Figure 5 Cooperating interactions related to the cooperative
pair of module 0 and module 4. This graph shows some of the
interactions and crosstalk for module 0 (response to DNA damage
stimulus) and module 4 (ubiquitin-dependent protein catabolism).
Green circles indicate genes in module 0, and yellow circles indicate
genes in module 4. Correlated genes of the cooperative module
pair are represented by purple circles. Links represent regulatory
interactions (red) and protein-protein interactions (blue) between
two genes in the weighted physical interaction network (WPI
network). Only crosstalk interactions and interactions with correlated
genes are shown. RAD23 (YEL037C) is contained in module 4, and
FKH2 (YIL131C) is a correlated gene of the module pair. The genes
in module 4, particularly RAD23, are shown to interact directly with
Module 0 and members of the 26S proteasome (contained in
Module 4). Fkh1 regulates both module 0 and 4. By tracing crosstalk
interactions between two modules and interactions with correlated
genes, we can infer potential cooperating interactions of a module
pair.
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G1 phase in Table 2) or with mitosis-related genes (genes
in module 3) at the S and G2/M checkpoints via Rad53
(S and G2 phase in Table 2). Moreover, we found that
signal transduction among modules occurs mainly
through Cdc28 and that Cdc28 associates with different
cyclins, transcription factors and genes regulated in dif-
ferent phases to promote cell cycle progression (early G1,
late G1, G2, and M phase in Table 2). Thus, we believe
that these cooperative associations cover important
operations in each phase.
Module crosstalk networks under the regulation of Cdc28,
phase-related cyclins, cell division cycle genes (CDC genes)
and transcription factors
Although previous studies have focused on functions of
the essential cyclin-dependent kinase Cdc28, cell

division cycle genes (CDC genes) and related transcrip-
tion factors, the crosstalk between modules controlled
by Cdc28 and phase-specific regulators is still not clear.
We analyzed the cooperative relationships (Figure 3) of
the correlated genes in each cooperative module pair to
identify direct crosstalks that involve the regulation of
Cdc28, known phase-related CDC genes, cyclins or tran-
scription factors [2] (see the Methods section for addi-
tional details). Table 3 lists the regulators for each phase
and modules containing these regulators. Finally, we
constructed crosstalk relationship graphs for each cell
cycle phase. Figures 6A, 7A, 8A, and 9A show interact-
ing relationships between modules controlled by specific
transcription factors in G1, S, G2 and M phases. Figures
6B, 7B, 8B, and 9B show the CDC genes, cyclins and

Table 2 Phase-related cooperative module pairs (the top three)

Phase Pair_ID1

(p-value)
Genes (1st) Genes (2nd) CorrGenes2

Early G1
(3, 4)

93(30,32)
(0.000168)

SWI4, CDC28, BNI1, FUS1 FUS3, STE5, CCD28, CLN2, CLN3 SWI4, FAR1

(5, 6) 50(42,30)
(0.00174)

CDC28, CDC34, CDC4, CLN2 CDC28, BNI1, SLT2, PKC1, SWE1 CDC6, FAR1

(7, 8) 37(32,0)
(0.0066)

CDC28, CLN2, CLN3, STB1 RAD9, RAD53, SWI6, MRC1, MEC1, CDC45 SWI4

Late G1
(9, 10, 11)

13(0,30)
(6.68E-11)

RAD18, RAD6, RAD53, CLB5 SWE1, CDC28, SWI4 HO, CLB6, SWE1

(12, 13) 20(0,15)
(0)

RAD53, RAD52, RAD1, RAD14 CDC9

(14, 15, 16) 15(0,10)
(0)

POL30,POL32, RAD9 MSH2, MSH3, MSH6, MLH1, EXO1 POL30, MSH6, MSH2

S
(17, 18)

2(3,0)
(7.52E-09)

CIN8, KIP3, MAD2 RAD53, DUN1, MEC1, CDH1 CIN8,PDS1

(19, 20) 43(37,17)
(4.07E-08)

SPC24,DAM1, CBF2 MTW1, NNF1, NSL1, DSN1, NDC80 MTW1,SPC25,SPC110, CBF2

(21, 22) 34(3,27)
(1.71E-06)

BIM1, CIN8, KAR9 BIK1 CIN8, BIM1

G2 (23) 1(1,0)
(0.00027)

MOB1, SWI4, SIC1, CDC28 DBF2, LTE1, CLB2, SRS2 MOB1, SRS2, DBF20

(24, 25, 26) 5(39,0)
(0.00015)

GCN5, SPT8 RAD51, RAD53, ASF1, RAD6, MEC1 HTZ1

(27, 28) 50(42,30)
(0.0029)

CDC34, CDC4, CDC28 SWE1, PKC1 ELM1, CHS2

M
(29, 30)

47(30,14)
(2.3E-08)

PCL2, PHO85, CDC28 SWI5, ACE2, FKH2, FKH1, NDD1 CLB3, SWI5, ACE2, CDC5, BUD4, CDC28

(31, 32) 92(3,79)
(2.95E-08)

BUB3, CLB3, CLB5 SIC1, CLB5, CDC28 CLB3, CLB1, CLB4, CDC20

(33, 34, 35) 93(30,32)
(8.91E-05)

SLT2,CDC12, CDC28 CLN1, CLN2, FUS3, CDC28 MSG5, BUD2

1Pair_ID indicates the unique identifier of each identified module pair; (ID_1, ID_2): indicates the unique identifiers (IDs) of the first and second modules of a
module pair, respectively.
2CorrGenes indicates correlated genes of a module pairs that are regulated in the corresponding phase.

To discover cooperative module pairs essential for controlling cell cycle progression, we ranked the 67 phase-related module pairs (complete results in Additional
file 8) according to the number of phase-regulated genes correlated with each module pair and then listed the top three module pairs for each phase. The
statistical significance of the cooperation of a module pair (p-value) and the ID of a module pair are listed in the second column. To assess the effects and
mechanisms of cooperation, a subset of regulated correlated genes for each module pair and genes demonstrated to be associated with these correlated genes
are also listed in the table. These genes include genes contained in the first module (Genes (1st)) and in the second module (Genes (2nd)) of a module pair. The
references for these cooperative interactions are listed in Additional file 1 Table A1. The serial numbers of these references are shown in the first column.
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Cdc28-associated crosstalk relationships of G1, S, G2
and M phases. In these graphs, module pairs mediated
by these regulators and modules that contain these reg-
ulators were investigated (detailed information is in
Additional file 10 and Additional file 11). The essential
and specific associations of each relationship graph that
were previously reported are summarized in Figure 10.
The associations mediated by Cdc28, cyclins, and CDC
genes during G2 and M phases were merged into the
graph of G2 phase in Figure 10. Thus, by identifying
phase-specific module interactions involved in cell cycle
regulation, we can further determine the influences and
functions of module interactions and regulators in con-
trolling the cell cycle (see Figure 10). A total of 59 mod-
ule pairs that correlate with these regulators were
identified (see Additional file 10). Figure 11 shows the
number of identified module pairs mediated by each
regulator.
When only connections via protein-protein interactions
were considered, the relationship graphs of Cdc28 and
CDC genes of G1, G2, and M phase (Figure 6B, 8B9B
and 10) and the relationship graph of G1 and G2 phase-
related transcription factors showed a compact connec-
tivity of modules (Figure 6A, 8A and 10). This type of
connectivity implies that modules display direct cross-
talk with each other. For example, modules 0 (response
to DNA damage stimulus), 32 (regulation of cell divi-
sion), and 42 (G1/S transition of mitotic cell cycle and
interphase) all contain Cdc28, and these modules con-
nect to each other to form a clique-like subgraph in the
relationship graph of Cdc28, cyclins, and CDC genes
(Figure 6B and G1 phase of Figure 10). These relation-
ships are primarily due to interactions involving Cdc28,
related-cyclins, Cdc28 substrates and phase-related tran-
scriptional factors. Regulatory relationships of S, G2 and
M phase are mainly mediated by module 14 (regulation
of transcription during G2/M phase) (Figure 7A, 8A, 9A
and 10). Transcriptional factors essential in progression
of S to M phase are contained in module 14. These rela-
tionships suggest possible cooperations among func-
tional modules for regulating the progression of each
phase (see Additional file 1 for more discussions of each
relationship graph and references).

Discussion
To construct a global map of cooperative functional
components in a specific cellular process, we developed
an approach to gather more information and to better
understand interactions between different functional
modules. As an example, we applied this approach to
the yeast cell cycle. Using this methodology, we identi-
fied genes and interactions related to the regulation and
signal transduction of cooperative functional compo-
nents in the cell cycle, in addition to cooperative mod-
ule pairs. The structures and properties of module
cooperation in the cell cycle were also revealed by our
analyses. Most of these results are consistent with pre-
vious studies and can be used to explain the complex
operation of the cell cycle.
The weighted physical interaction network, search

algorithm, and analytical methods enhanced the ability of
our approach to identify condition-specific cooperative
modules and to decipher mechanisms of module coop-
eration. We designed the weighted physical interaction
network to capture dynamic information about genes
and to measure the relationships between genes and
modules. The weighted physical interaction network can
be treated as a platform for integrating information from
different types of experimental data. Thus, the correla-
tions between modules identified by the spanning algo-
rithm will not be restricted to only one type. Our
methods can also identify important associations and
genes related to module cooperation. In the cooperative
module network analysis, we constructed an association
graph of the cell cycle response to DNA damage stimulus
using cooperative module pairs identified from the pre-
vious step. Based on functional annotation by GO and
the cell cycle-related genes contained in each module, we
were able to infer specific functions of the cooperative
associations and the identified modules. Most modules
were found to be essential for the cell cycle and impor-
tant for module cooperation during different phases of
the cell cycle. Examples include modules 0 (response to
DNA damage stimulus), 30 (cell morphogenesis) and 3
(mitosis). Module 3 associated with other modules speci-
fic to mitosis, whereas module 0 (response to DNA
damage stimulus) and module 30 (cell morphogenesis)

Table 3 Regulators of each phase.

Phase Transcriptional
Factors

CDC28/cyclins/CDC
genes

Modules containing
these factors (ID)

G1 SWI4, MBP1, STB1, SWI6, ACE2, SKN7 CLN3, FUS3, FAR1, CDC36, CDC39, CLN2, CDC37, CDC28, CLN1 0, 1, 14, 30, 32, 42, 44, 66, 79

S SWI4, MBP1, NDD1, SWI6, SKN7 CDC24, CDC7, CDC8, CDC21 0, 12, 14, 30, 66, 77

G2 FKH1, FKH2, NDD1, MCM1 CDC11, CLB2, CDC15, CLB4, CDC28, CDC3, CDC5, CDC14, CLB1, CLB3 1, 3, 14, 30, 32, 42, 44, 79

M MCM1, SWI5, ACE2 CDC28, CLB1, CLB2, CLB3, CLB4 0, 1, 3, 14, 30, 32, 42, 44, 79,

Essential regulators, including Cdc28, cyclins, CDC genes, and phase-specific transcription factors are listed for each phase. Relationship graphs of each phase
were constructed via cooperative interactions through regulators of the phase (Figure 6,7,8,9, and 10). To trace regulators that mediate crosstalk between
cooperative modules, the IDs of modules that contain these regulators are also listed in the final column.
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Figure 6 Crosstalk relationship graphs of G1 phase. We constructed relationship graphs based on significant crosstalk interactions through
G1-specific regulators (see the Methods section for details). Yellow circles indicate modules from identified cooperative module pairs, and green
circles indicate regulators not contained in any modules. The size of the yellow circles is proportional to the number of genes within the
modules. Links indicate either relationships dependent on a significant number of protein-protein interactions (blue links) or relationships
dependent on a significant number of regulatory interactions (red or purple links) (see the Methods section for details). Only relationships
among correlated genes and their correlated module pairs were used to construct the relationship graphs (Figure 3). When a phase-specific
transcription factor was contained in module X and regulated a significant number of genes in module Y, a red link was drawn from the circle
representing X to the circle representing Y. On the contrary, if a phase specific-regulator was regulated by more than one factor in module Z, a
purple link was drawn from the circle representing Z to the circle representing the module containing the regulator or the circle indicating the
regulator. (A) Relationship graph of G1-related transcription factors. Factors considered in the graph include SWI4, MBP1, SWI6, STB1, ACE2, and
SKN7. SWI4 is contained in module 30 (cell morphogenesis) and module 66 (amino sugar metabolic process). SWI6 and SKN7 are contained in
module 0 (response to DNA damage stimulus). STB1 is contained in module 32 (regulation of cell division) and module 42 (G1/S transition of
mitosis and interphase). ACE2 is contained in module 14 (regulation of transcription during G2/M phase interphase). (B) Relationship graph of
CDC28, G1-related cyclins and CDC genes. In this graph, we focused on module crosstalk through Cdc28, Cln1, Cln2, Cln3, Cdc36, Cdc37, Cdc39,
Far1 and Fus3. CDC28 is contained in module 1 (regulation of cell cycle), module 30 (cell morphogenesis), module 32 (regulation of cell division),
module 42 (G1/S transition of mitotic cell cycle and interphase), module 44 (regulation of mitosis), and module 79 (regulation of cyclin-
dependent protein kinase activity). CLN2 is contained in module 32 (regulation of cell division), module 42 (G1/S transition of mitotic cell cycle
and interphase), and module 79. CLN3 is contained in module 32. FUS3 is contained in module 32.
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Figure 7 Crosstalk relationship graphs of S phase. Yellow circles indicate modules from identified cooperative module pairs, and green
circles indicate regulators not contained in any modules. The size of the yellow circles is proportional to the number of genes within the
modules. Links indicate either relationships dependent on a significant number of protein-protein interactions (blue links) or relationships
dependent on a significant number of regulatory interactions (red or purple links) (see the Methods section for details). Only relationships
among correlated genes and their correlated module pairs were used to construct the relationship graphs (Figure 3). When a phase-specific
transcription factor was contained in module X and regulated a significant number of genes in module Y, a red link was drawn from the circle
representing X to the circle representing Y. On the contrary, if a phase specific-regulator was regulated by more than one factor in module Z, a
purple link was drawn from the circle representing Z to the circle representing the module containing the regulator or the circle indicating the
regulator. (a) Relationship graph of S phase-related transcription factors. Factors considered in the graph include SWI4, SWI6, MBP1, NDD1, and
Skn7. SWI4 is contained in module 30 (cell morphogenesis) and module 66 (amino sugar metabolic processes). SWI6 and SKN7 are contained in
module 0 (response to DNA damage stimulus). NDD1 is contained in module14 (regulation of transcription during G2/M phase interphase). (b)
Relationship graph of S phase-related CDC genes. Cdc7, Cdc8, Cdc21, and Cdc24 are considered in the graph. CDC7 is contained in module 12
(DNA-dependent DNA replication initiation). CDC24 is contained in module 77 (regulation of nuclear division).
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Figure 8 Crosstalk relationship graphs of G2 phase. Yellow circles indicate modules from identified cooperative module pairs, and green
circles indicate regulators not contained in any modules. The size of the yellow circles is proportional to the number of genes within the
modules. Links indicate either relationships dependent on a significant number of protein-protein interactions (blue links) or relationships
dependent on a significant number of regulatory interactions (red or purple links) (see the Methods section for details). Only relationships
among correlated genes and their correlated module pairs were used to construct the relationship graphs (Figure 3). When a phase-specific
transcription factor was contained in module X and regulated a significant number of genes in module Y, a red link was drawn from the circle
representing X to the circle representing Y. On the contrary, if a phase specific-regulator was regulated by more than one factor in module Z, a
purple link was drawn from the circle representing Z to the circle representing the module containing the regulator or the circle indicating the
regulator. (a) Relationship graph of G2-related transcription factors. Factors considered in the graph include Fkh2, Fkh1, Ndd1, and Mcm1. These
factors are all contained in module 14 (regulation of transcription during G2/M phase interphase). (b) Relationship graph of G2 phase-related
CDC genes, cyclins, and CDC28. Ccd3, Ccd5, Ccd11, Ccd14, Ccd15, Ccd28, Clb1, Clb2, Clb3, and Clb4 are considered in the graph. CDC5, CDC14,
and CDC15 are contained in module 44 (regulation of mitosis). CDC28 is contained in module 1 (regulation of cell cycle), module 30 (cell
morphogenesis), module 32 (regulation of cell division), module 42 (G1/S transition of mitotic cell cycle and interphase), module 44 (regulation
of mitosis), and module 79 (regulation of cyclin-dependent protein kinase activity). CLB2 is contained in module 0 (response to DNA damage
stimulus). CLB3 is contained in module 3 (mitosis).

Hsu et al. BMC Bioinformatics 2011, 12:281
http://www.biomedcentral.com/1471-2105/12/281

Page 14 of 22



Figure 9 Crosstalk relationship graphs of M phase. Yellow circles indicate modules from identified cooperative module pairs, and green
circles indicate regulators not contained in any modules. The size of the yellow circles is proportional to the number of genes within the
modules. Links indicate either relationships dependent on a significant number of protein-protein interactions (blue links) or relationships
dependent on a significant number of regulatory interactions (red or purple links) (see the Methods section for details). Only relationships
among correlated genes and their correlated module pairs were used to construct the relationship graphs (Figure 3). When a phase-specific
transcription factor was contained in module X and regulated a significant number of genes in module Y, a red link was drawn from the circle
representing X to the circle representing Y. On the contrary, if a phase specific-regulator was regulated by more than one factor in module Z, a
purple link was drawn from the circle representing Z to the circle representing the module containing the regulator or the circle indicating the
regulator. (a) Relationship graph of M phase-related transcription factors. Factors considered in the graph include Ace2, Swi5, and Mcm1. ACE2
and SWI5 are contained in module 14 (regulation of transcription during G2/M phase interphase). (b) The relationship graph of G2 phase-related
CDC genes, cyclins, and CDC28. Ccd28, Clb1, Clb2, Clb3, and Clb4 are considered in the graph. CDC28 is contained in module 1 (regulation of
cell cycle), module 30 (cell morphogenesis), module 32 (regulation of cell division), module 42 (G1/S transition of mitotic cell cycle and
interphase), module 44 (regulation of mitosis), and module 79 (regulation of cyclin-dependent protein kinase activity). CLB2 is contained in
module 0 (response to DNA damage stimuli). CLB3 is contained in module 3 (mitosis).
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Figure 10 Summary of crosstalk relationship graphs for the yeast cell cycle. Crosstalk relationship graphs (Figure 6, 7, 8 and 9) belonging
to the same phase were combined to form one graph. The associations mediated by Cdc28, cyclins, and CDC genes during G2 and M phase
were merged into the graph of G2 phase. Only the most essential and specific associations of each crosstalk relationship graph that were
demonstrated are shown. The references for these crosstalk associations are listed in Additional file 1 Table A2. The center of the summary graph
shows each phase of the cell cycle. Each graph is placed according to the related stage of the cell cycle. In the graph, yellow boxes labeled
“module ID” indicate modules, and green circles indicate regulators not contained in any modules. Phase-related regulators contained in a
module are listed under the circle presenting the module. Links indicate either relationships dependent on protein-protein interactions (blue
links) or relationships dependent on transcriptional regulation (red or purple links). Only relationships among correlated genes and their
correlated module pairs were used to construct the relationship graphs (see the Methods section for details).

Figure 11 Number of cooperative relationships mediated by phase-specific regulators. For each phase-specific regulator listed in Table 3,
the number of cooperative module pairs that correlate with the regulator is shown in Figure 11.
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associated with modules of more than one phase in the
cell cycle (Figure 4, Figure 10, Table 2). These results
highlight the important roles of these modules and the
cooperative associations among them.
Based on our phase-related module pair analysis, we

further inferred detailed interaction dynamics of each
cooperative module pair during various phases of the
cell cycle. For example, to initiate appropriate responses
to DNA damage, module 0 cooperates with genes within
specific modules in the G1, S and G2 phases (Table 2).
Similarly, module 30 interacts with genes expressed in
the G1, G2 and M phases to regulate cell morphogen-
esis. These interactions also suggest possible mediators
of these associations and specific functions of them in
the cell cycle. In this analysis, we also calculated the
number of correlated genes regulated in a specific phase
of the cell cycle and thereby ranked the importance of
the module pairs to each phase. These results highlight
the main interactions among functional components in
each phase (Table 2).
Finally, relationship graph analysis was also performed

to display crosstalk between identified modules. This ana-
lytical method was designed to identify crosstalk mediated
by a set of regulators, Cdc28, cyclins, cell cycle division-
related genes (CDC genes) and phase-related transcription
factors. From the relationship graphs, we could easily
visualize the most essential and direct regulatory interac-
tions in the process and discover phase-specific regulation.
For example, Cdc28 was strongly associated with the
crosstalk among a group of functional modules related to
mitosis and was correlated with transcriptional regulators
such as Fkh1, Fkh2, and Ndd1 during G2/M phase (G2
phase in Figure 10) [42,46].

Conclusions
Using the approach described here, we comprehensively
identified dynamic assembling or activating modules and
the cooperative relationships between them. Following
several analytical steps, a map of dynamic cooperative
associations was constructed by identifying regulators,
regulated genes and interactions correlated with coopera-
tive module pairs. This approach could be helpful in
deciphering the cooperative mechanisms of a specific
condition. The advantages of this methodology in identi-
fying important components, interactions and genes in
the yeast cell cycle were demonstrated by our results.
Moreover, this approach can combine other data such as
significantly regulated gene sets or known regulators to
infer associations among functional components that are
mediated by the gene sets and regulators. Thus, it could
also be useful in predicting specific functions of assigned
gene sets, modules or interactions. As our methodology
is quite flexible, it could easily be applied to experimental
data from different species, conditions, or biological

techniques. Thus, by comparing results from different
data sets, we should be able to identify unknown proper-
ties of dynamic cooperative interactions and gather new
insights into dynamic cooperation mechanisms and con-
dition-specific components.

Methods
Construction of a weighted physical interaction network
(WPI network)
In the first step (Figure 1A), to predict probable func-
tional correlations among genes in the cell cycle, we
constructed a co-expression gene network based on
gene expression profiles during the yeast cell cycle from
Cho et al. [45] (obtained from ExpressDB [47]). A node
of the co-expression network represents a gene, and a
link (or edges) represents the significant expression cor-
relation between two genes. Pairs of genes with Pearson
correlation scores above 0.683 or below -0.683 were
selected and considered to be significant positive and
negative co-expression, respectively (see Additional file
1 for more details).
We then designed a weighted physical interaction (WPI)

network using ChIP-chip data, protein-protein interaction
data, and the co-expression network established in the
previous step. The ChIP-chip data set was obtained from
Harbison et al. [48]. Protein-protein interaction data iden-
tified with different experimental techniques for yeast
were downloaded from the BioGRID database [13] and are
shown in the Additional file 12. Nodes in the WPI net-
work represented genes, links represented protein-protein
interactions from BioGRID and regulatory relationships
from ChIP-chip data. Based on these data, we generated
an undirected link for each protein-protein interaction
and directed links from transcription factors to target
genes. Finally, the degree (the number of links) of each
gene in the co-expression network was assigned to each
corresponding gene and represents the weight of each
gene in the WPI network.

The consistency score
The consistency score (CT_score; Equation 1) measures
the difference between the weights of genes correlated
with a pair of modules and the weights of genes that are
related to only one of the modules in the WPI network.

CT scorem1,m2 =
∑
i∈G

(

Min
{

(Nm1,i − M1
N

NLi), (Nm2,i − M2
N

NLi)
}

×Nm1,i × Nm1,i

NLi
× CopLi)

(1)

In Equation 1, G is a gene set that consists of all genes
in yeast; NLi is the number of physical links to gene i in
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the weighted physical interaction network; N is the total
number of genes in yeast; CopLi is the weight of gene i
in the WPI network; and Nm1,i and Nm2,i are the
observed numbers of physical links connecting gene i
and the genes in modules m1 and m2, respectively, in
the WPI network. M1 and M2 are the numbers of genes
contained in modules m1 and m2, respectively. (M1/N)
*NLi and (M2/N)*NLi are used to estimate the expected
number of links from genes in modules m1 and m2,
respectively, to gene i.

The mediation score
The mediation score (CoopMed; Equation 3) helped us
to incorporate genes that mediate interactions among
genes in the module but rarely link to genes outside of
the module. The CMRatio score was used to measure
the ratio of shared interacting partners of two genes.

CMRatioi,j =

CLi,j

NLi
+

CLi,j

NLj

2

(2)

CoopMedj,m = R

×Max
{

CMratioi,j : i ∈ neighbors of j,
i ∈ m

}

×CT scorei,seed

(3)

The CMRatioi,j (Equation 2) is used to estimate
whether gene j should be included in the module con-
taining gene i. CLi,j is the number of genes linked by both
genes i and j in the weighted physical interaction net-
work. Thus, the more common neighbors between gene i
and gene j, the greater the possibility that gene i and
gene j are in the same module. Considering a pair of
genes s and t as a seed (an initial module pair), a gene
pair is a special case of a module pair (i.e., each module
of a module pair contains only one gene). The CT_scorei,
seed is the consistency score of gene i and the initial gene
in the other module. For example, when a seed compris-
ing genes s and t is used to extend modules m1 and m2,
respectively, the CT_scorei,seed of gene i in m1 is the con-
sistency scores of gene i and gene t. CoopMedj,m mea-
sures the consistency score of genes j and t when
cooperating interactions of j and t are mediated by gene
i. R is the probability that the link between gene i and
gene j is real. R was set to 0.9 according the parameter b
from a previous study [49].

The cooperation score (MCoop_score)
The cooperation score (MCoop_score; Equation 4) was
used to estimate the essentiality of the correlation of a
module pairs and a scoring function of spanning algo-
rithm. Consider a seed: m1={s} and m2={t} and a gene u

contained in the same module with s. The CT_scoreu,
seed is the consistency score of gene u and the initial
gene t (Equation 3 in the Results section). CT_score_Pu
is the consistency score of gene i that maximizes the
mediation score of u and an initial gene (s or t) of the
other module (CoopMedu,m1).

MCoop scorem1,m2 =
∑
u∈m1

(

CoopMedu,m1 + CT scoreu,seed

−CT score Pu)

+
∑
v∈m2

(CoopMedv,m2 + CT scorev,seed

−CT score Pv)

(4)

The procedure for identifying cooperative module pairs
1. Construct a WPI network. (Figure 1A).
2. Select gene pairs with significantly high consistency

scores to be initial module pairs (seeds) (step 2 in Figure
2; see Additional file 1 for more details). A gene pair is a
special case of a module pair (i.e., each module of a
module pair contains only one gene). Hence, we can cal-
culate the consistency scores (CT_core; Equation 1) of
all (N*(N-1))/2 gene pairs. Rank the non-zero consis-
tency scores in descending order and select gene pairs
with consistency scores above the 99th percentile as
seeds.
3. For each seed, apply our spanning algorithm to

extend a module pair that maximizes the cooperation
score (MCoop_score of the module pair; Equation 4 and
step 3 in Figure 2).
4. Iteratively merge highly overlapped modules until

no more modules can be merged. Consider two mod-
ules. If more than two-thirds genes of one module are
also contained in the other module, the two modules
are treated as highly overlapped modules. We treated
highly overlapped modules as modules with identical
functions.
5. Remove module pairs that are comprised of highly

overlapped modules (step 5 in Figure 2). Cooperative
correlations between overlapped modules are regarded
as correlations within the same module. A module pair
that consists of highly overlapped modules will be
removed.

The spanning algorithm
The spanning algorithm was used to extend a seed (an
initial module pair) to a pair of modules that maximize
the cooperation score (MCoop_score; Equation 4 in
Methods). Consider a seed contains gene s and gene t:
m1={s} and m2={t}. The spanning algorithm searched a

Hsu et al. BMC Bioinformatics 2011, 12:281
http://www.biomedcentral.com/1471-2105/12/281

Page 18 of 22



pair of sub-networks in the weighted physical interaction
network (WPI network) that maximize the cooperation
score (MCoop_score) and contain s and t, respectively.
Genes of each sub-network were assigned to the corre-
sponding modules.

Pseudo-code of the spanning algorithm
Main_Function:

Input:
A weighted physical interaction network (WPI
network)
A seed: an initial module pair m1={s} and m2={t}

1. Construct a gene set N by adding all genes in the
WPI network to N
2. Max_score_m1m2= CT_scores,t
3. call Sub Function: Module_extend(the WPI net-

work, gene t, a module pair: m1 and m2, Max_scor-
e_m1m2, gene s, N, R = 0.9)
4. call Sub Function: Module_extend(the WPI network,

gene s, module pair: m2 and m1, Max_score_m1m2, gene
t, N, R = 0.9)
#R was set to 0.9 according the parameter b from a

previous study [49].
Sub Function: Module_extend

Input:
The weighted physical interaction network (WPI
network)
Cooper_center: a gene t
A module pair M1 and M2
Max_score
Initial gene: a gene y
Visit_list: a gene set N
R # R is the probability that the physical interac-
tion between a gene pair is real.

1 If (there is a neighbour of y is contained in N)
2 select the gene i that is a neighbour of y with the

largest CMRatiyy,i from N
3 remove i from N
4 add i to M1 and count MCoop_scoreM1,M2

5 If (MCoop_scoreM1,M2 >= Max_score)
6 Max_score = MCoop_scoreM1,M2

7 If (CT_scorei,t >= CT_scorey,t)
8 call Sub Function: Module_extend(the WPI net-

work, gene t, M1 and M2, Max_score, gene i, N, R = 0.9)
9 Else
10 remove i from M1 and return

Evaluation of correlations within and between modules
To evaluate the correlations within and between mod-
ules of an identified module pair, we measured the

significance of gene correlations within each module
and between modules. We tested two types of correla-
tion: physical interaction and co-expression. The signifi-
cance of physical interaction within and between
modules is measured by comparing the number of phy-
sical interactions within and between modules found in
the WPI network to that found in random networks
(see Additional file 1 for details). Similar methods to
measure the correlations of gene expression patterns
had been previously proposed [50,51]. To measure the
significance of co-expressed correlations within and
between modules of each identified module pair, we
compared the number of co-expressed gene pairs within
and between modules found in the cell cycle expression
dataset from Cho et al. [45] with that found in rando-
mized expression datasets (see Additional file 1 for
details).

Datasets used in this study
To evaluate our method, we used a cell cycle-related
gene set and a phase-regulated gene set. The cell cycle-
related gene set consisted of 985 genes from three types
of benchmark sets, including genes significantly regu-
lated in the cell cycle and genes annotated in functional
categories of cell cycle and DNA processing [40] (genes
are listed in Additional file 4). The phase-regulated gene
set consisted of 416 genes with significant periodically
changing expression identified by Cho et al. [45] and
was divided into five groups: genes regulated in early G1
phase, late G1 phase, S phase, G2 phase, and M phase
(genes are listed in Additional file 9).

Statistical evaluation of the cooperation of identified
module pairs
We assessed the significance of the cooperation of a
module pair in a specific phase of the cell cycle using a
hypergeometric test.

P =
min(B,C)∑

i=b

(
B
i

)(
G − B
C − i

)
(

G
C

) (5)

where G is the number of genes in the yeast genome;
C is the number of correlated genes of the cooperative
module pair; b is the number of correlated genes of the
module pair that are also in the previously reported
gene set D; B is the number of genes in D. We esti-
mated the statistical significance of the association of a
phase with the correlated genes of a module pair. For
estimating the statistical significance of the association
of a phase, D was assigned the phase-regulated gene set
that consists of genes regulated in a specific phase (G1/
S/G2/M) reported by Cho et al. [45] (genes are listed in
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Additional file 9). Otherwise, D was assigned the cell
cycle-related gene set (genes are listed in Additional file
4) to identify module pairs that significantly associate
with the cell cycle process. The significance of the coop-
eration of a module pair in the cell cycle process was
also evaluated. Module pairs with p-values < 0.05 were
considered significant in the cell cycle process or phase.

Construction of the relationship graph for each phase of
cell cycle
To present a map of cooperative regulation and interac-
tive mechanisms between identified modules in the cell
cycle, we constructed relationship graphs for each phase
by combining correlated genes of module pairs (genes
are listed in Additional file 7) and phase-related regula-
tors (see Table 3). In these relationship graphs, each
identified module and regulators not located in any of
these modules are represented by a node. To present sig-
nificant associations, we only consider regulators that are
correlated genes of a module pair and relationships
among correlated genes and their correlated module
pairs (Figure 3). In each relationship graph, a link
between two modules can be treated as a significant
crosstalk relationship mediated by regulators between
either two different modules or a module and a regulator
that are not located in any module (see Additional file 1
for more details). Directed links represent transcriptional
associations and undirected links represent protein-pro-
tein associations. Consider a cooperative module pair,
module m1 and module m2, and the regulator x (one of
the regulators listed in Table 3). If x is a correlated gene
of the module pair that regulates (by either transcrip-
tional or protein-protein interactions) or is regulated by a
significant number of genes in module m2, a link will be
generated between either the module containing x or x
and module m2 according to the type of interaction.
Similarly, a link will be generated between either the
module containing x or x and module m1. For example,
if x is contained in m1 and is transcriptionally regulated
by a significant number of genes in m2, a directed link
will be generated from m2 to m1. Finally, we excluded
modules without a link from each relationship graph.

Additional material

Additional file 1: Supplementary discussions. Additional details of our
method and discussions were described in Additional file 1.

Additional file 2: Gene lists of the identified modules. Additional file
2 lists the genes in each identified module.

Additional file 3: Functional annotation results o f the identified
modules. Additional file 3 lists functional annotation results of the 82
modules. We annotated functions of the identified modules from
biological processes of Gene Ontology and listed the most significant
function of each module.

Additional file 4: Cell cycle-related gene set. The cell cycle-related
gene set consisted of 985 genes from three types of benchmark sets,
including genes significantly regulated in the cell cycle and genes
annotated in functional categories of cell cycle and DNA processing [40].

Additional file 5: Cell cycle-related genes of the identified modules.
Genes that are cell cycle-regulated and/or functional in the cell cycle
(cell cycle-related genes) (see the Methods section for additional details)
were identified in each module. Additional file 5 lists cell cycle-related
genes in the modules.

Additional file 6: Statistical results of correlation evaluation. For
each identified module pair, we evaluated gene correlations within and
between modules. Additional file 6 lists the final results including
module pairs with significant number of gene correlations and modules
with significant number of gene correlations.

Additional file 7: Correlated genes of the identified module pairs.
Additional file 7 lists the correlated genes of each identified module pair.

Additional file 8: Statistical evaluation of the cooperation of the
identified module pairs. We evaluated the statistical significance of the
cooperation of each module pair identified by our method and listed
module pairs that significantly cooperate with genes functional in the
cell cycle process or a specific phase. The column Pair_ID lists the
unique identifier of each module pair. The column P-value lists the
probability that the cooperation of a module pair associates with the cell
cycle process or a specific phase.

Additional file 9: Phase-regulated gene set. The phase-regulated gene
set consisted of 416 genes with significant periodically changing
expression identified by Cho et al. [45].

Additional file 10: Cooperative relationship media ted by Cdc28
and phase-related regulators. Additional file 10 lists cooperative
module pairs that cooperate with essential regulators of the yeast cell
cycle. The column Regulator lists regulators cooperating with a module
pair.

Additional file 11: Modules containing Cdc28 and phase-related
regulators. We listed modules identified by our method that contain
Cdc28 and phase-related regulators.

Additional file 12: Protein-protein interaction data. Protein-protein
interaction data for yeast were downloaded from the BioGRID database
[13].
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