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Summary
Background There is minimal experience in continuous glucose monitoring (CGM) among underserved racial/eth-
nic minority populations with or at risk of type 2 diabetes (T2D), and therefore a lack of CGM-driven insight for
these individuals. We analyzed breakfast-related CGM profiles of free-living, predominantly Hispanic/Latino individ-
uals at-risk of T2D, with pre-T2D, or with non-insulin treated T2D.

Methods Starting February 2019, 119 participants in Santa Barbara, CA, USA, (93 female, 87% Hispanic/Latino [pre-
dominantly Mexican-American], age 54¢4 [§12¢1] years), stratified by HbA1c levels into (i) at-risk of T2D, (ii) with pre-
T2D, and (iii) with non-insulin treated T2D, wore blinded CGMs for two weeks. We compared valid CGM profiles from
106 of these participants representing glucose response to breakfast using four parameters.

Findings A “northeast drift” was observed in breakfast glucose responses comparing at-risk to pre-T2D to T2D par-
ticipants. T2D participants had a significantly higher pre-breakfast glucose level, glucose rise, glucose incremental
area under the curve (all p < 0¢0001), and time to glucose peak (p < 0¢05) compared to pre-T2D and at-risk partici-
pants. After adjusting for demographic and clinical covariates, pre-breakfast glucose and time to peak (p < 0¢0001)
were significantly associated with HbA1c. The model predicted HbA1c within (0¢55§0¢67)% of true laboratory
HbA1c values.

Interpretation For predominantly Hispanic/Latino adults, the average two-week breakfast glucose response shows a
progression of dysglycemia from at-risk of T2D to pre-T2D to T2D. CGM-based breakfast metrics have the potential
to predict HbA1c levels and monitor diabetes progression.
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Introduction
One main advantage of continuous glucose monitor-
ing (CGM) is the ability to observe glycemic excur-
sions that cannot be captured using HbA1c levels
alone. Data obtained from CGM profiles can be used
to set glycemic targets and guide therapeutic deci-
sion-making for people with established diabetes.1

For adults developing type 2 diabetes (T2D), there
appears to be a progression from normal glucose
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tolerance to T2D due to progressive loss of adequate
b-cell insulin secretion in the setting of insulin resis-
tance.2 However, the natural history of progression
from normal glucose tolerance to T2D has not been
well defined using CGM. There are also no national
or international guidelines that include CGM-derived
data from racial and/or ethnic minority groups,
which in the United States (U.S.) are populations
disproportionately impacted by T2D.3 Further, access
to diabetes technology in the U.S. is also influenced
significantly by race and ethnicity as well as social
deprivation status.4
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Research in context

Evidence before this study

There is very limited experience in continuous glucose
monitoring (CGM) among underserved racial/ethnic
minority populations with or at risk of type 2 diabetes
(T2D). However, previous research has suggested that
glycemic responses related to breakfast can influence
subsequent glycemia.

Added value of this study

This study analyzed CGM profiles in predominantly His-
panic/Latino adults living with or at risk of developing
non-insulin treated T2D. Participants were stratified by
HbA1c levels. We observed that the peaks of the break-
fast glucose response shifted in a northeast direction,
comparing participants who were at-risk of T2D, with
pre-T2D, or with T2D, indicating a progression in dysgly-
cemia. Participants with T2D had significantly higher
starting glucose, glucose rise, time to glucose peak, and
overall glucose response than at-risk and pre-T2D
participants.

Implications of all the available evidence

These findings may offer new opportunities for non-
pharmacologic and pharmacologic interventions for
underserved communities facing a disproportionate
burden of diabetes.
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To understand data derived from CGM profiles, a
variety of metrics have been suggested. Average glucose
and glucose variability measured over two weeks of
CGM use provide an overall picture of glycemia in indi-
viduals.1 These metrics also include the time in range,
which correlates with both HbA1c levels and risk of com-
plications. Additional recommended metrics include
time below (<70 and <54mg/dL) and time above
(>180mg/dL) target ranges as useful parameters for re-
evaluation of a treatment regimen.5 A recent study
showed that the standard metrics differ comparing over-
night and daytime CGM data in adults at risk of as well
as with non-insulin treated T2D.6 Furthermore, in that
study, the time spent in the 70−140mg/dL range dur-
ing the day but not overnight was closely associated
with HbA1c.

Current CGM-based metrics provide a clinically
meaningful macroscopic perspective on an individual’s
glycemia. However, these metrics average out the effect
of distinct and potentially prognostic glycemic patterns
occurring at different times of the day, e.g., due to
meals. This study aimed to gain data-driven insights
from the postprandial glucose response to breakfast in a
cohort of participants at risk of or with established T2D,
most of whom were underserved Hispanic/Latino
adults. We chose to analyze post-breakfast glycemia as
the start of breakfast is relatively easier to detect com-
pared to meals later in the day since it is the first major
meal after several hours of sleep. Breakfast-related gly-
cemia has also been the target of several diet-focused
interventions for diabetes and obesity.7−10 We observed
that the breakfast glucose response shows a distinct
progression of dysglycemia from individuals at-risk
of T2D, to pre-T2D, to those with T2D. We quanti-
fied the breakfast response using four parameters
that were found to be significantly associated with
the HbA1c levels of the participants independently of
known clinical and demographic covariates. These
CGM-based breakfast metrics therefore have the
potential to enable novel monitoring and therapeutic
approaches in underserved populations facing a dis-
proportionate burden of T2D.
Methods

Participant cohort
This study was approved by an Independent Review
Board (Advarra IRB Study 2018−01793, Protocol
00036476). Following IRB approval, and prior to partic-
ipation in any activities, participants provided written
informed consent to be enrolled in an observational
cohort study called Farming for Life (ClinicalTrials.gov
number: NCT 03940300).11 Farming for Life began in
February 2019 with participants recruited via bilingual
(Spanish and English) outreach materials and with help
from bilingual community health workers through
community outreach, from existing programs, His-
panic/Latino-focused community organizations, and
local health and social services. Eligible and consented
participants provided baseline demographic and clinical
information on age, gender, self-reported race and eth-
nicity, health insurance status, and whether participants
had been informed of a diagnosis of T2D by a qualified
medical provider. The following inclusion criteria were
used: adults ≥ 18 years of age, with T2D for at least 6
months, or self-reported as at risk for developing T2D
using the American Diabetes Association diabetes risk
assessment tool.12 Exclusion criteria included current or
previous use of insulin, pregnancy, or any active clini-
cally significant disease or disorder which in the inves-
tigator’s opinion could interfere with participation in
the study. Height, weight, and waist circumference
were measured following the National Health and
Nutrition Examination Survey Anthropometry Proce-
dure Manual, January 2016.13 Body mass index (BMI)
was then calculated using the Quetelet Index (body
weight (kilograms) divided by height squared
(meters).14 Baseline measurements were also taken of
fingerstick HbA1c (Siemens DCA Vantage, Siemens
Healthcare, Norwood, Massachusetts, USA). Partici-
pants were stratified using HbA1c into at-risk (HbA1c

< 5¢7%), pre-T2D (5¢7% ≤ HbA1c ≤ 6¢4%), and T2D
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(HbA1c> 6¢4%). The complete protocol details have
been published previously.6,11

Continuous glucose monitoring
Participants were trained to wear a blinded CGM
(Abbott Freestyle Libre Pro) sensors using manufac-
turer educational materials under the supervision of
research staff. Participants were asked to wear the CGM
for 14 days after enrollment. Normal activities contin-
ued during this time and the participants returned to
the research site for sensor removal at 2 weeks. On
return, the CGM reader was connected to https://www.
libreview.com/ to create an individual participant
report.
Quantifying breakfast CGM response
For each day of CGM, we manually annotated the start
of breakfast response and the peak of the breakfast
response based on visual inspection as shown by
the two large dots (red for start and green for peak) in
Fig. 1. The following rules were followed to annotate
breakfast: (i) the start time of breakfast should lie
between 5 and 11am, (ii) the rise in glucose from start to
peak should be more than a pre-defined threshold
of + 40mg/dl, and (iii) if multiple segments of the glu-
cose curve satisfied (i) and (ii), we chose the earlier seg-
ment to be the breakfast. The glucose rise threshold of
40mg/dL was chosen based on previous post-breakfast
glucose response studies in healthy, pre-T2D, and T2D
participants.15−17 Four parameters were then computed
for each breakfast segment:

� Starting glucose (SG): The glucose value at the start
of the breakfast.
Fig. 1. Proposed breakfast CGM measures. Annotated breakfast sta
participant with T2D. g1: starting glucose (SG) value, t1: start time
peak, t2: time at breakfast response peak. (g2- g1) represents the ma
glucose peak (TTP). The purple hatched region represents the increm
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� Time to peak (TTP): The time difference between
the start of breakfast response and the breakfast
response peak in minutes.

� Maximum glucose rise (Max GR): The difference
between the glucose levels at the start of breakfast and
post-breakfast peak in mg/dL.

� Glucose incremental area under curve (Glucose iAUC):
The positive area under the post-breakfast glucose
curve after subtracting the glucose value at the start.

We subsequently used these parameters to compare
post-breakfast glycemia across diabetes subgroups strat-
ified by HbA1c levels (at-risk, pre-T2D, and T2D). We
also computed median values for the parameters over
two weeks of breakfasts for each participant to represent
their overall breakfast glucose response.
Statistical analysis
Since this analysis is part of a larger study, no a priori
sample size calculation was performed specifically for
the CGM-based T2D risk stratification task. Statistical
analyses were performed using MATLAB software
(https://www.mathworks.com/, V.R2019b). Between-
group comparisons were made using a Kruskal-Wallis
test, followed by multiple comparison testing using the
Tukey’s honest significance difference criterion. Corre-
lation values were computed via the Spearman rank cor-
relation method. Multiple linear regression analyses
were performed using the ‘fitlm’ function in MATLAB.
The regression models adjusted for potential confound-
ers such as participant’s age, self-reported gender, waist
circumference, whether they were of Hispanic/Latino
rt and peak shown with a red and green circle respectively in a
of breakfast response, g2: glucose value at breakfast response
ximum glucose rise (Max GR) and (t2- t1) represents the time to
ental area under the glucose curve (Glucose iAUC).
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ethnicity, and whether they were born in Mexico or not.
Statistical significance was expressed at the 5% level.
Role of the funding souce
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the manuscript. The corresponding author
(DK) had full access to all the data in the study and
had final responsibility for the decision to submit for
publication.
Results

Participant cohort
From the start of February 2019 until June 2021, 221
participants have been enrolled in Farming for Life.
Overall, 119 predominantly Hispanic/Latino partici-
pants wore a blinded CGM for up to two weeks upon
enrollment and before any study-related intervention.
Demographic and clinical details of the cohort are pre-
sented in Table 1. Participants were stratified by base-
line HbA1c levels into at-risk (HbA1c < 5¢7%, n = 35), pre-
T2D (5¢7% ≤ HbA1c ≤ 6¢4%, n = 49), and T2D
(HbA1c> 6¢4%, n = 35) as per the American Diabetes
Association guidelines.2
Breakfast analysis
We manually annotated a dataset comprised of a total of
1666 days of CGM data, with an average of 14¢0 [§3¢3]
Variable All

HbA1c < 5¢7%

Number of participants 119 35

Age 54¢4§ 12¢1 49.7§ 12.9

Gender 93 Female

26 Male

25 Female

10 Male

BMI (kg/m2) 31¢2§ 5¢5 30.6§ 5¢0
Waist circumference (cm) 100¢4§ 12¢5 99.7§ 11.1

Hispanic/Latino

ethnicity

104 (87.4%) 33 (94.3%)

Born in Mexico 99 (83.2%) 32 (91.4%)

HbA1c (%) 6.3§ 1.1 5¢4§ 0.2

On medication* 29 2

- 2 Metformin

Table 1: Demographic and clinical measurements for the participant co
Values for age, BMI, waist circumference, and HbA1c reported as mean § SD.

T2D: Type 2 diabetes, BMI: Body mass index, SGLT2: Sodium-glucose co-trans

receptor agonists.

*Some participants are on only one type of medication while others are on multip
days of data per participant. We extracted 786 valid
breakfast response CGM profiles for the two-week
period before the study intervention started based on
the three criteria outlined above. The breakfast CGM
segments consisted of glucose values from the start
time of breakfast for the next 3 h. Since the CGM
records glucose every 15 min, this provides 13 CGM
readings for each breakfast response profile. 164 of the
breakfast profiles were generated from the at-risk partic-
ipants, 300 from the pre-T2D participants, and 322
from the T2D participants. The at-risk participants typi-
cally had fewer annotated breakfasts compared to their
pre-T2D and T2D counterparts, due to fewer glucose
peaks within 5−11am that passed the 40mg/dL height
threshold. In all, 106 of the 119 participants had at least
one breakfast profile that passed our listed criteria. The
details of the annotated breakfast dataset are presented
in Supplementary Table 1.
The northeast drift
To investigate if the breakfast glucose response has dis-
tinct signatures across different categories of T2D pro-
gression, we calculated a timepoint-wise median of the
CGM breakfast profiles to create a median breakfast
response for each participant (Fig. 2). Subsequently, we
averaged the breakfast responses across participants in
each of the three HbA1c stratified categories. There was
a shift in breakfast peaks in a northeast direction com-
paring the sub-groups, indicating a progression in dys-
glycemia (Fig. 3). We also examined if this
By baseline HbA1c

5¢7% ≤ HbA1c ≤ 6¢4% HbA1c > 6¢4%

49 35

55.9§ 9.8 57.1§ 13.1

44 Female

5 Male

24 Female

11 Male

30.2§ 5¢4 33.1§ 5¢9
97.8§ 13.2 104.8§ 11.8

43 (87.8%) 28 (80%)

41 (83.7%) 26 (74.3%)

6.0§ 0.2 7.6§ 1.3

4

- 4 Metformin

- 1 DPP-4

23

- 19 Metformin

- 5 Sulphonylurea

- 4 SGLT2

- 1 DPP-4

- 1 GLP1-RA

hort.

porter-2, DPP-4: Dipeptidyl peptidase 4, GLP1-RA: Glucagon-like peptide-1

le types of medication.

www.thelancet.com Vol xx Month xx, 2021



Fig. 2. Median breakfast response for each participant (n = 106). Participants at-risk of T2D in blue, those with pre-T2D in green, and
those with T2D in red.

Fig. 3. The northeast drift phenomenon in breakfast glucose responses, showing the timepoint-wise average breakfast profile over
all participants in each group; at-risk of T2D in blue (n = 28), with pre-T2D in green (n = 45), and with T2D in red (n = 33). Error bars
represent the standard error around the mean value.

Articles
phenomenon is sensitive to the glucose rise threshold of
40mg/dL that we use as a criterion to annotate break-
fast segments. For this, we first generated valid break-
fast profiles over glucose thresholds 20, 30, and 50mg/
dL. As expected, we extracted more valid breakfast pro-
files when the threshold was more relaxed (<40mg/dL)
and fewer profiles when the threshold was more strin-
gent (>40mg/dL). (Supplementary Table 2) Then, we
recomputed the average breakfast CGM responses for
the three sub-groups for each choice of the threshold.
We observed the northeast drift to be a stable phenome-
non over a wide range of glucose thresholds ranging
from 20mg/dL to 50mg/dL (Supplementary Fig. 1).
Notably, while the glucose peak increases in height with
the threshold value, the relative dysglycemia between
diabetes sub-groups remains consistent.
www.thelancet.com Vol xx Month xx, 2021
Analysis of breakfast response CGM measures
We also compared the different breakfast response
CGM measures across the groups (Fig. 4). The T2D
participants had significantly higher starting glucose,
maximum glucose rise, and glucose iAUC than the at-
risk and pre-T2D participants (all p < 0¢0001). The T2D
group also had higher time to peak values than the at-
risk group (p < 0¢01) and the pre-T2D group (p < 0¢05).
The detailed statistical analysis is reported in Supple-
mentary Table 3.
Association of breakfast response CGM measures with
HBA1c

Subsequently, we used multiple linear regression to
examine the association between breakfast response
5



Fig. 4. Statistical comparison of various CGM measures across at-risk, pre-T2D, and T2D groups, (a) starting glucose, (b) maximum glucose rise, (c) time to peak, and (d) glucose 3-hr iAUC. Box-
plots shown as median (red), interquartile range (blue edges) and total range (black tails). Outliers shown as red dots. *p < 0¢05, **p < 0¢01, ***p < 0¢001, ****p < 0¢0001.
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Predictor Regression coefficient Standard error T-statistic p-value

(Intercept) 1¢598 0¢738 2¢165 0¢03
Starting glucose 0¢035 0¢002 14¢679 <0¢0001****
Time to glucose peak 0¢012 0¢002 4¢721 <0¢0001****
Maximum glucose rise 0¢002 0¢004 0¢412 0¢68
Age �0¢006 0¢006 �1¢122 0¢26
Gender (male) 0¢178 0¢144 1¢227 0¢22
Waist circumference 0¢004 0¢005 0¢796 0¢43
Hispanic/Latino (HL) �0¢100 0¢295 �0¢339 0¢74
Mexican-born (MEX) 0¢164 0¢256 0¢642 0¢52

Table 2: Multiple linear regression using CGM-based breakfast measures with clinical and demographic variables to predict HbA1c.
****p < 0¢0001, ***p < 0¢001, **p < 0¢01, *p < 0¢05.
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CGM metrics and HbA1c, after adjusting for demo-
graphic and clinical covariates (Table 2). The covariates
were age, gender, waist circumference, whether His-
panic/Latino or not, and whether born in Mexico or not.
The BMI was highly correlated with waist circumfer-
ence (rho = 0.83, p < 0.0001) and therefore only the lat-
ter was included to avoid multicollinearity issues. None
of the 106 participants with at least one breakfast profile
had any missing information for any of the CGM-based,
demographic, or clinical predictors. The glucose iAUC
had a high correlation with both the time to peak
(rho = 0¢65, p < 0¢0001) and the maximum glucose rise
(rho = 0¢75, p < 0¢0001), so we exclude the glucose
iAUC to minimize multicollinearity in the model. The
other CGM measures had a correlation of lower than
0¢5 with each other (Supplementary Fig. 2). The linear
regression analysis showed that starting glucose and
time to the post-breakfast peak were significantly associ-
ated with HbA1c (p < 0¢0001). None of the other covari-
ates showed any association with the HbA1c.

We also calculated the accuracy of the model in pre-
dicting HbA1c via a Bland-Altman analysis18 (Fig. 5).
The model was found to predict HbA1c within
(0¢55§0¢67)% (mean§SD) of the true HbA1c value. In
addition, there was a significant correlation between the
true and predicted HbA1c (rho = 0¢80, p < 0¢0001) (Fig.
5(a)). Bland-Altman analysis shows that there was no
overall systematic bias in the predicted HbA1c, with the
mean difference between true and predicted values
being 0¢0 (95% CI [�1¢1,1¢1]; p = 1¢0) (Fig. 5(b)).
Diabetes risk stratification using breakfast CGM
measures
We further investigated how accurately the breakfast
CGM measures predict the diabetes risk category (At-
risk, pre-T2D, and T2D) using the above linear regres-
sion model.19 For this, we first converted the predicted
HbA1c to the corresponding diabetes risk group using
the HbA1c thresholds defined in the Methods section.
Next, we computed a confusion matrix to examine the
www.thelancet.com Vol xx Month xx, 2021
model’s accuracy for each of the three groups. (Fig. 6)
We observed that our model predicts T2D with a high
accuracy of 87.9%. The model tends to confuse at-risk
and pre-T2D participants (60.7% and 60.1% accuracy,
respectively), which follows intuitively given the close-
ness of their breakfast profiles we observed in Figs. 2
and 3.
Association of breakfast response CGM measures with
GMI
A CGM-based measure increasingly used by physicians
in lieu of HbA1c is the Glucose Management Indicator
(GMI).20,21 The GMI is defined mathematically as GMI
(%) = 3.31 + 0.02392 � [average CGM glucose in mg/
dL], where the average glucose is calculated over the
duration of CGM wear. We first examined the relation-
ship between GMI and HbA1c for our participant cohort.
We observed a correlation of 0.77 between GMI and
HbA1c; however, we do note that the GMI underesti-
mates the HbA1c at higher values (Supplementary Fig. 3
(a)). We then computed a multiple linear regression
with the same set of predictors as above to predict GMI
instead of HbA1c. We again found that starting glucose
(p < 0.0001) and time to glucose peak (p < 0.0001) are
significantly associated with the GMI. (Supplementary
Table 4). The maximum glucose rise was close to but
did not achieve statistical significance (p = 0.06). The
model predicted GMI to be within (0¢19§0¢07)%
(mean§SD) of the true GMI value. (Supplementary
Fig. 3(b)) Bland-Altman analysis demonstrated no sys-
tematic bias in the GMI predictions with a mean differ-
ence between true and predicted values being 0.0 (95%
CI [�0.38, 0.38]; p = 1.0). (Supplementary Fig. 3(c)).
Discussion
Based on evidence from clinical trials and real-world
experiences, clinical guidelines have been established
for using continuous glucose monitoring (CGM) data
for people living with diabetes. CGM use is likely to
7



Fig. 5. Bland-Altman analysis comparing the true HbA1c measured in the laboratory and the HbA1c predicted by a multiple linear regression model built on our breakfast CGM measures and
demographic/clinical covariates. (a) Scatterplot of the true and predicted HbA1c values. The equation representing the best-fit line (solid black line) and the correlation value rho are reported.
The dotted line is a 45-degree diagonal line representing equal values for the true and predicted HbA1c values. (b) Plot of the mean of the true and predicted HbA1c values (x-axis) against their
difference (y-axis). The horizontal bold line shows the mean difference of the true and predicted HbA1c and the p-value of the difference. The dotted lines represent the upper 95% and lower
95% confidence interval of the differences. Each dot in the plot represents a participant.
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Fig. 6. Confusion matrix depicting the accuracy of the linear regression model built using breakfast CGM measures in predicting the
three diabetes risk categories: at-risk of T2D, pre-T2D, and T2D. Each row of the 3£ 3 matrix corresponds to the true category, with
the entries adding up to the number of participants in each category. Each column represents which of the three categories the
model predicted. The 3£ 2 matrix on the right reports the model’s prediction accuracy for each of the three categories.

Articles
expand given recent evidence that CGM-derived meas-
ures, such as time in range (TIR), correlate with long-
term complications.22 However, very few studies have
been published on CGM in people with non-insulin
treated T2D, with pre-T2D, or from minority communi-
ties. Guidance from the American Diabetes Association
suggests that CGMmay be helpful for the 70% of adults
with diabetes who are not treated with insulin.23,24

In this study involving predominantly Hispanic/
Latino adults, we explored the potential of using the
breakfast CGM response as an indicator of the progres-
sion of dysglycemia by comparing individuals at-risk for
T2D, with those with pre-T2D, or T2D. Participants
were stratified into these groups using HbA1c values.
After a manual annotation of CGM-derived breakfast
glucose responses, we computed pre-breakfast glucose
levels, the rise in glucose after breakfast, time to the
peak glucose level, and the incremental area under the
glucose curve for 3 h (3 h glucose iAUC) after breakfast.
Using this approach, we observed that the average
breakfast glucose response over two weeks shows a dis-
tinct “northeast drift” comparing at-risk to pre-T2D to
T2D individuals. The northeast drift refers to an
increase in the maximum glucose rise and the time to
the post-breakfast glucose peak with increasing disease
severity. Notably, we consistently observed this phenom-
enon across several glucose threshold values used to
determine breakfast peaks. It is also important to note
that we observed the northeast drift in participants con-
suming free-choice meals that they would normally
www.thelancet.com Vol xx Month xx, 2021
consume, as opposed to laboratory-prepared test meals.
Thus, the robustness of the northeast drift makes it a
potential candidate for monitoring diabetes progression
using CGMs. For individuals with established T2D,
there was a considerably higher starting glucose, maxi-
mum glucose rise, and 3-hr glucose iAUC versus at-risk
and pre-T2D individuals. The T2D group also had a
higher time to postprandial glucose peak than the at-
risk and the pre-T2D groups.

These findings suggest that CGM-based breakfast-
focused profiles may have value for underserved and
other communities with or at risk of developing T2D by
offering potential new targets for therapeutic interven-
tion at an early stage of the disease. Our analysis was
based on two weeks of CGM data, and participants were
allowed free choice breakfasts prior to the intervention
phase of the Farming for Life study. In this study, the
focus was on changes in glycemia with breakfast. We
chose this meal for two reasons. First, based on visual
observation of CGM profiles, we found that breakfast
was the meal that was the least challenging to identify.
Second, previous research has suggested that glucose
profiles associated with breakfast impact overall glyce-
mia and may be amenable to nutrition-based therapeu-
tic interventions. For example, nutritional interventions
targeting breakfast using food low in carbohydrates
have reported improved glycemic responses in individu-
als with T2D.10,16 The timing and macronutrient con-
tent of breakfast also appear to influence the risk of
progression of T2D.25 Previous studies have suggested
9
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an association between consuming a regular breakfast
with a decreased risk of T2D progression compared
with breakfast skipping or infrequent breakfast
consumption.26,27 The macronutrient content of break-
fast can also influence subsequent glucose and insulin
responses.28

A recent study reported progressively higher average
glucose levels, more glycemic variability, and less time
spent in the ranges between 70 and 140 and 70 and
180mg/dL comparing individuals with established T2D
with those at-risk or with pre-T2D.6 Taken together
with findings here, the ability of CGM profiles to stratify
individuals into sub-groups with differentiating glyce-
mic profiles during the day, at night, and around break-
fast potentially offers novel approaches for non-
pharmacological and pharmacological interventions to
attenuate the progression of T2D. This may have eco-
nomic as well as health benefits for underserved popula-
tions experiencing a disproportionate burden of T2D.11

While the northeast shift was less marked compar-
ing at-risk to pre-T2D participants, the effect was more
profound comparing pre-T2D to T2D individuals. This
may be a consequence of differences in insulin sensitiv-
ity between pre-T2D and T2D individuals or a failure of
timely and appropriate insulin secretion in the latter
group.29,30 We also found that, after adjusting for demo-
graphic and clinical covariates using a multiple linear
regression model, the pre-breakfast glucose level and
the time to peak were significantly associated with
HbA1c values. Via a Bland-Altman analysis, we found
that the HbA1c values predicted by the model were
highly correlated with the true values (rho = 0¢8,
p < 0¢0001), and furthermore there was no systematic
bias in the predictions with a mean difference [95% CI]
of 0¢0 [�1¢1,1¢1] (p = 1¢0). Although regular HbA1c test-
ing is invariably recommended in authoritative guide-
lines, many studies have reported that undertesting is
very common.31 In type 1 diabetes (T1D) and insulin
treated T2D, CGM provides various glycemic metrics
that can be used to set glycemic targets and guide thera-
peutic decision-making.1 We demonstrated that our
breakfast CGM measures can also predict the CGM-
based glucose management indicator (GMI) with a high
accuracy, which can be of additional value in this cohort.
Others have also shown that glycemic variability mea-
sured by CGM is present to an increasing degree com-
paring adults with normal glucose tolerance and
impaired fasting glucose or impaired glucose tolerance
with newly diagnosed T2D.32 Notably, data from the
National Health and Nutrition Examination Survey
(NHANES) showed that HbA1c detected only 30% of
undiagnosed diabetes in a sample cohort, while 2-h
plasma glucose after an oral glucose tolerance test
detected 90% of undiagnosed diabetes.33 In this study,
participants were not provided with real-time CGM pro-
files. Evidence shows that having access to real-time pro-
files is associated with improved glycemic control for
adults with pre-T2D and T2D.34 In the U.S. and else-
where, the use of CGM has been recently included in
guidance for selected patients with T2D, including
those not on insulin.35 These findings, supported by our
observations in this study, suggest the potential of mon-
itoring breakfast glucose response for early detection of
T2D.

Several limitations need to be addressed in subse-
quent studies. A major limitation of the study is the
cross-sectional design of participants, and therefore
determining the value of CGM in predicting the risk of
progression from at-risk to T2D will require longitudi-
nal analyses. The computed measures need to be vali-
dated on a larger cohort of participants and potentially
across multiple CGM periods. We recognize that dietary
choices can differ across populations due to cultural fac-
tors.36−38 Therefore, our breakfast response metrics
likely will need to be recomputed in CGM data from
other underserved minority communities before use.39

We had a broad spectrum of ages in our participant
cohort, which aligns with data showing that Hispanic/
Latino (and specifically Mexican-American) adults
develop T2D across the age spectrum, including youn-
ger ages.40,41 This suggests that with a larger cohort
additional analyses stratified by age may provide other
insights related to age. We chose a fixed threshold of
40mg/dL post-breakfast glucose rise to select valid
breakfast responses; however, a separate threshold for
each sub-group may help select breakfast more accu-
rately. As an example, seven of the 35 at-risk participants
did not contribute a single breakfast profile for the
threshold of 40mg/dL glucose rise, which may mean
that the breakfast threshold was too high for a portion
of the at-risk sub-group. A future study quantifying the
glucose response to known meals in this population
may yield more optimal threshold criteria for each sub-
group. An ongoing study (ClinicalTrials.gov number:
NCT 03940300) using CGM, activity monitors, and
self-recorded food diaries in the same population is
underway. Further, this study did not account for the
breakfast macronutrient content and other lifestyle fac-
tors. Knowing the specific associations between nutrient
content, lifestyle factors, etc., and CGM profiles may
help design more personalized interventions. Previous
studies have demonstrated links between the timing of
food intake with insulin sensitivity.42 Timing, duration,
and intensity of physical activity can also influence post-
prandial glucose levels up to 24 h after the activity.43 In
this study, we focused on the rise in glucose after break-
fast and the time to post-breakfast peak. These parame-
ters do not capture any information about the fall in the
glucose curves after the peak, which can impact appetite
and subsequent energy intake.44 We aggregated per-day
breakfast CGM measures over the duration (»14 days)
of CGM wear by a median computation. Aggregation
has the advantage in that it smooths out inter-day varia-
tions caused by difference in food choices (type of food,
www.thelancet.com Vol xx Month xx, 2021
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quantity, etc.) and therefore captures the underlying
physiology better. Potentially beneficial information
such as the shapes of the curves and inter-day variations
is, however, lost in aggregation. This limitation can be
addressed in future studies through algorithms such as
multivariate functional principal component analysis
(MFPCA).45,46 MFPCA preserves shape properties
while accounting for inter-day variability, and has previ-
ously been used to model multi-day time series data
similar to ours for applications such as remote sens-
ing,47 stock market forecasting,48 and cancer risk
prediction.49,50 We also did not examine the same
parameters related to other meals. While the breakfast
peak is typically easier to identify, the accuracy of the
annotated start point of breakfast may be affected by the
dawn phenomenon.51,52 An appropriate correction strat-
egy for the dawn phenomenon can increase the accu-
racy of the proposed breakfast metrics.53 For real-world
deployment, an important next step would be to reduce
the possibility of human error in manual annotation by
instead using an accurate automated annotation soft-
ware. Several automated meal detection algorithms
have been proposed in the literature primarily in the
T1D and artificial pancreas setting,54−56 which need to
be adjusted for meal detection in populations at-risk for
or with T2D. Thus, a complete T2D detection solution
would involve three components: a CGM recording glu-
cose continuously, a breakfast response detection soft-
ware, and a diabetes risk scoring tool based on our
breakfast metrics.

In conclusion, in a predominantly Hispanic/Latino
cohort at-risk for or with non-insulin treated T2D,
CGM-derived profiles associated with breakfast showed
a distinct northeast drift with increasing diabetes pro-
gression. In addition, new CGM-based metrics based on
these profiles related to breakfast glucose increments
also appear to have a significant relationship with
HbA1c. These findings may offer new opportunities for
non-pharmacologic and pharmacologic interventions in
underserved communities facing a disproportionate
burden of diabetes.
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