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Abstract

Brain-enriched protein biomarkers of tissue fate are being introduced clinically to aid in traumatic brain injury (TBI)

management. The aim of this study was to determine how concentrations of six different protein biomarkers, measured in

samples collected during the first weeks after TBI, relate to injury severity and outcome. We included neurocritical care

TBI patients that were prospectively enrolled from 2007 to 2013, all having one to three blood samples drawn during the

first 2 weeks. The biomarkers analyzed were S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE),

glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), tau, and neurofilament-light

(NF-L). Glasgow Outcome Score (GOS) was assessed at 12 months. In total, 172 patients were included. All serum

markers were associated with injury severity as classified on computed tomography scans at admission. Almost all

biomarkers outperformed other known outcome predictors with higher levels the first 5 days, correlating with unfavorable

outcomes, and UCH-L1 (0.260, pseduo-R2) displaying the best discrimination in univariate analyses. After adjusting for

acknowledged TBI outcome predictors, GFAP and NF-L added most independent information to predict favorable/un-

favorable GOS, improving the model from 0.38 to 0.51 pseudo-R2. A correlation matrix indicated substantial covariance,

with the strongest correlation between UCH-L1, GFAP, and tau (r = 0.827–0.880). Additionally, the principal component

analysis exhibited clustering of UCH-L1 and tau, as well as GFAP, S100B, and NSE, which was separate from NF-L. In

summary, a panel of several different protein biomarkers, all associated with injury severity, with different cellular origin

and temporal trajectories, improve outcome prediction models.

Keywords: functional outcome; injury severity assessment; neuroradiology; protein biomarkers; serum analysis; traumatic

brain injury

Introduction

Traumatic brain injury (TBI) is a devastating disease and

one of the most common reasons people are living with ac-

quired disabilities,1 leading to increasing suffering and societal

costs. TBI usually results in a combination of diffuse tissue injuries

and a spectrum of focal lesions, as well as a range of subsequent

secondary injury responses, making TBI a biologically very com-

plex and heterogenic condition.2 Analyzing admission parameters

have improved outcome prediction in TBI,3,4 which may provide

tools for resource allocation both on the group level, but also on

individual treatment strategies. However, the performance of
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current prediction models is limited and much variance remains

unexplained.5,6

Serum brain-enriched proteins of tissue fate are increasingly

used as biomarkers to manage TBI patients.7 For example, serum

S100 calcium-binding protein B (S100B) is part of the Scandina-

vian neurotrauma guidelines to reduce the number of unnecessary

computerized tomography (CT) scans in mild TBI patients.8 Bio-

markers may also be used to monitor emerging secondary injury

processes, as well as to improve outcome prediction.9–11 Whereas

these biomarkers are often used as single variables, by analyzing

several proteins, with different cellular origins, it may be pos-

sible to delineate distinct pathophysiological processes in the

injured brain,12 which, in turn, could result in more-precise

outcome predictions.

The most well-studied protein in TBI is S100B, with a pre-

dominantly astrocytic origin, which has been shown to be a robust,

independent outcome predictor in TBI.11 Neuron-specific enolase

(NSE) is a neuronal enriched glycolytic protein and is used in

guidelines for cardiac arrest.13 Neurofilament-light (NF-L) is one

of the main proteins of the neuroaxonal skeleton and is among the

most promising biomarkers for disease severity in multiple scle-

rosis and amyotrophic lateral sclerosis,14 as well as in both mild

and severe TBI.15,16 Serum levels of other brain-enriched proteins

that have been suggested to predict outcome of TBI include glial

fibrillary acidic protein (GFAP), an astrocytic cytoskeletal pro-

tein,17 and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), a

protein enriched in neurons involved in the production of ubiqui-

tin.18 GFAP and UCH-L1 in tandem have recently been suggested

to aid in screening mild TBI patients to avoid unnecessary CT

scans.19 Other studied biomarkers include microtubule-associated

protein tau, which is predominantly present in neurons and used

clinically as a biomarker in Alzheimer’s disease,20 but also in

acute TBI as well as being aggregated in chronic traumatic en-

cephalopathy.21–23

Apart from absolute levels, these proteins exhibit different

temporal dynamics in serum.6,24 In comparison, UCH-L1, S100B,

and tau seem to display short effective half-lives (hours) in blood as

compared to GFAP and NSE (days), and for NF-L up to several

weeks.25,26 Another important factor is to what degree a biomarker

is brain enriched, given that contribution from extracranial injuries

will affect specificity. For instance, S100B can be released from

non-cerebral tissues in the early phase after injury,6 whereas GFAP

and NF-L are virtually restricted to the nervous system.27 Collec-

tively, to be able to accurately associate a biomarker concentration

with outcome, it is of importance to determine the temporal profile

of the biomarkers in relation to timing of injury, as well as to

account for extracranial sources.

Previous studies addressing the predictive power of combina-

tions of protein biomarkers have shown mixed results.6,28–31

However, many studies have been relatively small in terms of the

number of included patients and analyzed markers. Additionally,

few studies have adjusted for temporal dynamics and other ac-

knowledged outcome predictors, such as the independent outcome

variables in International Mission for Prognosis and Analysis of

Clinical Trials in TBI (IMPACT).3

We aimed to assess the predictive power of a panel of six can-

didate TBI markers (S100B, NSE, NF-L, GFAP, UCH-L1, and tau)

in serum, both independently and combined, while adjusting for

known outcome predictors in a prospective cohort of neurocritical

care unit (NCCU) TBI patients. As a secondary aim, we wished to

establish the temporal profiles of these biomarkers, covariance

between biomarkers, and association with intra- and extracranial

injuries, in order to provide better outcome prediction models and

understanding of the relative value of these biomarkers.

Methods

Study design, ethics, and setting

The data were collected as part of a prospective, observational
study. TBI patients, 18–75 years age and admitted to the NCCU at
the Karolinska University Hospital between 2007 and 2013, were
enrolled. Ethical approval was provided by the regional ethical
board in Stockholm (#2005/1526/31/2), and consent was provided
by next of kin, in line with the Declaration of Helsinki. The study
aimed to follow the STROBE statement for cohort studies (Sup-
plementary Document S1).

Traumatic brain injury management

TBI management at our department has been described in detail in
previous studies.6,29 In short, we adhere to guidelines similar to that
of the Brain Trauma Foundation.32 The upper intracranial pressure
(ICP) threshold is 20 mm Hg, and in patients approaching the upper
ICP limit, we aim for a cerebral perfusion pressure of 50–70 mm Hg.
In patients with refractory high ICP, barbiturate coma (monitored
and limited by burst suppression on electroencephalogram) was in-
duced or decompressive hemicraniectomy was performed.

Definition of admission parameters

Standard demographic data were acquired from hospital charts,
including age and sex. Time of trauma was defined as when the
alarm came in to the regional alarm central and was acquired
through pre-hospital charts. Glasgow Coma Scale (GCS) at ad-
mission to the hospital was used and handled as a continuous, or-
dinal scale in the analyses as previously suggested.33 Pupil reaction
to light was assessed at hospital admission and defined as either both
reactive, unilaterally unresponsive, or bilaterally unresponsive. Pre-
hospital hypoxia was defined as either an oxygen saturation <90%,
or if saturation was not available if the airway was deemed ob-
structed at the scene of accident. Pre-hospital hypotension was de-
fined as a systolic blood pressure <90 mm Hg. Glucose and
hemoglobin sampled at admission to the hospital were acquired.
These variables create the foundation, together with CT parameters,
of the IMPACT study group’s TBI outcome prediction calculator.3

Abbreviated Injury Scale (AIS), Injury Severity Score (ISS), and
New Injury Severity Score (NISS) were assessed by ISS-trained
specialist nurses.34,35 Significant extracranial multi-trauma, as per
previous definitions,33 was noted.

Neuroradiology

CT scans at admission were assessed using Marshall CT clas-
sification, as well as Rotterdam and Stockholm CT score.36–38

Because the admission CT was used, all patients with focal mass
lesions (>25 cm3) were considered Marshall VI. Any progression of
intracranial hemorrhages between the first and second CT scans
was noted.

For a subset of patients where the CT scan and/or clinical course
suggested presence of diffuse axonal injury (DAI), magnetic res-
onance imaging (MRI) was performed as per clinical routine. The
clinical MRI protocol consisted of echo planar diffusion–, fluid
attenuated inversion recovery (FLAIR)-, gradient echo (GRE)-, and
T1- and T2-weighted image sequences. Either hemorrhagic and/or
non-hemorrhagic DAI was noted.

Clinical outcome

Long-term functional outcome was assessed using the five-stage
Glasgow Outcome Score (GOS), where 1 = death, 2 = persistent
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vegetative state, 3 = severe disability (dependent state), 4 = moderate
disability (independent state), and 5 = recovery (including low-grade
disability).39 The GOS was assessed prospectively through a quality-
of-life questionnaire, including questions from structured GOS in-
terviews, that was sent to the patient at 12 months after injury, or in
case these were not returned, it was recorded at visits to the outpa-
tient clinic. The date for GOS assessment was noted.

Blood sampling

Blood was pragmatically sampled, depending on research staff
availability, for NF-L, GFAP, UCH-L1, and tau analyses. These
were sampled up to three times during the first 2 weeks, if the
patient did not die or was discharged. Serum blood collection tubes
where used (yellow cap, clot activator with gel). Sampling was
performed by arterial lines and then transported to a local biobank
where they stood upright for 30 min to allow coagulation. Samples
where then centrifuged for 15 min at 2000g and aliquoted and
stored at -80�C.

Blood for analysis of S100B and NSE were drawn twice-daily
and sent directly to the Department of Clinical Chemistry at the
Karolinska University Hospital, as per clinical routine.

Serum analysis

Serum GFAP, UCH-L1, NF-L and tau concentrations were
measured using the Human Neurology 4-Plex A assay (N4PA) on
an HD-1 Single molecule array (Simoa) instrument, according to
instructions from the manufacturer (Quanterix, Lexington, MA).
Measurements were performed by board-certified laboratory
technicians, who were blinded to clinical data, in one round of
experiments using one batch of reagents and with baseline and
follow-up samples analyzed side by side. In the assay, calibrators
were run as duplicates, samples as singlicates, and two internal
quality-control plasma samples were run in the beginning and the
end of each run. Between-day coefficient of variations (CVs) were
8.8% at 103 pg/mL and 8.4% at 7.4 pg/mL for NF-L, 11.9% at
1.2 pg/mL and 9.7% at 22.5 pg/mL for tau, 9.0% at 72 pg/mL and
7.3% at 88 pg/mL for GFAP, and 33.3% at 11.4 pg/mL and 34.0%
at 10.8 pg/mL for UCH-L1.

All serum S100B samples collected until September 2008 were
analyzed at Karolinska University Hospital, Department of Clinical
Chemistry, using a quantitative automated luminometric immu-
noassay (LIAISON-mat S100 system; DiaSorin, Sangtec, Italy). In
September 2008, the Department changed to an automatic elec-
trochemiluminescence immunoassay (Elecsys S100B; Roche Di-
agnostics, Penzberg, Germany). A good correspondence between
the two methods has been shown, including internal validation by
the Department of Clinical Chemistry, Karolinska University
Hospital, Solna, Sweden.6 Serum NSE samples were analyzed
using an immunoradiometric assay (Liaison; DiaSorin) throughout
the whole study at the Karolinska University Hospital, Department
of Clinical Chemistry. The detection levels for the LIAISON ranges
from 0.04 lg/L for NSE and 0.02 lg/L for S100B, whereas the
Elecsys detects serum S100B levels down to 0.005 lg/L. No patient
presented with concentrations below detection levels.

Statistical analysis

Data are presented as median and interquartile range (IQR) for
continuous data and grouped for categorical data. Univariate lo-
gistic regressions toward different levels of the GOS (proportional
odds analysis, using ‘‘rms’’ package in R) were applied to study the
predictive ability of admission/IMPACT parameters as well as the
protein biomarkers. Similar tests were performed toward different
CT severity scores for the biomarkers, as well as linear models,
were applicable. Protein biomarkers were also tested versus dif-

ferent dichotomizations of outcome, GOS1–3 (unfavorable) versus
GOS4–5 (favorable), and GOS1 (dead) versus GOS2–5 (alive).

Nagelkerke’s pseudo-R2 was used to determine model perfor-
mance and was bias adjusted for multiple parameters using a
bootstrap method. Nagelkerke’s pseudo-R2 describes performance
as between ‘‘0’’ and ‘‘1,’’ where 1 fully explains the model, akin to
explained variance. AUC (area under the curve) ROC (receiver
operating characteristics) curves were also used to assess model
performances (using the pROC package in R). Step-up, as well as a
step-down, multi-variable models were used to examine how the
biomarkers added explained variability to the baseline outcome
predictors used in the IMPACT calculator.3 This was done for
unfavorable versus favorable outcome as per IMPACT. A sliding
window, assessing a proportional odds analysis of the biomarkers
toward the GOS and with bootstrapped confidence intervals, was
used to assess the prediction performance of a biomarker over time,
after trauma.

The R package ‘‘ggplot2’’ and conditional density plots were used
to illustrate biomarker data.40 Linear correlations (Spearman) were
used to determine cross-correlations between the different protein
biomarkers, using peak concentrations so that only 1 patient con-
tributed one time point (visualized with ‘‘GGally’’ package). Prin-
cipal component analysis (PCA) of the biomarkers was performed
using R (‘‘prcomp’’ package) to explore potential protein interac-
tions.41 A loading plot, highlighting potential covariance among the
biomarkers in the two first components, was created. The statistical
program R was used in the analyses with the interface R-studio
(Boston, MA).42 A p value of <0.05 was considered significant.

Missing data

All univariate regression models performed were done with
unimputed data, excluding missing observations. The multi-
variable prediction models were performed after multiple imputa-
tion (MI; ‘‘MICE’’ package, R), as advocated in the statistical
literature and by the IMPACT TBI study group.43,44 We applied
seven imputed sets of data in our MI, with the imputed data coming
from a regression imputation with each imputation drawn from a
distribution, retaining uncertainty caused by imputation in analyses
toward the dichotomized outcomes. All seven models were
checked for consistency, and an average Nagelkerke’s pseudo-R2

of these seven imputations was reported. Patients that had no cor-
responding S100B/NSE analyses for the three sampling time points
in the multi-variable models had their peak concentrations of
S100B and NSE imputed.

Results

Patient demographics

A total of 502 NCCU TBI patients were admitted between 2007

and 2013, and of these, 172 had been included in the study. Patients

were predominantly male (76%) with a median age of 55 years

(Table 1). Most patients were unconscious upon admission to the

hospital (GCS3–8; 70%). As per trauma definitions, 28% had sig-

nificant extracranial injury and the cohort had a relatively high

overall trauma severity, with 86% of patients having either an AIS

of 4 (‘‘severe’’) or 5 (‘‘critical’’), with median ISS of 25 and median

NISS of 43, indicating that they had more-severe brain injuries than

extracranial injuries (Supplementary Table S1). The 1-year mor-

tality was 13%, and the rate of unfavorable outcome (GOS1–3) was

50% (Table 1).

Sampling

In total, 421 samples of GFAP, UCH-L1, tau, and NF-L were

available, acquired at median 3, 6, and 9 days after trauma
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(Fig. 1; Supplementary Table S2). All 172 patients had at least one

sample, n = 146 (85%) had two samples, and n = 95 (55%) had three

samples that could be analyzed. These corresponded with n = 363

S100B and n = 360 NSE samples, totaling 2407 biomarker mea-

surements. We primarily choose the peak concentration per patient in

our analyses because we believe it to contain the most biologically

relevant information, which was, except for NF-L (20%), almost

exclusively the first sample (73–95%; Supplementary Table S2).

Univariate correlation versus injury severity

The CT scoring systems were used as surrogate markers for

injury severity. In general, S100B and UCH-L1 had the strongest

correlations with Stockholm CT scores and exhibited the greatest

Nagelkerke’s pseudo-R2 in models predicting Rotterdam CT

scores, as well as to hemorrhagic progression between the first and

second CT scan (Table 2; Supplementary Fig. S1A–C). Interest-

ingly, in models predicting extracranial trauma, the first sample

acquired for S100B and UCH-L1 displayed significant associations

(Table 2), whereas no significance was found for the first sample for

the other biomarkers. The other biomarkers were associated, albeit

less, with increasing severity on the CT scoring systems. Marshall

CT classification had the weakest associations, but a higher Mar-

shall (focal injury) was still significant for all biomarkers except tau

and NF-L.

A total of 81 patients had an MRI performed because of sus-

pected DAI injuries, and 41 of these also had diffuse injury

(Marshall classification I–IV) on their admission CT scan. In this

subgroup, no biomarker was significantly increased in DAI (n = 29)

versus non-DAI (n = 12) patients (Table 2).

Univariate correlations versus outcome

Among the known IMPACT predictors, only age and glucose

levels were significantly correlated to outcome in the logistical

regression model (Table 3). Other strong associations in the col-

lected clinical data included progression of hematoma between the

first and second CT scan (pseudo-R2, 0.158), as well as the

Stockholm CT score on the initial scan (pseudo-R2, 0.226; Table 3).

In the univariate models predicting levels of GOS and mortality,

UCH-L1 explained the most variation (pseudo-R2, 0.271 and 0.342,

respectively). GFAP was slightly better than the other markers in

predicting the favorable versus unfavorable GOS outcome di-

chotomization (pseudo-R2, 0.217; S100B pseudo-R2, 0.213;

Table 3). However, in general, S100B, UCH-L1, tau, and GFAP

performed similarly between the outcome representations, whereas

peak NSE and NF-L levels performed worse (Table 3; Supple-

mentary Fig. S2).

Protein biomarkers versus outcome over time

The outcome predictions as observed in the univariate regres-

sions (Table 3) can be better elucidated by visualizing protein

concentrations over time in relation to the trauma with stratification

according to different levels of GOS (Fig. 2). In general, S100B,

NSE, GFAP, UCH-L1, and tau presented with initially high levels

that decreased over time, whereas NF-L generally increased over

time during the study period (Fig. 2). All biomarkers displaying a

good discriminatory capacity in the regression models had dis-

tinctly higher levels in the group of patients with unfavorable

outcome (Fig. 2A). The best predictive period for all markers,

Table 1. Patient Demographics

Admission characteristics Subcategory/units n = 172 patients

Sex Male/female (%/%) 130/42 (76/24)
Age Median (IQR) 55 (38–62)

Scene of accident hypoxia Yes 29 (17%)
Missing data 8 (5%)

Scene of accident hypotension Yes 3 (2%)
Missing data 43 (25%)

Admission GCS 3–8 121 (70%)
9–13 38 (22%)
14–15 13 (8%)

Admission pupil responsiveness Normal 125 (73%)
Unilateral unresponsiveness 18 (10%)
Bilateral unresponsiveness 24 (14%)
Missing data 5 (3%)

Admission hemoglobin g/dL, median (IQR) 136 (123–146)
Missing data 7 (4%)

Admission glucose mmol/L, median (IQR) 7.9 (7.0–9.8)
Missing data 30 (17%)

Functional outcome
GOS1 (death) n (%) 21 (12%)
GOS2 (vegetative state) n (%) 0
GOS3 (severe disability, dependent state) n (%) 63 (37%)
GOS4 (moderate disability, independent state) n (%) 49 (28%)
GOS5 (mild or no disability) n (%) 39 (23%)
Time from trauma to GOS assessment (living patients) Days, median (IQR) 366 (343–383)

Patient demographics for the included patients.
GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale; IQR, interquartile range.
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except NF-L, could be observed within 4–5 days of trauma

(Fig. 2B), where the pseudo-R2 favorable/unfavorable outcome is

approximately 0.300–0.400 for most proteins. A similar result was

noted for mortality and different stages of GOS over time after

trauma (Supplementary Table S3; Supplementary Fig. S3).

Multi-variable analysis versus outcome

By combining the IMPACT outcome predictors age, admission

GCS and pupil responsiveness, pre-hospital hypoxia and hypo-

tension, as well as admission hemoglobin and glucose levels

together with the Rotterdam CT score, a Nagelkerke’s pseudo-R2 of

0.285 was reached in predicting favorable/unfavorable outcome

(Table 4).3 We found a substantial increase in the prediction model

if the Stockholm CT score was used instead of Rotterdam for CT

injury characteristics, so this model (with a pseudo-R2 of 0.375)

was used as our ‘‘Base’’ model.

Step-up model. Each individual biomarker added significant,

independent information to the base model, but only S100B, GFAP,

and NF-L significantly. NSE added least, whereas the others added

in the vicinity of an additional 0.08–0.09 pseudo-R2 (Table 4).

GFAP added marginally more than the others and was therefore

used as base for the next step-up. The Base + GFAP model ex-

hibited a pseudo-R2 of 0.470, and adding the other markers revealed

that NF-L added the most additional variability to that model, now

totaling a pseudo-R2 of 0.514. Adding S100B to that dual-marker

model resulted in an additional increase to 0.522 (though a non-

significantly better model, p = 0.223), which was also the maximum

pseudo-R2 reached, including all biomarkers.

Additionally, in an exploratory approach, we also tested how

well the biomarkers did in a proportional odds model using GOS as

an ordinal scale. Here, similarly to what was observed in the uni-

variate analyses, the best model contained UCH-L1 and additional

independent information was provided by NF-L (Supplementary

Table S4).

Step-down model. The step-down model contained all Base

variables grouped together as one, as well as the peak concentra-

tions of all the biomarkers. The model left the Base variable to-

gether with peak levels of GFAP and NF-L.

In predicting different levels of GOS utilizing a proportional

odds model, apart from the Base variable, UCH-L1 remained as the

only significant biomarker.

Covariance between the biomarkers

A cross-correlation matrix revealed that some of the peak serum

concentration of the biomarkers had a very strong correlation, es-

pecially GFAP, UCH-L1, and tau (correlation-coefficients, 0.83–

0.88; Table 5). S100B, NSE, and NF-L exhibited significant, but

lower, cross-correlations, approximately 0.50–0.25, with NF-L

showing the lowest relations to the other markers (Supplementary

Fig. S4).

The PCA analysis revealed that the first two components ex-

plained around 82% of the variance of the data (Supplementary

Table S5), primarily in the first component, with subsequent

components explaining substantially less. The predominantly

neuronal proteins (except NSE) UCH-L1 and tau clustered tightly

(Fig. 3). The predominantly astrocytic proteins S100B and GFAP

clustered together with NSE, whereas the axonal NF-L showed a

separate trajectory (Fig. 3).

Discussion

We here combined six of the most commonly used TBI bio-

markers in an extensive prospective cohort of NCCU TBI patients

Table 2. Associations between Protein Biomarkers and Injury Severity

S100B NSE GFAP UCH-L1 Tau NF-L

CT parameters (first sample)
Marshall CT classification

( p value, adjusted R2)
0.002 (0.058) 0.040 (0.027) 0.004 (0.050) 0.015 (0.037) 0.072 (NS) 0.982 (NS)

Rotterdam CT score
( p value, adjusted R2)

<0.001 (0.077) 0.005 (0.043) 0.002 (0.047) <0.001 (0.092) <0.001 (0.082) 0.078 (NS)

Stockholm CT score
( p value, correlation
coefficient)

<0.001 (0.298) 0.004 (0.210) 0.011 (0.179) <0.001 (0.283) <0.001 (0.255) 0.024 (0.155)

Hemorrhagic progression
between first and second
CT ( p value, adjusted R2)

<0.001 (0.099) <0.001 (0.095) 0.009 (0.032) <0.001 (0.116) <0.001 (0.081) 0.003 (0.047)

MRI subgroup n = 42
(diffuse injury on CT,
peak concentration)

DAI (yes/no) 0.059 (negative
correlation)

0.104 (negative
correlation)

0.471 (negative
correlation)

0.104 (negative
correlation)

0.043 (negative
correlation)

0.145 (positive
correlation)

Extracranial injury
(first sample)

Multi-trauma ( p value,
adjusted R2)

0.002 (0.091) 0.169 (NS) 0.079 (NS) 0.006 (0.056) 0.298 (NS) 0.861 (NS)

Associations between protein biomarkers and intracranial/extracranial injury. Logistic or linear regression models, where appropriate, were used to
performed the analyses. Nagelkerke’s pseudo-R2 is described if statistically significant ( p < 0.05). For Stockholm CT scores, linear correlation models
were used and correlation coefficients presented.

CT, computerized tomography; DAI, diffuse axonal injury; GFAP, glial fibrillary acidic protein; MRI, magnetic resonance imaging; NF-L,
neurofilament-light; NSE, neuron-specific enolase; NS, non-significant; S100B, S100 calcium-binding protein B; UCH-L1, ubiquitin carboxyl-terminal
hydrolase-L1.
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and found that biomarker levels do, in comparison to other known

outcome predictors in TBI, explain more variability in different

outcome prediction models. All biomarkers except NSE provided

significant information toward all dichotomizations of outcome in

univariate analyses, with GFAP and UCH-L1 being the strongest

predictors.

Adjusting for IMPACT variables in a multi-variable analysis,

combining GFAP and NF-L provided the best enhancement of

performance in predictive models, resulting in a pseudo-R2 increase

from 0.375 to an impressive 0.522. Compared to the other markers,

the strongest covariances were found between GFAP, UCH-L1,

and tau, with correlation coefficients reaching 0.83–0.88, in turn

explaining why these markers presumably did not add independent

information in combination. Further, the PCA model revealed

clustering of proteins with similar cellular origin and/or temporal

profiles, grouping the predominantly neuronal markers tau and

UCH-L1 and the astrocytic markers S100B and GFAP as well as

the temporally different axonal protein NF-L. Collectively, these

findings highlight the strong predictive capabilities of serum pro-

tein biomarkers in TBI outcome models and that combination of

different markers enhances the precision further.

All markers were associated with severity of TBI, as assessed on

admission CT scans, however with different degrees of association

depending on type of CT scoring. The best association was found to

be with the Stockholm CT score, which includes grading of trau-

matic subarachnoid hemorrhage specifically.38 In contrast, the

Table 3. Univariate Analyses versus Patient Outcome

Parameters p value Nagelkerke’s pseudo-R2 AUC (95% CI)

Admission
Age <0.001 0.191 0.733 (0.658–0.808)
GCS at admission 0.106 NS 0.569 (0.484–0.654)
GCS at scene of accident 0.014 0.047 0.608 (0.524–0.699)
Pupil responsiveness at admission (as factor) 0.120 NS 0.568 (0.501–0.634)
Hemoglobin levels at admission 0.061 NS 0.578 (0.490–0.665)
Glucose levels at admission 0.015 0.054 0.593 (0.499–0.688)
Scene of accident hypoxia 0.131 NS 0.545 (0.486–0.603)
Scene of accident hypotension 0.565 NS 0.492 (0.466–0.519)
CT scan
Marshall CT classification 0.622 NS 0.512 (0.440–0.595)
Rotterdam CT score 0.033 0.035 0.584 (0.502–0.666)
Stockholm CT score <0.001 0.226 0.742 (0.669–0.816)
Progression of hemorrhage <0.001 0.158 0.656 (0.592–0.721)
Trauma scores
Head-AIS 0.044 0.032 0.589 (0.513–0.666)
NISS 0.019 0.044 0.605 (0.517–0.693)
ISS 0.110 NS 0.562 (0.475–0.649)
Significant multi-trauma 0.514 NS 0.476 (0.408–0.544)
Biomarkers GOS1–3 vs 4–5 (unfavorable vs. favorable)
S100B peak concentration <0.001 0.213 0.708 (0.630–0.787)
NSE peak concentration <0.001 0.085 0.604 (0.518–0.690)
GFAP peak concentration <0.001 0.217 0.724 (0.648–0.800)
UCH-L1 peak concentration <0.001 0.211 0.742 (0.670–0.815)
Tau peak concentration <0.001 0.162 0.708 (0.631–0.786)
NF-L peak concentration <0.001 0.154 0.699 (0.622–0.776)
Biomarkers GOS 1 versus 3 versus 4 versus 5

(proportional odds)
S100B peak concentration <0.001 0.197 0.729
NSE peak concentration <0.001 0.096 0.609
GFAP peak concentration <0.001 0.174 0.741
UCH-L1 peak concentration <0.001 0.271 0.749
Tau peak concentration <0.001 0.207 0.713
NF-L peak concentration <0.001 0.101 0.639
Biomarkers GOS 1 versus 2–5 (dead vs. alive)
S100B peak concentration <0.001 0.218 0.822 (0.720–0.923)
NSE peak concentration <0.001 0.132 0.645 (0.480–0.810)
GFAP peak concentration <0.001 0.203 0.814 (0.698–0.930)
UCH-L1 peak concentration <0.001 0.342 0.828 (0.722–0.933)
Tau peak concentration <0.001 0.273 0.787 (0.680–0.895)
NF-L peak concentration 0.041 0.046 0.651 (0.534–0.767)

Univariate logistic regression displaying Nagelkerke’s pseudo-R2 and AUC of admission parameters and biomarker levels versus long-term patient
outcome in different dichotomizations. ‘‘Admission,’’ ‘‘CT scan,’’ and ‘‘Trauma score’’ parameters used the GOS1–3 versus 4–5 (unfavorable vs.
favorable) outcome dichotomization. Nagelkerke’s pseudo-R2 is described if statistically significant ( p < 0.05). For multi-level receiver operating
characteristics (ROC) calculations, only AUC can be presented.

AUC, area under curve; CI, confidence interval; GCS, Glasgow Coma Scale; CT, computerized tomography; AIS, Abbreviated Injury Score; NISS,
New Injury Severity Score; ISS, Injury Severity Score; GOS, Glasgow Outcome Scale; NS, non-significant; GFAP, glial fibrillary acidic protein; NF-L,
neurofilament-light; NSE, neuron-specific enolase; S100B, S100 calcium-binding protein B; UCH-L1, ubiquitin carboxyl-terminal hydrolase-L1.
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Rotterdam CT score is more focused on mass-effect components

and, perhaps more appropriate, as a marker of affected parenchy-

mal volume,37 whereas the Marshall CT classification mainly dis-

criminates between diffuse and focal injuries.36 None of the

markers were significantly associated with DAI detected on MRI.

The analyses reached only borderline significance and being lower

in patients with DAI (tau p = 0.043 and S100B p = 0.059), pre-

sumably because the non-DAI patients still had had more mixed-

density lesions with greater parenchymal volume affected, though

smaller than 25 cm3. The sensitivity for detecting a true difference

may be greater if patients with only DAI are selected as done by

Ljungqvist and colleagues, where they studied TBI patients with

low concentrations of S100B and found that, in this small (n = 9)

cohort, NF-L levels were associated with extent of DAI injuries on

diffusion tensor MRI.45

Although being correlated with both TBI severity on admission

CT scans and relevant outcomes, early S100B and UCH-L1 levels

were also associated with presence of associated non-cranial in-

juries, replicating previous findings.46–49 The other biomarkers

displayed limited correlations with extracranial injury, in line with

their restricted expression to nervous tissues.27 Notably, the tem-

poral sliding window approach used in this study and the relatively

few samples in the first 24 h likely will underestimate the impact of

extracranial contribution (Supplementary Fig. S3C). In fact, in a

previous study, we found a strong influence of extracranial injuries

on S100B and NSE in the first 72 h with more-frequent sampling in

the earlier phases,6 when extracranial contribution likely is most

important.

All biomarkers used in the study have been previously correlated

to outcome in a variety of outcome models.15,28,31,50–64 However,

unknown timing of injury, measurement of single or a few markers,

use of different outcome dichotomizations, and different statistical

methods make it practically impossible to say whether one bio-

marker is superior to another. It is therefore noteworthy that we

found individual biomarkers to be better outcome predictors than

many other known single predictors, including age, GCS, pupil

responsiveness, and most CT scoring systems. Looking specifically

at the biomarkers, UCH-L1 performed particularly well against all

different outcome dichotomizations used, closely followed by

GFAP, S100B, and tau. In contrast, the predictive values of NF-L

and NSE were lower, especially NSE, which could only predict

mortality, also in line with work from us and others.6,28 It should be

noted that NSE levels may be affected by hemolysis of samples,65

presumably common in our clinical scenarios. Among the included

markers, UCH-L1 has the shortest effective serum half-life (7–10 h

in severe TBI),62 which could explain its higher performance, given

that a more-severe brain injury will yield a prolonged release.

By visualizing temporal profiles in relation to GOS levels, in-

teresting features of the biomarkers emerge. All biomarkers, except

for NF-L, exhibited a decrease in concentration over the first days

after injury, leveling at approximately 4 days after trauma. A clear

separation of patients that died (GOS1), or had unfavorable out-

come (GOS 1–3), can be seen during this time window, indicative

of a continued cerebral efflux presumably attributed to ongoing cell

death.9 This is in line with several previous studies looking at

S100B, GFAP, NSE, and UCH-L1,31,59,66,67 whereas it has not

been reported yet for tau. NF-L clearly stands out among the in-

cluded markers, given that levels kept increasing throughout the

study period, in accord with previous work.15

Although previous reports found that UCH-L1 (10 h), tau (10 h),

and S100B (24 h) have shorter effective half-lives in serum as

compared to GFAP (48 h), NSE (48h), and NF-L (>1 weeks) in

patients with severe TBI,25,26 this is not entirely evident in the

current data set. However, it does appear that it takes longer for

GFAP to level out as compared to S100B, UCH-L1, and NSE. This

is probably also attributed to the low sampling frequency in this

study and the subsequently lower resolution of information than in

our previous study for S100B and NSE, which observed rather

steep declines after 24 h.6 In the present study, NF-L increased over

the first 2 weeks, which may relate to a longer effective half-life in

serum in addition to release from degeneration of axonal connec-

tions with a longer time frame than more-acute necrotic cell death

in the impact core.12 Thus, NF-L may be more suitable for sampling

in more chronic stages of TBI (weeks to months after trauma) and

could explain its relatively low predictive power, if used individ-

ually, in this study.

More information on the mechanism of efflux of these bio-

markers from the cerebral compartment in the context of TBI is also

warranted.68 It has been speculated that blood–brain barrier (BBB)

disruption,69 glymphatic system activity independent of BBB dis-

ruption,70 or a more-passive release from brain/cerebrospinal flu-

id71 may contribute to efflux. Clearance from serum is also not well

described, where only S100B has been studied and has shown a

renal clearance.72 Other larger proteins are believed to be, at least in

part, deaminated and metabolized by the liver, thus also potentially

affecting serum levels.73 Moreover, they could also be proteolyti-

cally processed into smaller fragments no longer recognized by the

assays.

GFAP and NF-L added the most independent information when

predicting unfavorable outcome in multi-variable models, in-

creasing pseudo-R2 from 0.38 to 0.51. An additional step up with

other biomarkers did not significantly improve the models. In

theory, adding proteins with different cellular origins or kinetic

profiles could contain different information regarding pathophysi-

ological processes, and might be expected to represent the best

combination in outcome models.

We have previously noted, for NF-L and S100B, that both

markers in combination performed better than either used alone,

and that addition of NSE did not provide additional predictive in-

formation.6,29 Czeiter and colleagues noted, in a study of 45 pa-

tients with severe TBI using a more limited IMPACT model

FIG. 1. Sample counts days post-trauma. Counts of samples by
day post-trauma (gray, n = 421; x-axis, days; y-axis, number of
samples [counts]) and counts where exact corresponding times of
NSE and S100B did not exist (black, n = 61). NSE, neuron-specific
enolase; S100B, S100 calcium-binding protein B.
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(a ‘‘core’’ model consisting of only age, GCS motor score, and

pupil abnormalities), that GFAP added 0.162 pseudo-R2 to this

model,30 which is, to some extent, similar to our study, but also

demonstrates that the other IMPACT and CT parameters retain a lot

of the predictive information in these models. Gradisek and col-

leagues reported similar findings, that is, that S100B and GFAP, but

not NSE, added independent information in outcome prediction

models using some admission parameters and CT characteristics

predicting mortality,56 as was also replicated by Vos and col-

leagues, where S100B and GFAP performed better in outcome

prediction models than if GFAP and NSE were used in the presence

of admission parameters.28

GFAP, UCH-L1, and tau exhibited strong intercorrelations, with

correlations coefficients ranging from 0.83 to 0.88. Tau levels have

not been extensively correlated to other biomarker concentrations,

but GFAP and UCH-L1 correlation coefficients have been shown to

be 0.24 to approximately 0.50,74–79 and thus substantially less than

in our study. However, these studies mainly included patients with

mild TBI, many without intracranial lesions. The study by Korley

and colleagues noted in mild TBI that GFAP was slightly better

than UCH-L1, NF-L, and tau, but that a model detecting CT pos-

itive scans increased from an AUC of 0.88 using GFAP to 0.90

using all the biomarkers together, so a substantial covariance is

likely present between markers.79 In comparison, TBI patients in

need of NCCU care and intracranial monitoring usually suffer from

a mix of intra- and extracranial injuries, where biomarker serum

release patterns are probably different.

The coefficients observed between S100B, NSE, and other

markers in this study are similar to what have been described

previously.28,67,74,80 NF-L levels did not correlate well with the

other markers, especially S100B and NSE, likely because of a

difference in the underlying pathophysiology for its release, as well

as a potentially different clearance pattern. The PCA revealed a

distinct clustering of the primarily neurological markers, tau and

UCH-L1, that exhibited similar projections in the first two

Table 4. Multi-Variable Analyses

versus Patient Outcome

Unfavorable versus favorable outcome
Nagelkerke’s

pseudo-R2

IMPACT Rotterdam model 0.285
Base model (IMPACT but Stockholm

CT instead of Rotterdam CT)
0.375

Base + S100B 0.463a ( p = 0.003)
Base + NSE 0.406
Base + UCH-L1 0.458
Base + Tau 0.445
Base 1 GFAP 0.470a (p 5 0.017)
Base + NF-L 0.450a ( p < 0.001)
Base + GFAP + S100B 0.487
Base + GFAP + NSE 0.470
Base + GFAP + UCH-L1 0.475
Base + GFAP + Tau 0.479
Base 1 GFAP 1 NF-L 0.514b (p 5 0.001)
Base 1 GFAP 1 NF-L 1 S100B 0.522 ( p = 0.223)
Base + GFAP + NF-L + NSE 0.514
Base + GFAP + NF-L + UCH-L1 0.515
Base + GFAP + NF-L + Tau 0.514

Multi-variable regression analyses versus unfavorable/favorable
(GOS1–3 vs. 4–5) outcome at 12 months. The IMPACT model consists
of age, GCS, pupil response, scene of accident hypoxia, scene of accident
hypotension, admission glucose, and admission hemoglobin. To this,
Rotterdam CT score was added initially, but then replaced by Stockholm
CT-score forming the ‘‘Base’’ model used. The model exhibiting highest
pseudo-R2 is highlighted in bold. Significantly better models according to
the likelihood ratio test are shown with p values, stepping up from the
nested base model (Base, Base + GFAP or Base + GFAP + NF-L).

aStep-up model significantly improved compared to the Base model.
bStep-up model significantly improved compared to Base + GFAP model.

p value for Base + GFAP + NF-L + S100B highlighted to show that it did
not yield independent information over the Base + GFAP + NF-L model.

IMPACT, International Mission for Prognosis and Analysis of Clinical
Trials in TBI; CT, computerized tomography; GFAP, glial fibrillary acidic
protein; NF-L, neurofilament-light; NSE, neuron-specific enolase; S100B,
S100 calcium-binding protein B; UCH-L1, ubiquitin carboxyl-terminal
hydrolase-L1.

Table 5. Cross-Correlation Analyses

between Different Protein Biomarkers

Peak serum levels
S100B NSE GFAP UCH-L1 Tau NF-L

S100B 1.000
NSE 0.458 1.000
GFAP 0.670 0.496 1.000
UCH-L1 0.665 0.486 0.880 1.000
Tau 0.632 0.548 0.824 0.877 1.000
NF-L 0.279 0.282 0.297 0.383 0.438 1.000

Cross-correlation analyses displaying Spearman’s rho correlation coef-
ficient for peak serum levels for each patient. This was done in patients
where all biomarker levels where present, thus n = 168.

GFAP, glial fibrillary acidic protein; NF-L, neurofilament-light; NSE,
neuron-specific enolase; S100B, S100 calcium-binding protein B; UCH-
L1, ubiquitin carboxyl-terminal hydrolase-L1.

FIG. 3. Principal component analysis of biomarkers. A principal
component analysis (PCA) of the first two dimensions of the
biomarker data explaining 81.8% of the data variance. Dimen-
sion1 (Dim1, x-axis) explains 67.3% of the variance and Dim2 (y-
axis) an additional 14.5%. The heatmap indicates how well each
biomarker is explained (%) by these two components (vector
length). Biomarkers can be seen to have substantial covariance
except in the case of NF-L, suggesting it to contain highly dif-
ferent information. GFAP, glial fibrillary acidic protein; NF-L,
neurofilament-light; NSE, neuron-specific enolase; S100B, S100
calcium-binding protein B; UCH-L1, ubiquitin carboxyl-terminal
hydrolase-L1. Color image is available online.
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components. The primarily astrocytic markers, S100B and GFAP,

also clustered together with the neuronal NSE. In contrast, NF-L

with an axonal origin displayed the most unique projection among

the markers analyzed here. These findings are in concordance with

the multi-variable outcome models and the information content

provided by the different biomarkers. The different components

probably also indicate different temporal trajectories for the pro-

teins, explaining the very different clustering for NF-L, and why tau

and UCH-L1 clustered so closely, as they share temporal patterns.

These findings are difficult to relate to previous work, given that

few studies have used this approach before. However, Mondello

and colleagues reported on a tentative ‘‘glial:neuronal ratio’’ by

creating a ratio between serum levels of GFAP and UCH-L1,81

suggesting that patients with more-focal mass lesions on admission

CT scans displayed higher GFAP levels, whereas more-diffuse

injuries instead released predominantly UCH-L1. In our study,

these two markers positioned themselves differently, especially

based on the second component, supporting that they might be

markers for different underlying pathophysiology (even if not

significantly associated with either diffuse or focal injury using

Marshall CT, p = 0.359 data not shown).

In an exploratory analysis, we tested how interactions between

biomarkers improved outcome prediction and the only significant

biomarkers, if used in a similar ratio, was S100B:GFAP, adding

information if S100B and GFAP independently were used in the

same outcome prediction model (data not shown). This was pre-

sumably attributed to the difference in temporal profiles more than

cellular origin.25 GFAP was also the protein with least explained

variance by the two first principal components, suggesting that it

carries different biological information. In summary, the PCA in-

dicated distinct clusters of proteins, supporting that biomarkers of

separate cellular origins and temporal profiles may contribute dif-

ferently in prediction models.

Limitations

Patients were sampled once to thrice over the first 2 weeks,

where more-frequent sampling would have provided more-precise

information on temporal profiles. Moreover, the timing of the first

sample in relation to injury varied considerably between patients,

which likely affected outcome prediction modeling negatively,

given that peak values may have been missed. This is specifically

limiting for proteins with a shorter effective serum half-life as

compared to NF-L.

In cases of milder TBI, GFAP concentrations have been shown

to peak at around 24 h, in comparison to UCH-L1, which has a

steadier decline.82 Presumably, most pathophysiological informa-

tion is acquired from these ‘‘peak’’ levels, which we have observed

in our studies with S100B.11 In fact, in an exploratory approach, if

the peak levels 12–36 h after trauma of S100B were used, it out-

performed GFAP in the multi-variable outcome prediction models

(data not shown), stressing the need to find the ideal time point for

each protein. However, the relatively large patient population with

non-set-sampling time points may, to some extent, offset these

limitations, though the findings presented herein should be repli-

cated by studies with a more-structured sampling procedure, such

as CENTER-TBI (Collaborative European NeuroTrauma Effec-

tiveness Research in Traumatic Brain Injury),83 which would also

allow for external validation our suggested models.

Patients were pragmatically included, depending on the avail-

ability of researchers and staff. Thus, though not all NCCU TBI

patients were included, we believe the material represents a valid

cohort, with more severely injured patients recruited, which is our

target population, and that the data are not affected by selection bias.

The lack of a diffuse tensor imaging in our MRI protocol likely

underestimated the amount of DAI present in this cohort. However,

this method is novel, and GRE (or susceptibility weighted imaging)

and FLAIR are still the most commonly used protocols in order to

detect different types of DAI today.

Previously, parts of this cohort have been used to analyze NF-L,

S100B, and NSE samples and their correlation to outcome in ret-

rospective studies.6,11,29 However, for NF-L, a less-sensitive assay

was then used and those results were not included in this study.84

We believe that inclusion of the clinically implemented S100B and

NSE provides a valuable comparison for the more novel markers. It

should also be mentioned that none of these newer markers have

rapid clinical assays; thus, it takes hours to analyze them, making

them yet more difficult to implement for clinical decision making.

We have, in a previous study, meticulously analyzed the effects of

the S100B assay change during the study period, but have not been

able to show any difference between the samples acquired before, and

after, the implementation of the Roche� Cobas� system.6 Pre-

sumably, this is attributed to the fact that the variation described

between these two platforms are primarily observed at higher con-

centrations than the ones commonly encountered clinically.85

We acknowledge that the CT scoring systems used in this article

are only surrogate markers for injury severity. Ideally, volumetric

maps of the affected brain areas, in order to more accurately

quantify the amount of injured brain, should be compared with

protein biomarker levels.

The CVs for NF-L, tau, and GFAP were below or around 10%,

which is clearly acceptable and well within what is commonly

observed in immunoassays. Although CVs for UCH-L1 were

higher, it could have made results more uncertain at the individual

sample level, even if we believe that this will be balanced at group

level considering the amounts of patient included in this study.

Conclusions

We found that S100B, UCH-L1, GFAP, and tau provided highly

significant prediction of GOS and NF-L that of mortality, following

TBI. When adjusting for known important predictors of TBI out-

come, GFAP and NF-L in combination were found to add the most

significant information to multi-variable prediction models. Bio-

markers of similar cellular origin and temporal trajectories display

strong intercorrelations and similar PCA projections, suggesting

why they do not add significant independent information when

combined. The combination of different biomarkers, reflecting

different cellular origins and pathophysiological processes, sig-

nificantly improved the prediction models and should represent a

valuable tool for improved patient stratification in future TBI trials.
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