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been elucidated in human liver cancer stem cells.

in vivo were performed.
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Background: The functions of HULC have been demonstrated in several cancers. However, its mechanism has not
Methods: Liver cancer stem cells were isolated from Huh7 cells; gene infection and tumorigenesis test in vitro and

Results: We demonstrate that HULC promotes growth of liver cancer stem cells in vitro and in vivo.
Mechanistically, HULC enhances the expression of Sirt1 dependent on miR675 and then induces the cellular
autophagy through Sirt1. HULC enhances CyclinD1 and thereby increases pRB and inhibited P21 WAF1/CIP 1 via
autophagy-miR675-PKM2 pathway in human liver cancer stem cells. Ultimately, our results demonstrate that
CyclinD1 is required for the oncogenic functions of HULC in liver cancer stem cells.

Conclusions: It reveals the key molecular signaling pathways for HULC and provides important basic information
for finding effective tumor therapeutic targets based on HULC.

Introduction

HULC has been studied in several cancers and promotes
tumorigenesis [1-4]. Furthermore, HULC polymorphisms
are associated with hepatocellular cancer risk and prognosis
[5, 6]. In addition, HULC enhances autophagy [7] and facili-
tates hepatocellular carcinoma genesis [8]. Furthermore,
HULC regulates the expression of bone morphogenetic
protein9 (BMP9) [9]. Interestingly, HULC acts as an onco-
gene [10] and inhibits apoptosis [11] and promotes invasion
[12, 13]. Furthermore, HULC stabilizes Sirtl and decreases
the chemosensitivity [14]. Moreover, HULC aggravates the
cellular proliferation by regulating telomere repeat-binding
factor2 [15] and CUDR, B-Catenin [16], and IGF2 mRNA-
binding protein 1 (IGF2BP1) [17].
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In this study, HULC is associated with miRNA675, Sirtl,
CyclinD1, and autophagy. A study indicates that miR-675
enhances cell proliferation [18, 19] and Smads/miR-675/
TGEFBR1 axis modulates the proliferation [20]. Moreover,
sPIF promotes myoblast differentiation via the H19/miR-
675/1et-7 pathways [21] Furthermore, miR-675 mediates
therapeutic effect [22]. A study indicates that SIRT1 is im-
plicated in stem cell homeostasis. In particular, Conditional
Sirtl deletion in the hematopoietic stem and progenitor
system promotes hematopoietic stem and progenitor cell
(HSPC) expansion under stress conditions [23]. Moreover,
SIRT1 enhances progression and epithelial-mesenchymal
transition in several cancer [24, 25]. Furthermore, CyclinD1
promotes the cancer cell growth dependent on autophagy
[26]. A study shows that CyclinD1 complement pl6 acts as
tumor marker [27] and shows heterogeneous expression of
pRb and CyclinD1 [28]. Importantly, autophagy is essential
in cellular processes [29]. For example, downregulation of
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CD44v6 inhibits autophagy in colorectal cancer HT29 cells
[30], and LncRNA CCAT1 functions as apoptosis inhibitor
via autophagy inhibition [31] and upregulated lysine-specific
demethylase 4B by autophagy [32]. Notably, BCR signaling
contributes to autophagy regulation [33].

In this study, our observations suggest that HULC pro-
motes progression of liver cancer stem cells dependent
on CyclinD1. It provides important basic information for
finding effective tumor therapeutic targets.

Materials and methods

Cell infection and transfection

Cells were infected with lentivirus and transfected with
DNA plasmids according to the manufacturer’s instruc-
tions (also see Additional file 1).

MicroRNA detection

Real-time RT-PCR-based detection of mature miR-675
was achieved with the miRNA Detection kit and miR-
675-specific upstream primers (5'-TGGTGCGGAGAG
GGCCCACAGTG-3").

RNA immunoprecipitation (RIP)

Ribonucleoprotein particle-enriched lysates were incubated
with protein A/G-plus agarose beads (Santa Cruz, Biotech-
nology, Inc.CA) together with the primary antibody or nor-
mal IgG for 4h at 4°C. Beads were subsequently washed
and RNAs were then isolated. RT-PCR was performed ac-
cording to the manufacturer’s instructions.

Cells proliferation CCK8 assay

Cells were grown in complete medium for CCK8 assay
according to the manufacturer’s instructions. Cell growth
curve was based on the values of OD450.

Colony-formation efficiency assay

Cell colonies on the dish were stained with Crystal Violet
(Henan Tianfu Chemical Co., Ltd.), and the colonies were
counted according to the manufacturer’s instructions.

Xenograft transplantation in vivo

Four-week male athymic Balb/C mice were purchased
from Shi Laike Company (Shanghai, China). The athy-
mic Balb/C mice were injected at the armpit area sub-
cutaneously with suspension of cells. The wet weight of
each xenograft was determined for each mouse. The use
of mice for this work was reviewed and approved by the
institutional animal care and use committee in accord-
ance with China National Institutes of Health guidelines.

Results

HULC promotes growth of liver cancer stem cells

To demonstrate the effect of HULC on human liver
cancer stem cells, we perform the tumorigenesis test
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in vitro. First, human liver cancer stem cells were isolated
from Huh7 cells. Cells that meet the four indexes of
CD133+, CD44+, CD24+, and EpCAM+ are defined as hu-
man liver cancer stem cells (hLCSCs), and cells that satisfy
the four indexes of CD133-, CD44-, CD24-, and EpCAM
are defined as non-hepatoma stem cells (non-hLCSCs).
CD44, CD24, and EpCAM are expressed in hLCSCs, but
not in non-hLCSCs (Additional file 1: Figure S1). Moreover,
the sphere formation rate is 0.153 + 0.0372% in the hLCSCs
group, and the sphere formation rate is 0 in the non-
hLCSCs group (0.153 + 0.0372% vs 0, P =0.00079 < 0.01)
(Additional file 1: Figure S2A). The weight of xenograft tu-
mors is 0.68 +0.19 g in the hLCSCs group, and the weight
of xenograft tumors is 0 g in the non-hLCSCs group (0.68 +
0.19g vs 0, P=0.00000098 < 0.01) (Additional file 1: Figure
S2B). Next, we established four stable hLCSC lines trans-
fected with pCMV6-A-GFP (GEP ctrl group), pCMV6-A-
GFP-HULC (HULC group), pGFP-V-RS (RNAI ctrl group),
and pGFP-V-RS-HULC (HULCi group), respectively
(Fig. 1a). As shown in Fig. 1b, HULC expression was signifi-
cantly enhanced in the HULC group compared with the
GFP ctrl group and reduced in the HULCi group compared
with the RNAI ctrl group. As shown in Fig. 1c, the growth
ability was significantly increased in the HULC group com-
pared to the GFP ctrl group (P < 0.01) and decreased in the
HULCi group compared to the RNAI ctrl group compared
to the GFP ctrl group (P <0.01). Moreover, the proportion
of BrdU-positive cells in the HULC group was significantly
increased in the HULC group compared to the GFP ctrl
group (P <0.01) and decreased in the HULCi group com-
pared to the RNAi ctrl group compared to GFP the ctrl
group (P <0.01) (Fig. 1d). Furthermore, the soft-agar colony
formation rate was significantly increased in the HULC
group compared to the GFP ctrl group (31.09 + 7.29% vs
65.30 + 11.58%, P =0.0053 <0.01) and decreased in the
HULCi group compared with the RNAi ctrl group
(34.049 + 4.79% vs 17.34 + 1.37%, P =0.0102 < 0.05)
(Fig. 1e). The sphere-formation rate of hLCSCs was sig-
nificantly increased in the HULC group compared to
the GFP ctrl group (28.74 + 6.47% vs 54.71 + 8.19%,
P =0.0008 <0.01) and decreased in the HULCi group
compared with the RNAi ctrl group (24.52 + 4.31 vs
10.03 + 2.67%, P =0.031<0.05) (Fig. 1f). Collectively,
these results suggest that HULC promotes the growth
in vitro of liver cancer stem cells.

HULC accelerates growth of hLCSCs in vivo

To investigate the effect of HULC on hLCSCs in vivo, the
four stable hLCSC lines were injected subcutaneously into
Balb/C mice, respectively. As shown in Fig. 2a and b, com-
pared with the GFP ctrl group, the weight of xenograft
tumor was increased approximately by twofold in the HULC
group (0.385 + 0.057 g vs 0.852 + 0.108 g, p = 0.000007933 <
0.01); however, compared with the RNAi ctrl group, the
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Fig. 1 HULC accelerates hLCSCs growth in vitro. a the photography of transfected cells. b RT-PCR analysis of expression of HULC in hLCSCs. -
actin was used as internal control. ¢ Cell growth assay using CCK8. d S phase cells assay using BrdU. e Soft-agar colony formation assay. f Cell
sphere formation ability

weight of xenograft tumor was decreased approxi-
mately by one third in the HULCi group (0.45 + 0.068
g vs 0.153 + 0.0372 g, p = 0.000224907 < 0.01). Further-
more, the xenograft tumors appeared earlier in the
HULC group than in the GFP ctrl group (8.33 + 1.37
days vs 5.67 + 0.816days, p=0.0014788<0.01),
whereas those appeared later in the HULCi group than
in the RNAI ctrl group (9.0 + 1.79 days vs 15.5 + 2.43
days, p = 0.000184 < 0.01) (Fig. 2c). Furthermore, xeno-
graft tumor differentiation was poorer in the HULC
group than in the GFP ctrl group, whereas xenograft
tumor differentiation was well in the HULCi group
than in the RNAi ctrl group (Fig. 2d). Furthermore,
the PCNA-positive rate was significantly higher in the
HULC group than in the GFP ctrl group (36.15 + 7.25% vs
69.99 + 8.24%, p = 0.00041 < 0.01) and lower in the HULCi
group than in the RNAi ctrl group (34.62 + 4.94% vs
18.19 + 2.67%, p =0.00029 <0.01) (Fig. 2d, e). Together,
these results suggest that HULC accelerates growth of
liver cancer stem cells in vivo.

HULC increases the miR675 in liver cancer stem cells

Given that HULC promotes the growth of liver cancer
stem cells and miR675 is associated with oncogenesis,
we consider whether HULC regulates the expression of
miR675. To address this hypothesis, we measured the
level of RNA methylation of pri-miR675 in hLCSCs. Our
results showed that excessive HULC increases and
HULC knockdown decreased the binding of METTL3 (a
RNA methyltransferase) to pri-miR675 compared to the
control group (Fig. 3a). Furthermore, real-time RIP
results showed that the binding of METTL3 (a RNA
methyltransferase) to pri-miR675 was increased in the
pCMV6-A-GFP-HULC group compared to the pCMV6-
A-GFP group and decreased in the pGFP-V-RS-HULC
group compared to the pGFP-V-RS group (Fig. 3b). In
particular, pri-miR675, pre-miR675, and mature miR-
R675 were significantly increased in the pPCMV6-A-GFP-
HULC group compared to the pCMV6-A-GFP group
and decreased in the pGFP-V-RS-HULC group com-
pared to the pGFP-V-RS group (Fig. 3c). Furthermore,
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Fig. 2 HULC accelerates hLCSCs growth in vivo. a The photograph of xenograft tumors derived from four hLCSC lines injected into mice. b The
wet weight of xenograft tumors. ¢ The appearance time of xenograft tumors. d Histological hematoxylin-eosin (HE) staining (upper pictures) and
anti-PCNA immunostaining (lower pictures) of xenograft tumors (original magnification x 100). @ PCNA-positive cell analysis of xenograft tumors

mature miR675 was increased in the pCMV6-A-GFP-
HULC group compared to the pCMV6-A-GFP group and
decreased in the pGFP-V-RS-HULC group compared to
the pGFP-V-RS group (Fig. 3d). Although pre-miR675, pre-
miR675, and mature mi-R675 were significantly increased
in the pCMV6-A-GFP-HULC group compared to the
pCMV6-A-GFP group, it was significantly not altered in
the pCMV6-A-GFP-HULC+pGFP-V-RS-METTL3 group
compared to the pCMV6-A-GFP group (Additional file 1:
Figure S3A&B). Collectively, these observations suggest that
HULC enhances the expression and maturity of miR675
dependent on METTL3.

HULC promotes the expression of Sirt1 dependent on
miR675

Given that HULC increases the expression of miR675,
we will try to consider whether HULC regulates expres-
sion of Sirtl via miR675. As shown in Fig. 4a, mature
miR675 matches 3’ untranslational region (UTR) on
histone deacetylase 5(HDAC5) mRNA via eight-seed se-
quence. Next, as shown in Fig. 4b, although the DHAC5 3’

UTR luciferase activity was significantly reduced in the rLV-
miR675 group compared to the rLV control group (199,
362.03 +32,442.268 vs 12,057.69 +4192.57, p=0.00375 <
0.01), it was significantly not altered in the rLV-miR675
group compared to the rLV group (118,226.40 + 14,210.88 vs
105,230.04 + 22,650.11, p = 0.22704 > 0.05) (Additional file 1:
Figure S4). Although the DHAC5 mRNA was not signifi-
cantly altered between the rLV-miR675 group and rLV con-
trol group, the expression of DHAC5 was significantly
reduced in the rLV-miR675 group compared to the rLV con-
trol group (Fig. 4c). Although the expression of DHAC5 was
significantly reduced in the pCMV6-A-GFP-HULC group
and increased in the rLV-Cas9-miR675 group compared to
the pCMV6-A-GFP group, it was significantly not altered in
the pCMV6-A-GFP-HULC plus rLV-Cas9-miR675 group
compared to the pCMV6-A-GFP group (Fig. 4d). In particu-
lar, the loading of DHACS5 on the Sirtl promoter region was
significantly reduced in the pCMV6-A-GFP-HULC group
and increased in the rLV-Cas9-miR675 group compared to
the pCMV6-A-GFP group. However, the expression of
DHACS5 was significantly not altered in the pCMV6-A-GFP-
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HULC plus rLV-Cas9-miR675 group compared to the
pCMV6-A-GFP group (Fig. 4e). Furthermore, although the
luciferase activity of Sirtl promoter was significantly in-
creased in the pPCMV6-A-GFP-HULC group (87,825.04 + 10,
954.98 vs 306,040.71 +27,824.28, p=0.0042<0.01) and
reduced in the rLV-Cas9-miR675 group compared to the
pGFP-V-RS group compared to the pCMV6-A-GEP group
(87,825.04 + 10,954.98 vs 28,809.006 + 999.09, p =0.0053 <
0.01), it was significantly not altered in the pCMV6-A-GFP-
HULC plus rLV-Cas9-miR675 group compared to the
pCMV6-A-GFP group (87,825.04 +10,954.98 vs 82,
539.303 + 16,170.81, p = 0.3625 > 0.05) (Fig. 4f). More-
over, the luciferase activity of Sirtl promoter was significantly
increased in the pCMV6-A-GFP-HULC group compared to
the pCMV6-A-GFP group (10,03248 +1131.55 vs 86,
393.99 +10,824.39, p =0.003835 < 0.01) and reduced in the
pGFP-V-RS-HULC group compared to the pGFP-V-
RS group (9143.86 + 1613.94 vs 2522.18 +429.04, p =
0.0059436 < 0.01) (Fig. 4g). Ultimately, the expression
of Sirtl was significantly increased in the pCMV6-A-

GFP-HULC group and decreased in the rLV-Cas9-miR675
group compared to the pCMV6-A-GFP group. However,
the expression of Sirtl was significantly not altered in the
pCMV6-A-GFP-HULC plus rLV-Cas9-miR675 group com-
pared to the pCMV6-A-GFP group (Fig. 4h, i). Moreover,
although the expression of Sirtl was significantly increased
in the pCMV6-A-GFP-HULC group and decreased in the
rLV-Cas9-miR675 group compared to the pCMV6-A-GFP
group, it was significantly not altered in the pCMV6-A-
GFP-HULC plus rLV-HDAC5 group compared to the
pCMV6-A-GEP group (Fig. 4j). Collectively, these observa-
tions indicate that HULC enhances the expression of Sirtl
dependent on miR675-HDACS.

HULC increases the autophagy through Sirt1

Given that HULC increases the expression of Sirtl which is
associated with deacetylation of LC3, we consider whether
HULC influences on the autophagy through Sirtl in liver
cancer stem cells. First, although the interaction between
Sirtl and LC3 was significantly increased in the pCMV6-A-
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GFP-HULC group and decreased in the rLV-Cas9-miR675
group compared to the pCMV6-A-GFP group, it was
significantly not altered in the pCMV6-A-GFP-HULC plus
rLV-Cas9-miR675 group compared to the pCMV6-A-GFP
group (Fig. 5a). As shown in Fig. 5b, the Ac-LC3 was sig-
nificantly decreased in the pCMV6-A-GFP-HULC group
compared to the pCMV6-A-GFP group. However, the Ac-
LC3 was not significantly altered in the pCMV6-A-GFP-
HULC plus Sirtinol (a Sirtl inhibitor) group and the
pCMV6-A-GFP-HULC plus rLV-Cas9-miR675 group com-
pared to pCMV6-A-GFP group, respectively. Therefore,
although the interaction between LC3 and DOR was

significantly increased in the pCMV6-A-GFP-HULC group
compared to the pCMV6-A-GFP group, it was not signifi-
cantly altered in the pCMV6-A-GFP-HULC plus Sirtinol
group and the pCMV6-A-GFP-HULC plus rLV-Cas9-
miR675 group compared to the pCMV6-A-GFP group
(Fig. 5c). Strikingly, the interaction between LC3 and
ATG4 was significantly increased in the pCMV6-A-GFP-
HULC group compared to the pCMV6-A-GFP group.
However, the interaction between LC3 and DOR was not
significantly altered in the pCMV6-A-GFP-HULC plus
Sirtinol group and the pCMV6-A-GFP-HULC plus rLV-
Cas9-miR675 group compared to the pCMV6-A-GEFP
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group, respectively (Fig. 5d). Furthermore, the interaction
between LC3 and ATG3 was significantly increased in the
pCMV6-A-GFP-HULC group compared to the pCMV6-
A-GFP group. However, the interaction between LC3 and
ATG3 was not significantly altered in the pCMV6-A-
GFP-HULC plus Sirtinol group and the pCMV6-A-GFP-
HULC plus rLV-Cas9-miR675 group and compared to the
pCMV6-A-GFP group, respectively (Fig. 5e). And, the
interaction between ATG3 and ATG7 was significantly
increased in the pCMV6-A-GFP-HULC group compared
to the pCMV6-A-GFP group. However, the interaction
between ATG3 and ATG7 was not significantly altered in
the pCMV6-A-GFP-HULC plus Sirtinol group and the
pCMV6-A-GFP-HULC plus rLV-Cas9-miR675 group
compared to the pCMV6-A-GFP group, respectively
(Fig. 5e). Thus, the activated LC3II was significantly
enhanced in the pCMV6-A-GFP-HULC group compared
to the pCMV6-A-GFP group. However, the activated
LC3II was not significantly altered in the pCMV6-A-GFP-
HULC plus Sirtinol group and the pCMV6-A-GFP-HULC
plus rLV-Cas9-miR675 group compared to the pCMV6-A-
GFP group, respectively (Fig. 5f). In particular, the beclinl
was significantly increased in the pCMV6-A-GFP-HULC
group compared to the pCMV6-A-GFP group. However,

the beclinl was not significantly altered in the pPCMV6-A-
GFP-HULC plus Sirtinol group and the pCMV6-A-GFP-
HULC plus rLV-Cas9-miR675 group compared to the
pCMV6-A-GFP group, respectively (Fig. 5g). Ultimately,
the autophagy was significantly enhanced in the pCMV6-
A-GFP-HULC group compared to the pCMV6-A-GEFP
group (23.38+5.27% vs 56.41+11.38%, p=0.00902 <
0.01). However, the autophagy was not significantly altered
in the pCMV6-A-GFP-HULC plus Sirtinol group and the
pCMV6-A-GFP-HULC  plus rLV-Cas9-miR675 group
compared to the pCMV6-A-GFP group, respectively
(23.38 +5.27% vs 26.93 + 3.56%, p = 0.10548 > 0.05; 23.38 +
5.27% vs 21.38+5.41%, p =0.361978 >0.05) (Fig. 5h, i).
Collectively, these observations suggest that HULC in-
creases the autophagy dependent on Sirt1.

HULC enhances CyclinD1 to increase pRB and inhibit P21
WAF1/CIP 1 via autophagy-PKM2 pathway

To address whether HULC influences on the PKM2 in liver
cancer stem cells by autophagy, we first analyze the inter-
action between LC3II and Pyruvate Kinase M2 (PKM2) in
liver cancer stem cells. As shown in Fig. 6a, the interaction
between LC3II and PKM2 was significantly enhanced in the
pCMV6-A-GFP-HULC group compared to the pCMV6-A-
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GFP group. However, the interaction between LC3II and
PKM2 was not significantly altered in the pCMV6-A-GFP-
HULC plus Sirtinol group and the pCMV6-A-GFP-HULC
plus rLV-Cas9-miR675 group compared to the pCMV6-A-
GFP group, respectively. Moreover, the expression of PI3K
and PKM2 was significantly increased in the pCMV6-A-
GFP-HULC group compared to the pCMV6-A-GFP group.
However, the expression of PI3K and PKM2 was not
significantly altered in the pCMV6-A-GFP-HULC plus
3-methyladenine (3-MA) group compared to the pCMV6-
A-GFP group, respectively (Fig. 6b). Therefore, the expres-
sion of CyclinD1 was significantly increased in the pCMV6-
A-GFP-HULC group compared to the pCMV6-A-GFP
group. However, the expression of CyclnD1 was not signifi-
cantly altered in the pCMV6-A-GFP-HULC plus rLV-Cas9-
PKM2 group compared to the pCMV6-A-GFP group,
respectively (Fig. 6c). Moreover, the interaction between
CDK4 and CyclinD1 was significantly enhanced in the
pCMV6-A-GFP-HULC group compared to the pCMV6-A-
GFP group. However, the interaction between CDK4 and
CyclinD1 was significantly not altered in the pCMV6-A-
GFP-HULC plus pGFP-V-RS-PKM2 group compared to
the pCMV6-A-GFP group (Fig. 6d). Finally, pRB was signifi-
cantly increased in the pCMV6-A-GFP-HULC group com-
pared to the pCMV6-A-GFP group and reduced in the

pGFP-V-RS-HULC group compared to the pGFP-V-
RS group, and P21WAF1/Cipl was significantly de-
creased in the pCMV6-A-GFP-HULC group compared
to the pPCMV6-A-GFP group and increased in the pGFP-
V-RS-HULC group compared to the pGFP-V-RS group
(Fig. 6e). Collectively, these observations suggest that
HULC enhances CyclinD1 to increase pRB and inhibit
P21 WAF1/CIP 1 via autophagy-PKM2 pathway in human
liver cancer stem cells.

CyclinD1 is required for the oncogenic functions of HULC

To validate whether CyclinD1 is required for the action of
HULC in liver cancer stem cells, we performed the rescued-
test. As shown in Fig. 7a, HULC expression was significantly
increased in the pCMV6-A-GFP-HULC group and the
pCMV6-A-GFP-HULC plus pGFP-V-RS-CyclinD1 group
compared with the pCMV6-A-GFP group respectively, and
CyclinD1 was significantly increased in the pCMV6-A-GFP-
HULC group and decreased in the pCMV6-A-GFP-HULC
plus rLV-Cas9-CyclinD1 group compared with the pCMV6-
A-GFP group respectively. Next, as shown in Fig. 7b,
although the growth of LCSCs was more rapid in the
pCMV6-A-GFP-HULC group than in pCMV6-A-GFP (P <

0.01), it was not significantly altered in the pCMV6-A-GFP-
HULC plus pGFP-V-RS-CyclinD1 group compared to the
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pCMV6-A-GFP control group (P> 0.05). As shown in
Fig. 7c, although the colony formation ability was sig-
nificantly increased in the pCMV6-A-GFP-HULC group
compared to the pCMV6-A-GFP group (43.49 £ 6.78% vs
83.86 + 4.28%, p = 0.0097138 < 0.01), it was significantly not
altered in the pCMV6-A-GFP-HULC plus pGFP-V-RS-
CyclinD1 group compared to the pCMV6-A-GFP group
(P>0.05) (4349 +6.78% vs 4149 +9.07%, p=0.14058 >
0.05). As shown in Fig. 7d, e, although the xenograft tumor
weight increased approximately twofold in the pCMV6-A-
GFP-HULC group compared to the pCMV6-A-GFP group
(0.657 £ 0.069 g versus 1.13 + 0.093 g, P = 0.000017 < 0.01), it
was not significantly altered in the pCMV6-A-GFP-HULC
plus pGFP-V-RS-CyclinD1 group compared to the pPCMV6-
A-GFP group (0.657 £0.069¢g versus 0.609+0.101g, P=
0.14394 > 0.05). Although the appearance time of xenograft
was significantly decreased in the pCMV6-A-GFP-HULC
group compared to the pCMV6-A-GFP group (8.571

0.787 days versus 5429 + 0.535 days, P = 0.00000991 < 0.01),
it was significantly not altered in the pPCMV6-A-GFP-HULC
plus pGFP-V-RS-CyclinD1 group compared to the pCMV6-
A-GFP group (8.571 + 0.787 days versus 9.714 + 1.3801 days,
p=0.086154>0.05) (Fig. 7f). As shown in Fig. 7g, h, al-
though PCNA-positive rate was significantly higher in the
pCMV6-A-GFP-HULC group than in the pCMV6-A-GEP
group (35.08 +3.45% versus 64.83 +7.05%, p =0.000101 <
0.01), it was not significantly altered in the pCMV6-A-GFP-
HULC plus pGFP-V-RS-CyclinD1 group compared to
the pCMV6-A-GFP group (35.08 + 3.45% versus 31.704 +
5.143%, p=0.1095>0.05). Collectively, findings suggest
that HULC accelerates progression of human liver cancer
stem cells dependent on CyclinD1.

Discussion
To date, the functions and regulatory mechanism of long
noncoding RNA HULC in liver cancer stem cells have
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not fully been elucidated. To our knowledge, this paper
might be the first to demonstrate that HULC accelerates
the growth of human liver cancer stem cells by upregulat-
ing CyclinD1 by miR675-PKM2 pathway via autophagy.
In this study, we first demonstrate that HULC accelerates
growth of liver cancer stem cells in vitro and in vivo.
Mechanistically, HULC enhances the expression of Sirtl
dependent on miR675 and then induces the cellular au-
tophagy through Sirtl. HULC enhances CyclinD1 and
thereby increases pRB and inhibited P21 WAF1/CIP 1 via
autophagy-Pyruvate Kinase M2 (PKM2) pathway in hu-
man liver cancer stem cells. Ultimately, our results dem-
onstrate that CyclinD1 is required for the oncogenic
functions of HULC in human liver cancer stem cells.
These observations suggest that HULC accelerates pro-
gression of human liver cancer stem cells in vitro and
in vivo dependent on CyclinD1(Fig. 8).
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It is worth mentioning that our findings in this study
provide novel evidence for an oncogenic active role of
HULC in hLCSCs. This assertion is based on several ob-
servations: (a) HULC accelerates growth in vitro of liver
cancer stem cells. (b) HULC accelerates growth in vivo
of liver cancer stem cells. Several studies indicate that
HULC promotes proliferation and migration [34—38].
Our present results are consistent with these reports and
provide novel evidence for an active role of HULC in
promoting malignant formation and growth of LCSCs.
Therefore, we believe that HULC plays a key role in the
development of liver cancer.

Importantly, our results suggest that HULC increases the
miR675 in human liver cancer stem cells. This assertion is
based on several observations: (a) excessive HULC increases
and HULC knockdown decreased the binding of METTL3
(a RNA methyltransferase) to pri-miR675. (b) pri-miR675,
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pre-miR675, and mature miR-R675 were significantly in-
creased in HULC overexpressing hLCSCs. (c) The pre-
miR675, pre-miR675, and mature mi-R675 were not signifi-
cantly altered in the pCMV6-A-GFP-HULC+pGFP-V-RS-
METTL3 group. (d) HULC enhances the expression and
maturity of miR675 dependent on METTL3 in human liver
cancer liver cells. A study showed that miR-675 promoted
cancer cell growth [39]. Moreover, miR675 blocks DNA
mismatch repair in cancer [40]. Our present results are
consistent with these reports and provide novel evidence
for an active role of HULC in promoting malignant growth
of LCSCs dependent on miR-675. Thus, it suggests that
miR675 plays an important role for HULC oncogenic
actions.

Evidentially, our findings in this study provide novel
evidence that HULC promotes the expression of Sirtl
dependent on miR675. This assertion is based on several
observations: (a) miR675 targets HDAC5 mRNA3'-UTR via
eight-seed sequence. (b) DHACS5 was significantly reduced
in the rLV-miR675 group. (c) The loading of DHAC5 on
the Sirtl promoter region was significantly reduced in the
pCMV6-A-GFP-HULC group. (d) The luciferase activity of
Sirtl promoter was significantly increased in the pCMV6-A-
GFP-HULC group. (e) The expression of Sirtl was signifi-
cantly increased in the pCMV6-A-GFP-HULC group. (f)
HULC enhances the expression of Sirtl dependent on
miR675-HDACS. A study shows that SIRT1 enhances the
metabolic flexibility [41]. Moreover, SIRT1 promotes glu-
cose transporting [42] and inhibits apoptosis of cancer cells
[43]. Our present results are consistent with these reports.
Therefore, miR675-HDAC5-Sirtl axis regulates the onco-
genic functions of HULC. However, it should be explored
further.

Notably, our results suggest that HULC increases the
autophagy through Sirtl. This evidence is based on results
from nine parallel sets of experiments: (a) the interaction
between Sirtl and LC3 was significantly increased in the
pCMV6-A-GFP-HULC group. (b) The Ac-LC3 was signifi-
cantly decreased in the pCMV6-A-GFP-HULC group. (c)
The interaction between LC3 and DOR was significantly
increased in the pCMV6-A-GFP-HULC group. (d) The
interaction between LC3 and ATG4 was significantly in-
creased in the pCMV6-A-GFP-HULC group. (e) The inter-
action between LC3 and ATG3 was significantly increased
in the pCMV6-A-GFP-HULC group. (f) The interaction
between ATG3 and ATG7 was significantly increased in the
pCMV6-A-GFP-HULC group. (g) The activated LC3II was
significantly enhanced in the pCMV6-A-GFP-HULC
group. (h) The autophagy was significantly enhanced
in the pCMV6-A-GFP-HULC group. (i) HULC in-
creases the autophagy dependent on Sirtl.

Therefore, HULC enhances the expression of Sirtl
dependent on miR675 and therefore increases the au-
tophagy through Sirt1.
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Strikingly, HULC enhances CyclinD1 to increase pRB and
inhibit P21 WAF1/CIP 1 via autophagy-PKM2 pathway.
This evidence is based on results from three parallel sets of
experiments: (a) the interaction between LC3II and PKM2
was significantly enhanced in the pCMV6-A-GFP-HULC
group. (b) The expression of PI3K and PKM2 was signifi-
cantly increased in the pCMV6-A-GFP-HULC group. How-
ever, the expression of PI3K and PKM2 was not significantly
altered in the pCMV6-A-GFP-HULC plus 3-methyladenine
(3-MA) group. (c) The expression of CyclinD1 was signifi-
cantly increased in the pCMV6-A-GFP-HULC group. (d)
The interaction between CDK4 and CyclinD1 was signifi-
cantly enhanced in the pCMV6-A-GFP-HULC group. (e)
pRB was significantly increased in the pCMV6-A-GFP-
HULC group and reduced in the pGFP-V-RS-HULC group.
() HULC enhances CyclinD1 to increase pRB and inhibit
P21 WAF1/CIP1 via autophagy-PKM2 pathway in human
liver cancer stem cells. A study shows that autophagy
impairs endothelial function [44] and ubiquitination of
MAP 1LC3B is associated with autophagy [45]. Interestingly,
TLR2 enhances autophagy [46]. Importantly, PKM2 pro-
motes cell survival [47] and regulates STAT3 [48]. In
addition, miR-625-5p/PKM2 regulates glycolysis state [49].
Moreover, pRb-E2F pathway induced growth of cancer cells
[50]. In particular, microRNA-16-5p modulates Cyclin D1/
E1-pRb-E2F1 pathway in cancer cells [51]. Moreover,
HPV-16 E7 regulates phospholipase D activity in a pRB-
dependent manner [52]. A study shows that lincRNA-p21
acts as a tumor suppressor [53] and SPSB1 destabilizes
p21WAF1/Cipl [54]. Our present results are consistent
with these reports and provide novel evidence for onco-
genic role of HULC in promoting malignant growth of
LCSCs via CyclinD1-pRB-P21WAF1/CIP 1 via autophagy-
PKM2 pathway. Therefore, HULC oncogenic action is
associated with PKM2, CyclinD1, pRB, P21 WAF1/CIP1,
and cellular autophagy in human liver cancer stem cells.

Another significant finding is that CyclinD1 is required
for the oncogenic functions of HULC. This evidence is
based on results from five parallel sets of experiments:
(a) although the growth of LCSCs was more rapid in the
pCMV6-A-GFP-HULC group, it was not significantly
altered in the pCMV6-A-GFP-HULC plus pGFP-V-RS-
CyclinD1 group. (b) Although the colony formation abil-
ity of LCSCs was significantly increased in the pCMV6-
A-GFP-HULC group, it was not significantly altered in
the pCMV6-A-GFP-HULC plus pGFP-V-RS-CyclinD1
group. (c) Although the xenograft tumor weight was in-
creased in the pCMV6-A-GFP-HULC group, it was not
significantly altered in the pCMV6-A-GFP-HULC plus
pGFP-V-RS-CyclinD1 group. (d) Although the appear-
ance time of xenograft was significantly decreased in the
pCMV6-A-GFP-HULC group, it was not significantly al-
tered in the pCMV6-A-GFP-HULC plus pGFP-V-RS-
CyclinD1 group. (e) HULC accelerates progression of
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human liver cancer stem cells dependent on CyclinD1.
A study indicated that CyclinD1 polymorphism modified
susceptibility oncogene [55]. In particular, miR-760 sup-
presses cancer growth by targeting cyclinD1 [56]. Further-
more, Cyclin D1 integrates histone methylation [57]. Our
present results are consistent with these reports and pro-
vide novel evidence for oncogenic role of HULC in promot-
ing malignant growth of LCSCs through CyclinD1.

In summary, HULC promotes growth of liver cancer
stem cells in vitro and in vivo. Mechanistically, HULC
enhances the expression of Sirtl dependent on miR675
and then induces the cellular autophagy through Sirtl.
HULC enhances CyclinD1 and thereby increases pRB and
inhibited P21 WAF1/CIP 1 via autophagy-PKM2 pathway
in human liver cancer stem cells. Ultimately, our results
demonstrate that CyclinD1 is required for the oncogenic
functions of HULC in human liver cancer stem cells.
These observations provide important basic informa-
tion for finding effective liver cancer therapeutic tar-
gets. Therefore, governing HULC expression will be
crucial for the identification of novel liver cancer
therapeutic strategies. We will further study the exact
mechanism of HULC in the development of liver can-
cer and its clinical application.

Conclusions

Long noncoding RNA HULC accelerates growth of
liver cancer stem cells by enhancing the expression of
Sirtl dependent on miR675 and then inducing the
cellular autophagy to increase CyclinD1 and pRB in
human liver cancer stem cells. In particular, CyclinD1
is required for the oncogenic functions of HULC in
human liver cancer stem cells. These observations
provide important basic information for finding effect-
ive liver cancer therapeutic targets. Therefore, governing
HULC expression will be crucial for the identification of
novel liver cancer therapeutic strategies.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/513287-019-1528-y.

Additional file 1: Figure S1. The isolation and identification of human
liver cancer stem cell. A. The transcriptional ability of CD133, CD44, CD24,
and Epcam was analyzed by reverse transcription polymerase chain
reaction, and B-actin was used as an internal reference gene. B. Western
blotting analysis using anti-CD133, anti-CD44, anti-CD24, anti-EpCAM, and
B-actin as an internal reference gene. Figure S2. A. The assay of sphere
formation rate in hLCSCs and non- hLCSCs. B. tumorigenesis test in vivo
in hLCSCs and non- hLCSCs. Figure S3. A. Northern blotting with Biotin-
miR675 probe in pCMVE-A-GFP group, pCMV6-A-GFP-HULC group and
pCMV6-A-GFP-HULC+pGFP-V-RS-METTL3 group. U6 served as the internal
control. B. Real-time RT-PCR with miR675 primers in pCMV6-A-GFP group,
pCMV6-A-GFP-HULC group and pCMV6-A-GFP-HULC+pGFP-V-RS-METTL3
group. U6 served as an internal control. Figure S4. The analysis of
HDACS 3'UTR (mutant) luciferase reporter activity in rLV-miR675 group
and rLV control group.
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