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Variability in the location of high frequency
oscillations during prolonged intracranial EEG

recordings
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Oren Sagher®, Hugh J.L. Garton®, Greg A. Worrell* & William C. Stacey® '3

The rate of interictal high frequency oscillations (HFOs) is a promising biomarker of the
seizure onset zone, though little is known about its consistency over hours to days. Here we
test whether the highest HFO-rate channels are consistent across different 10-min segments
of EEG during sleep. An automated HFO detector and blind source separation are applied to
nearly 3000 total hours of data from 121 subjects, including 12 control subjects without
epilepsy. Although interictal HFOs are significantly correlated with the seizure onset zone,
the precise localization is consistent in only 22% of patients. The remaining patients either
have one intermittent source (16%), different sources varying over time (45%), or insuffi-
cient HFOs (17%). Multiple HFO networks are found in patients with both one and multiple
seizure foci. These results indicate that robust HFO interpretation requires prolonged analysis
in context with other clinical data, rather than isolated review of short data segments.
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inding new biomarkers in epilepsy is crucial, as epilepsy is

one of the world’s most common neurological diseases, and

one-third of patients do not respond to medication'. One of
the primary clinical tools to help patients with intractable epilepsy
is epilepsy surgery, which attempts to resect the region of brain
responsible for generating seizures, known as the epileptogenic
zone. However, there is no perfect method to identify the true
epileptogenic zone. Standard clinical practice is to place intra-
cranial electrodes and observe spontaneous seizures, with the
patient remaining in the hospital for many days. Clinicians esti-
mate the true epileptogenic zone by determining the seizure onset
zone (SOZ), which guides surgical resection. The SOZ is only an
estimation of the true epileptogenic zone: it is the best current
standard but removing it does not always lead to seizure freedom,
motivating the search for additional biomarkers>®. The final
resected volume (RV) is not necessarily the same region, as it is
limited by anatomical and functional considerations. This pro-
cedure has been relatively unchanged in decades. The success rate
has also been relatively unchanged, ranging from around 70%
seizure freedom in temporal lobe epilepsy to 40% in extra-
temporal, nonlesional epilepsy®. This has led to a search for other
diagnostic biomarkers that could help improve or at least predict
outcomes®.

High frequency oscillations (HFOs) are a promising new
candidate to identify epileptogenic tissue. They are short, infre-
quent EEG waveforms with peak frequencies in the 80-500 Hz
range®!!. There is hope that HFOs may be able to improve
localization of the epileptogenic zone, and potentially do so
without waiting for seizures to occur by using brief segments of
data between seizures, known as the “interictal” period'?. HFOs
were originally described in normal brain activity'?, but a large
body of research has now established that they have a strong
correlation with epilepsy, both when detected manually>!4-2! or
by computer algorithms?2~28. Thus, HFOs potentially provide a
means for clinicians to identify seizure networks with greater
resolution than previous clinical tools'®!!,

A large portion of the current clinical HFO literature is
based upon a strategy of analyzing 10 min of slow wave sleep,
which allows for experts to process and count HFOs manually!?.
Slow wave sleep was chosen because it has fewer muscle
artifacts and the rate of HFOs is higher. This strategy has led
to a great deal of clinical data showing the strong relationship
between epileptic tissue and HFO rate'?. However, this strategy
was based primarily upon practical implications: manual
processing is prohibitively time-intensive, so manual processing is
not performed on larger segments?’. Basing a decision upon
such a small amount of data inherently leads to the question of
whether 10 min is sufficient to characterize the epileptogenic
network fully—especially since it is being compared to a tradi-
tional analysis that often utilized up to 2 weeks of continuous ictal
and interictal EEG. One prior work with human-scored
HFOs suggested that results were similar across multiple days
when only 1 min of data was scored each night?. Similarly, other
work with short datasets has evaluated whether the region of
highest HFO rate changes with respect to sleep stage, proximity of
a seizure, and withdrawal of medications?~3! and found that
while the rate may change, the predicted region does not.
However, these studies were typically limited to brief datasets
in a modest number of patients and no control group without
epilepsy. One exception is a comparison of HFO rate versus
sleep stage?”. In that study, an automated HFO detector was used
in cohort of 15 epileptic patients, and HFO rates on two
consecutive nights were found to vary over time due to sleep
stage and location within the brain. Variability within the same
sleep stage was noted but not characterized. To date, no
publications have tested the consistency of HFO rates within
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interictal, slow wave sleep, using the full set of data over the full
recording period.

We hypothesize that HFO rates are not stable over the full
record: that different 10-min segments of data may have different
groups of channels with high HFO rates, even when controlling
for sleep stage. The rationale of this hypothesis is the common
clinical observation that one day of recording, or even one
recorded seizure, is usually insufficient to characterize a patient’s
seizure network. Clinical experience has shown that some patients
have seizures arising from more than one location, and some-
times the different foci are active at different times®2, HFOs, as a
biomarker of the seizure foci, may likewise show similar
variability.

A primary limitation of previous HFO work has been the
significant time necessary to process the data by hand. One
method to analyze larger datasets is to use automated HFO
detectors, which have evaluated nearly two weeks of data in some
patients?®. Many HFO detection algorithms have been proposed
to increase throughput®?433-3> but often suffer from many false
positives because common EEG artifacts may induce “false”
HFOs®. With great care to avoid artifacts, it is possible to use
automated detectors to rapidly analyze vast amounts of data, and
begin to explore the characteristics of HFO waveforms?”>"~3%,
We used a fully automated “quality HFO” (qHFO) algorithm?®
designed specifically for continuous EEG, which ignores any
detection occurring during an artifact or period of poor data
quality. The algorithm was previously validated to yield similar
results as a human reviewer, and allows us to analyze HFO
features in vast datasets while avoiding interrater variability.

This paper utilizes data from 121 subjects, including 18 with
full recordings (1-12 days) and 12 control patients without epi-
lepsy implanted with intracranial electrodes for therapeutic
electrical stimulation for drug resistant facial pain. The 18
patients with full recordings also had sleep scoring to identify all
periods of non-rapid eye movement (NREM) sleep, which allows
us to compare directly with previous work using data from only
NREM sleep!>3%31. We first assess whether elevated HFO rates
are correlated with the SOZ, and whether that association is
similar when using full records versus 10-min segments. We
observed four general categories of variability/stability and
developed an automated method to categorize subjects’ HFO rate
data into these categories. This article describes the algorithm and
presents the results of the categorization for all 121 subjects,
providing a large-population assessment of spatiotemporal
variability in HFO rates, i.e., how HFO rates change over both
space and time. These results provide essential information for
developing clinical protocols which utilize HFOs for resective
surgery planning. We find that HFO rates are indeed predictive of
the epileptogenic zone, but are often not consistent when com-
paring different 10-min epochs. Furthermore, HFOs are found to
have temporal variability that, in some subjects, corroborates with
temporal changes in other clinical data. We therefore recommend
that HFO detections be reported as a function of time throughout
the invasive monitoring period and be included as adjunctive
data rather than being used for diagnosis in isolation of other
clinical data.

Results

Association between interictal HFO rates and SOZ. We first
tested the hypothesis that HFO rates are increased within the
clinically determined SOZ using prior methods (10 min of slow
wave sleep), as well as using all data from the entire hospitali-
zation. We restricted analysis to HFOs detected during sleep
in order to compare directly with past work. For the Mayo
(N=91) and Control (N=12) cohorts, we had two hours of
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Fig. 1 Example rates of HFOs. The HFO rate per epoch of NREM sleep is shown for four example patients. All NREM data are concatenated together, with
white vertical lines indicating breaks between NREM periods. a A small group of channels have high HFO rates, though the highest channel varies over
time. b One channel is high but alternates with arbitrary groups with much lower rate. ¢ Many channels are high in an organized cluster and all appear well
correlated. d Much more complex patterns are also observed, in which different channel groups dominate on different days. Channels in the resected

volume (RV) and clinically determined seizure onset zone (SOZ) are ordered together, as are channels with similar temporal dynamics in HFO rates. Note

that patients in a and b did not have a resection

interictal data recorded from 1-3 AM for each patient. This
epoch was chosen in order to maximize the likelihood of
NREM, as there were no scalp recordings to allow determination
of sleep stage. The University of Michigan (UM) cohort (N = 18)
had multiple days and sleep scoring, which allowed inclusion of
all available NREM, interictal data, collected from more than a
week of recording in many patients. Note, the UM cohort was
analyzed in two ways: 1) using all the expert-verified NREM
sleep data or 2) using just 1-3 AM data (i.e., without sleep stage
verification) for direct comparisons with the Mayo data. HFOs
were detected using the automated qHFO algorithm?®, as well as
two other automated detection schemes, as HFO detection would
be infeasible by hand. These data allowed us to observe how the
rates in each channel changed over time. Figure 1 shows HFO
rates from example patients from each cohort for the qHFO
algorithm.

NATURE COMMUNICATIONS | (2018)9:2155

Our detector allows for analysis of the entire record, which
includes a great deal more data than past work using manually
scored 10-min segments. The purpose of this first analysis is to
determine whether the results from the shorter segments are
similar to those from the whole record. We use HFO rate
asymmetry (ie., inside versus outside the SOZ) as a nonspecific
measure of how well HFO rate is correlated with the SOZ. We
note that the asymmetry provides evidence that the HFOs are
clinically relevant, but is retrospective and cannot be used for
prospective determination of SOZ. A perfect asymmetry of 1
implies all HFOs are in the SOZ, —1 implies all HFOs are outside
the SOZ, and 0 implies that the mean HFO rate is equal inside
and outside the SOZ. Thus, the purpose of this test is two-fold: to
evaluate whether the detected HFOs are correlated with SOZ (i.e.,
have an asymmetry close to 1); and to compare those results
using either individual 10-min segments or all 10-min segments
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Fig. 2 Distribution of HFO rate asymmetries. Results are shown for both the Mayo cohort (a=c) and the UM NREM cohort (d-f), and for three different
HFO detectors: gHFO (a, d), fast ripple enhanced qHFO (gqHFO-FR) (b, e), and a Hilbert transform based detector (¢, f). Asymmetry is the difference
between average HFO rate inside versus outside the SOZ, divided by the sum. Asymmetries for HFO rates are displayed in histogram form for all available
10-min epochs in the cohort (blue, green) and averaged over all 10-min epochs in each individual patient (gray, orange). The asymmetry was only
computed for cases with at least one channel having 0.5 HFOs/min. HFOs were determined to be related to SOZ if the median rate was significantly
positive (right-tailed Wilcoxon Sign-Rank test, p < 0.05), seen as a skew to the right in the plots. HFOs from all three detectors in the UM cohort, and from
the gHFO detector in the Mayo cohort, were associated with SOZ. There was no significant difference between using just 10 min of data or all data together
in any cohort or for any detector (Wilcoxon Rank-Sum test, 0.1<p <0.9). Note, several patients had an asymmetry of —1 when there were no HFOs in the
SOZ and at least one channel having >0.5 HFOs per min outside the SOZ. This often occurs in data with low signal quality, and thus occurs much more

frequently in patients with worse signal to noise ratios

together. Note that in the Mayo and Control cohorts there were
12 continuous segments, and in the UM cohort there was an
arbitrary number based upon all data from the entire hospitaliza-
tion. The results are displayed as a histogram of all individual
10-min segments (“Individual 10-min epochs”) and the histo-
gram of results from each of the patient’s whole NREM sleep or
1-3 AM record (“Time-average per Subject”). Note that the
Mayo data were not proven to be in NREM sleep during this
period. For a comparison, we also computed results from UM
using just the first 1-3 AM segment, and the results were
indistinguishable from the sleep-scored data (not shown).
Patients in whom there were no channels present with a rate
>0.5 HFOs/min were excluded from this analysis, as this rate is
unlikely to represent epileptic activity.

The clear skew towards “1” seen in Fig. 2a,d, indicates HFOs
are correlated with the SOZ. Indeed, the median asymmetry was
positive in all four of these distributions, three of which were
significant with p <0.0001 (right-tailed Wilcoxon signed rank
test). The Mayo “Time-average per Subject” distribution had
p=0.06. Additionally, no appreciable difference is observed
between the two distributions (“Individual 10-min epochs” and
“Time-average per Subject”) within a given cohort (p=0.5,
Mayo, p = 0.6 UM NREM, Wilcoxon Rank-Sum). Note that it is
not possible to compare results between the UM and Mayo
cohorts as they contain very different numbers of patients and
duration of data. We then verified that these results were not
dependent upon the qHFO algorithm by repeating the analysis
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using fast ripples only (qHFO-FR: Fig. 2b,e), as well as a
completely different HFO detector (Hil: Fig. 2¢,f). Again, there
was no statistical difference in the medians between the 10-min
segments and the entire sleep record (0.1 <p<0.9, Wilcoxon
Rank-Sum). However, while the median asymmetries are all
positive, they do not all reach statistical significance (right-tailed
Wilcoxon Sign-Rank test). Specifically, the qHFO-FR was
significant in both cases for the UM cohort (p <0.0001) but not
Mayo (p > 0.4). Although the median was very close to zero in the
Mayo data, the Hilbert-based detector was significant for all four
groups (p<0.05 in Mayo, p<0.01 in UM). Note that the
differences in the Mayo cohort are somewhat difficult to judge
because that group had a high number of patients who did not
benefit from surgery (see Table 1). The UM data, which had more
patients with good outcomes and full sleep scoring, shows the
relationship much more clearly. However, when stratified by
patient outcome there was no clear relationship with asymmetry:
results for patients with Class I outcome (Supplementary Fig. 1)
were similar to those with Class II-V outcome (Supplementary
Fig. 2) in both cohorts. The results were also similar when
comparing the resected volumes (Supplementary Figs. 3 and 4).
Thus, asymmetry is not capable of identifying which patients had
a good outcome: it is a nonspecific, retrospective measurement
that compares regions rather than specific channels. Nevertheless,
these results serve as a validation of HFOs as a potential
biomarker. While some detectors have diminished performance
in some cohorts, the HFOs are associated with epileptogenic
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Table 1 Patient and center data
A
Adults (age >18.0) Children
Cohort Total number Number Age Percent female Number Age Percent female
Mayo 91 78 35.5+12.2 (19-70) 62% 13 1.7£52 (1-18)  62%
Control 12 12 54.7+115 (44-68) 83% 0 NA NA
UM 10 8 32.6+7.0 (24-43) 50% 2 8.0+14 (7-9) 50%
B
Class | 1] 11 v v No resection
Mayo 28 6 n n 24 n
UM 10 4 0 0 0 4
C
gHFO qHFO-FR HIL Sum
UM 619,824 349,776 556,355 1,525,955
Mayo 119,186 89,919 300,199 509,304
A: Demographic data are based on available clinical reports. Age is at time of electrode implantation, and was not available for all patients. Age is listed as mean plus or minus the standard deviation, with
the minimum and maximum values listed in parentheses
B: The patient ILAE outcome class from each center shows that the Mayo cohort had many patients with poor outcome, so it is difficult to compare HFO results between the two centers
C: The number of detected HFOs from each center using each of the three detection schemes is shown. Data from UM include all NREM sleep during the whole hospitalization, and from Mayo are
continuous data from 1-3 AM

tissue, regardless of detector. Furthermore, all HFO detectors
show that the association of HFO rate with SOZ is statistically
similar whether using just a 10-min segments or longer segments
to compute the HFO rate.

Categorization of temporal variability in HFO rates. The
asymmetry analysis is not sensitive to either specific electrode
location or consistency over time, as it averages over time and
over all channels within and without the SOZ. We first tested
whether the location of the peak HFO rate changes over time. We
determined whether the channel with maximum HFOs was stable
over time, and how often the “maximum channel” was within the
SOZ and resected volume. We found that the location of the
maximum channel varies greatly when more than one 10-min
epoch is tested (Supplementary Fig. 5). These results are similar
to previous work showing that simply choosing the channel with
maximum HFOs is not always reliable for identifying the SOZ2°.
This led to our next hypothesis, that the location where HFOs are
highest is not consistent over the course of the whole hospitali-
zation. To test this hypothesis rigorously on a full spatiotemporal
scale, another approach is needed which includes both 1) a
method to quantify variability, and 2) a method to group chan-
nels based on the temporal distribution of HFO rates. In pre-
paration for the first step, we visually analyzed the HFO rates per
patient and found several typical patterns. Some patients have
HFOs restricted to a small number of electrodes, although the
dominant channel (i.e., with the highest absolute HFO rate)
sometimes changes over time (Fig. la). Others have a clear
dominant channel interspersed with channels that seem to vary
arbitrarily (Fig. 1b), or have HFOs spread over a single broad
distribution that tends to wax and wane over time (Fig. 1c). Other
patients show yet more complex variability, such as in Fig. 1d,
where there are different clusters of active channels at different
times. In that specific case, some channels have high HFO rates at
all times while other channels have high HFO rates at localized
times (such as one group on day 6, another on day 7, and a more
widespread group on day 13). After having observed patterns of
temporal variability in many patients, we defined four general
categories of spatiotemporal variability, and sought to classify
each patient into one of these categories: a) a single source that
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was consistent over time, b) a single source that varied over time,
¢) multiple sources varying over time, and d) not enough HFOs
present to classify. We can thus prove our hypothesis by showing
that “not all patients are category (a).”

The second step, to group channels with similar HFO behavior,
was accomplished using blind source separation to determine
distinct groups of channels with similar temporal evolution in
their HFO rates, as well as quantify the temporal evolution per
group. In order to give full clarity to this procedure, we show
intermediate steps for one example patient per cohort (Figs. 3-5),
using the HFO detections from the standard 80-500 Hz qHFO
detector. Afterwards, we show the main results, quantifying the
prevalence of each type of variability in all 121 patients (Fig. 6) for
all three HFO detection methods.

Example results of the blind source separation for the same
patients as Fig. 1 are shown in Fig. 3. The weights of each
channel’s membership in each group is given by matrix W, and
the mean HFO rate per the group per epoch of time is given in
matrix H. In the case where a single group of channels all had
similar temporal variability (Fig. 1a,c), the group of channels can
be described by one source (Fig. 3a,c). The other examples show
more complex behavior. Figure la had two dominant channels
that alternated over time. In the more complex case (the subject
shown in Fig. 1d and Fig. 3d), the channel groups still map to the
observed features: channel group 1 accounts for the diffuse
activity on night 6, group 2 accounts for the focal activity on day
7, and group 3 accounts for the channel that had consistently
increased HFO rates. Figure 3b, which has data from one of the
patients without epilepsy, shows a more arbitrary pattern with
four different groups alternating over time.

Further insight and confidence in the performance of blind
source separation can be obtained by comparing the groups of
channels with clinical data such as the clinically determined SOZ
obtained from visual review of the standard intracranial EEG
during seizures, the resected volume, and the physical locations of
the channels (Fig. 4). The four patients from the previous figures
are given as examples of the different patterns. Patient Mayo-040
had one source including two channels, but only one of the
channels was in the SOZ (Fig. 4a). Control-09 had multiple,
varying locations with high HFOs, and although two of the

| DOI: 10.1038/541467-018-04549-2 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-04549-2

a W, Mayo-040 H, Mayo-040 W, control-09 H, control-09
] ) Arbitrary units
Arbitrary units 0 0.4 0.8
soz[13 0 02 04 4
20 EET
£ 5 N B 3 2 S 1
25 § ) s 8
15 = 2 =
2 3 = 22 T 2
S c 1 < S c
10 = < = = c
18 8 © g3
5 < O 12 O 3
o o o o o
1 0 S @ 9 @ B© 0 8 8 8 8 B3
- T o o - - & « &
Channel group Time of day Channel group Time of day
c w, UM-10 H, UM-10 Arbitrary units
60 50z 0 0.5 1 1.5 |2 2;5
RV 0.05 B
50 2] o
2 40 5 g
g 003 2 o
8 30 g 21
= c
© 20 g 8
001 ¥ O
10 PPEBY B 8 TJT Y AWLE L B 88 38 ] 88 3
1 FORN KRG & § 66+~ & 6¥b & 6g~ &¥ NG - I 6
Channel group Time of day
d .
H, UM-07 Arbitrary units
0 0.4 0.8 1.2
02 g
_ T 54
z -
c [
g £ 22
O 0.1 s §
<
53
2 23 8 BI 2 €28 KHENLB B 2% £93S- L8 Q
0 < O O NS & +~ +& BN OB ¥ & G- T O-®MO6 SOBK 6 &
1 2 3 - - N+~ — « ~q - - [V o [aY
Channel group Time of day
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source, which are color coded in Fig. 4

locations are juxtaposed, the patient does not even have epilepsy
(Fig. 4b). UM-10 has HFOs spread over the majority of the grid,
much of which did not appear to be related to the SOZ or
resected volume (Fig. 4c). However, the W values in Fig. 3cl
demonstrate that the channels with very highest HFO rates were
within the SOZ.

UM-07 (Fig. 4d) is quite different, both clinically and in terms
of HFO rates. In this patient, 170 subclinical electrographic
seizures were recorded over 14 days, with five different ictal onset
semiologies (note, types 2 and 3 had similar ictal onset location,
but distinct propagation patterns). These seizure onset types did
not occur completely randomly but rather seem to show some
evolution from one type to the next (Fig. 5): type 1 occurred only
days 1, 6 and 14; whereas type 2 and 3 occurred on days 6-7, type
4 on days 7-8, and type 5 on days 8-14. Only three of this
patient’s typical clinical seizures occurred, all matching type 1.

We also note that the HFO channel groups for patient UM-07
not only show spatial relation with a subset of the seizure types

6 NATURE COMMUNICATIONS | (2018)9:2155

(Fig. 4d), but also show temporal associations (Fig. 5). For
example, channel group 1 (spatially associated with seizure type
4), only has high HFO rates from about 12 h before until just after
the time of the first seizure of type 4, about 1-2 AM on day 7 in
Fig. 5. In contrast, channel groups 2 and 3 (spatially associated
with seizure types 2 and 3) are only high on the days where
seizure types 2 and 3 are occurring. No HFO channel groups were
spatially associated with seizure types 1 or 5, and very few HFOs
occur during the times where seizures of these types occurred.
Thus, in this patient it appears that although the HFOs vary
considerably over time, they are in fact still intricately linked with
seizures, which are themselves also varying considerably over time.

The clinical outcomes for these four patients demonstrate the
complexity of these findings. Mayo-040 and Control-09 did not
have resections. UM-07 had two resections, one of which had no
HFOs, and UM-10 had a resection that removed just the highest
portion of the HFO network. Both of those UM patients have had
class I outcomes form >3 years.
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Fig. 4 Comparison of HFO channel groups and brain regions. Diagrams are shown for the same example patients as in Figs 1 and 3. Electrodes associated
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the electrode. In ¢, a lesion (not shown) was found under channels 27, 28, 35, and 36. Note, the patients in a and b did not have resections, but both ¢ and d
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Occurrence of each category of spatiotemporal variability. Our
main hypothesis is tested by considering the prevalence of each
category of variability for each HFO detection method (Fig. 6). As
some subjects in the UM cohort had multiple nights of 1-3 AM
data, each night was weighted by the inverse of the number of
nights, such that the sum of weights for a given patient was unity.
Categorizations were verified by manual review of HFOs on a
subset of data for eight of the patients, as manual review of the
entire records is infeasible. In all 8 cases, manual review con-
curred with the automated classification; most importantly, it
verified that the three patients classified as category (c) did indeed
have different channels active at different times.

| (2018)9:2155

In the full 109 subjects with epilepsy (combining Mayo and
UM NREM cohorts) with the qHFO detection algorithm, only
(21 £4)% had a single region with consistently high HFO rates,
(15+4)% had too few HFOs to analyze, and thus (64 +8)%
showed considerable temporal variability. The other detectors
likewise found similar results (Fig. 6). In all cohorts and for all
detectors, category (a) (a single HFO source consistent over time)
never accounted for all the patients with enough HFOs to analyze
(i.e., all non-category (d) patients) (p <0.05, Xz test). In fact,
category (a) never even accounted for the majority of patients for
any cohort or detector combination. In the subjects with epilepsy
(the Mayo and UM NREM cohorts), we can reject the
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null-hypothesis that all patients that had enough data to analyze
(i.e., not category (d)) are category (a) with a p< 10~ ()(2 test).

Little difference was observed between interictal 1-3 AM data
versus interictal NREM sleep data in the UM cohort. Some
qualitative differences are observed across detectors and cohorts,
but none of these are statistically significant (binary x> test
between any two cohorts for a given category and detector,
p-values > 0.05 in all cases). In the UM NREM cohort, where
more metadata were available, we also compared the categoriza-
tions with age, gender, pathology, SOZ location, and duration of
recording. No statistically significant associations were found
using any of the HFO detectors (p >0.05, Kruskal-Wallis and
Fisher’s Exact Test). Of note, there were five patients who were
diagnosed during the monitoring with having multiple or diffuse
sites of seizure onset. This group would logically be more likely to
be category (c), but surprisingly not all of them were, with results
that varied slightly with the different detectors (Table 2). It should
be noted that in each case the multiple sources were only
discovered after the monitoring was performed; thus, restricting
the analysis to a single 10-min epoch of HFOs would not have
discovered the complex networks. These patients with distributed
seizure networks thus pose a special challenge when evaluating
HFOs, just as they pose a challenge for traditional EEG
monitoring.

Required amount of recording time. Given the observed tem-
poral variability, we consider whether a recommended amount of
recording time can be determined to allow robust interpretation
of HFOs. One way of assessing how much recording time might
be needed is to consider whether the categorization using 1-3 AM
data is the same over different nights for the same patient. In the
UM cohort, 16/18 subjects had more than one nights of sleep. Of
these, four had the same category over all nights, four had two
categories, and eight had three categories. Thus it was very
common (12/16 subjects) for the “answer” to change from one
night to the next, ie., even if a patient had a single consistent
source on one night, this answer may not be maintained on
different nights.

8 | (2018)9:2155

We next consider a second method to assess how much
recording time might be needed for a stable, complete
interpretation of HFO rates. For this analysis, we focused on
the standard qHFO detections and on the UM cohort, which had
markings of interictal NREM sleep and recordings from more
than 24 h. We considered the clinical scenario of recording up to
a given hour, and then stopping the recording to make a clinical
decision about the epileptogenic zone. To mimic this scenario, we
used all NREM interictal data recorded up to a given hour to
predict the category of HFO variation, scanned over all possible
stopping hours, and report category for each stopping hour.
Results are shown in Fig. 7 for the qHFO detector. Note that
starting with UMHS-0018 all data were acquired through the
clinical hardware (Natus), reducing the delays to starting high
resolution recording; however, patients tended not to reach
NREM sleep before day 2. Results for the other detectors (data
not shown) were qualitatively similar. Note, this method of
scanning when to stop is similar to the clinical procedure, where
all data up to the time of discussion are used to determine the
location of the overall seizure onset zone, and often the recording
is lengthened because more data are needed for a stable answer.

Whereas some patients stabilized after sufficient data were
recorded, other patients continued to have changes. For example,
patient UM-07 (patient D in Figs. 1,3,4), stabilizes to category (b)
(one channel group that waxes and wanes) after about 3.5 days,
and the next five days of recording does not change that category.
However, after that period (after nine days of recording and
14 days after the initial implantation surgery), new data were
acquired which changed the category to (c): multiple channel
groups. Note, the change in the number of channel groups on day
14 precedes a change in ictal onset—later on day 14, a seizure
with onset type 1 occurred (the first type 1 seizure since day 6,
which was also the last day multiple groups were identified). This
seizure on day 14 was the first which matched the patient’s usual
seizures in over a week, and thus a decision on what area to resect
was finally determined on day 14. In other words, this patient
actually required all 14 days of recording to identify the proper
resected volume, both in terms of seizures and HFOs. In addition,
the full extent of the resection in this case extended beyond the
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Table 2 Classifications of multifocal patients

Class a: Class b: one  Class c: Class d:
one source source on/off many insuff. HFOs
sources
gHFO 40% 0% 60% 0%
gHFO-FR 0% 40% 60% 0%
HIL 40% 20% 40% 0%

Results are shown for each of the 5 UM patients that had multiple SOZ identified during
monitoring, stratified by the three HFO detection methods. Classes correspond to those in Fig. 6

HFO markings—the parietal resection was based upon the
patient’s typical seizures and a radiographic lesion (that had no
HFOs) and the temporal lobe resection was based upon frequent
subclinical seizures (and was corroborated by the HFOs). Thus, in
this case HFOs would have been helpful but insufficient to
identify the full region of epileptic tissue. However, it is also
critical to point out that this does not mean the HFOs failed in
this patient: they clearly were biomarkers of the epileptic activity,
even preceding seizures on several days, but they were insufficient
on their own to identify the full epileptogenic zone.

Other patients also had significant changes in HFO rate over
the recording session (data not shown). For example, in subject

| (2018)9:2155
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UM-05 the NREM HFO rate dropped significantly during during
the last five days of recording. This subject also had no seizures
during the 14-day hospital stay and thus determination of SOZ or
resection could not be performed. UM-08 required 4 days of
recording to reach a stable answer (day 8 post-implant), although
was explanted shortly thereafter so it is unclear whether she had
fully stabilized. Several patients initially were category (a) then
switched to categories (b) or (c). The high variability in the cohort
of 18 patients with multiple days and NREM sleep scoring
suggests that it is common for patients to have variable HFO rates
and locations over the course of the hospitalization.

Discussion

Many prior clinical reports have shown strong correlations of
HFO rate to the seizure onset zone, but there has never been a
robust demonstration of whether that answer is stable over time,
or how much data are needed to obtain a stable result. By utilizing
a validated, automated detection algorithm that redacts artifacts,
we were able to analyze HFO rates over long periods of time and
multiple days in 121 patients, including control patients without
epilepsy. We compared both 1-3 AM data (as putative sleep
data), as well as human-scored NREM sleep to avoid any
potential confound of changing sleep stages'>3%3!, We find that
many patients have multiple independent regions of high HFO
rates. Based on this, we conclude that 10-min of data cannot be
construed as representative of the HFO rates at other times in all
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patients. Additionally, comparison between the clinical data and
the temporal variability of HFOs indicates that there are patients
in whom HFOs should not be interpreted in isolation. Other
confounds include the vast number of medication combinations
and withdrawal schedules, sleep deprivation, unrecorded seizure
types, undersampling with the electrode placement, and perio-
perative disturbances, all of which are likely to affect HFOs, as
well as seizures. This unavoidable confound affects all patients,
and argues strongly against choosing a single, short time window
in which to evaluate HFOs. It is our primary conclusion that
HFOs should be interpreted in context with all other available
information regarding epileptogenic networks, each diagnostic
tool providing additional pieces to the puzzle.

Identifying HFO rates as a “moving target” does not mean
HFOs are not a biomarker of epilepsy. Our first hypothesis
actually reinforces that HFOs are indeed strongly correlated with
the SOZ. In fact, some of the variability in HFOs was actually due
to variability in the epileptic networks. Two of the patients with
multiple seizure foci illustrate this point. Patient UM-06 had
bilateral hippocampal depth electrodes, with independent seizure
foci on each hemisphere (and thus no resection), but HFOs only
on the side with more frequent seizures. In patient UM-07, there
were multiple groups of high-HFO channels that correlated with
different daily seizure types in the temporal lobe, yet there was
another focus that did not have high HFOs in the parietal lobe.
Both regions (parietal lobe and temporal lobe) were resected and
the patient has been seizure free. One might argue that it
impossible to know whether both regions needed to be resected;
however, it was clinically indisputable that the parietal region—
which had a radiographic lesion but no HFOs—was an inde-
pendent, clinically relevant focus, while the temporal lobe was
also independently epileptogenic based on non-HFO markers. In
both of these cases, HFOs would have been helpful but not solely
sufficient to make clinical decisions.

Many researchers hope to use HFOs to reduce hospital stays by
identifying seizure networks in a very brief period. Our results
suggest that this is not straightforward, and in the patients studied
here would not have been successful. Specifically, HFO rates in a
10-min segment of data cannot be assumed to be representative
of HFO rates over the full recording, and even two days of
recording is likely not enough to determine a stable answer.
However, our data do suggest that HFOs can provide important
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information regarding the underlying epileptic tissue even before
seizures occur. For instance, the asymmetries were not found to
be different when using short data segments versus all analyzed
data per subject (i.e., 2h per Mayo cohort, all interictal NREM
sleep for UM cohort). This suggests that information from HFOs
in short time segments is not wrong, but may be incomplete in
some patients when viewed in isolation. We also observed
interesting relationships between HFO rates and the ictal patterns
(Fig. 5), suggesting that HFO detections are closely linked with
underlying ictogenic activity, although the exact timing was not
investigated in this study. It is possible that the HFO clusters
move not because they are an unreliable biomarker of ictal
activity, but because they are tightly coupled to underlying,
unknown ictal generation and propagation networks, which also
vary over time. The prime example is multifocal epilepsy, which
has multiple seizure types arising from more than one region of
the brain: such patients require special care to assure enough time
has been allotted to capture the full extent of the seizure network
(s). Even in patients with a single epileptic focus, each individual
seizure may arise and/or involve from a sub-section of that focus.
Thus, there appears to be a higher level of spatial and temporal
resolution to ictal networks than the broad, binary categorization
of tissue being epileptogenic or not. Unfortunately, accessing
these underlying propagation networks is beyond current tech-
nological cafab1l1t1es though high resolution microwires* and
microarrays™ have found evidence of such effects. This situation
further illustrates the need to incorporate as much clinical data—
and recording time—as necessary when making surgical
decisions.

It is also important to point out this work evaluates the use of
NREM, interictal HFOs for patients undergoing extraoperative
EEG to localize the seizure focus. We did not assess intraoperative
HFO mapping, which is currently being used in a trial to tailor
the extent of surgical resection of a focus that has already been
identified*?

The 1nclu310n of the normal control group provides important
data regarding the use of HFOs in epilepsy. While it has been
prev10usly reported that HFOs (both ripples and fast ripples) are
present in this control group®’, this fact remains under-
recognized. The current study now also demonstrates that there
is considerable temporal variability in HFO location in control
patients. We suggest that any process to utilize HFOs clinically
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must account for this fact—there will always be a channel with
“the highest HFO rate,” even if the recording does not include the
seizure onset zone. In addition, restricting the analysis to include
only fast ripples is not sufficient to assure accuracy, as we detected
fast ripples on 11/12 control patients’ recordings. It is very pos-
sible that human supervision could have identified that there was
not a clear seizure focus in these patients, but there is a strong
potential for misdiagnosis if HFO rates are used in fully auto-
mated fashion or without experienced clinical correlation. Thus,
although our first hypothesis concurs with past results that HFOs
are highly correlated with SOZ, it is imperative to include more
clinical information than simply identifying the location with the
highest HFO rate, even if restricted to fast ripples.

Our data demonstrate that HFO patterns change even two
weeks after implantation. This suggests that there is no universal
time period in which HFOs would stabilize to a completely reli-
able solution. This is consistent with earlier work related to how
many seizures are needed to determine the SOZ in the hospital®?,
as well as recent work with long-term invasive monitoring, which
showed that seizure patterns change even several weeks after
implantation*®. If HFOs are indeed biomarkers of seizures—
which are themselves changing over time—it should not be sur-
prising that HFOs patterns would also change. It would not be
feasible to choose a single, controlled time period during mon-
itoring that would be consistent for all patients. Therefore, no
recommendation can be made at present regarding the amount of
time needed for identifying epileptogenic tissue based on HFOs,
just as recommendation cannot be made about the amount of
time needed to observe the full distribution of a patient’s seizure
onset patterns. Both seizures and HFOs appear to be caused by
non-stationary processes, and thus it is very difficult to determine
whether the brain might behave differently outside of the
recording window. However, as the median amount of recording
time until the last change in categorization was about two days,
(Fig. 7), it appears at least 2 days are required to obtain a rela-
tively complete picture. At the very least, this longer period can
help identify patients in which HFOs appear to be variable in
both location and time. In patients with multiple seizure types/
foci, further data are necessary to determine whether HFOs can
enhance standard clinical decision-making.

These results utilized automated predictors rather than human
review, which comprised the majority of past clinical HFO
research. However, it is important to point out that our gHFO
detection algorithm was previously validated with high con-
cordance to human scoring and clinical outcomes®®*°. In addi-
tion, the primary finding—that there are patients from all three
categories—was verified by manual review, and the findings were
consistent using two other automated detection schemes. Several
of the patients were then verified to have multiple seizure foci
based upon the clinical EEG reading. Thus, high confidence can
be placed that the results represent the actual variability of the
HFOs, not variability secondary to the detection process.

HFOs remain a promising biomarker of epilepsy, with poten-
tial to provide information about brain activity (both pathological
and normal) and seizure-networks. Our results corroborate with
the findings of many other publications which used smaller data
sets: while HFOs are associated with epileptogenic tissue, HFOs
are not a perfect biomarker—HFOs occur outside of epileptogenic
regions and even in patients without epilepsy. Our results show
that HFOs are even more associated with epilepsy than previously
considered—in addition to their known spatial utility, in some
patients they also display temporal changes linked with temporal
changes in the seizure network. These results do raise the ques-
tion of exactly what we expect HFOs to provide and how to best
integrate their information with existing clinical procedures. The
presence of HFOs outside the SOZ can represent either ‘normal’
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HFOs or areas that should be considered as part of the epileptic
network. As there is currently no perfect method to determine
whether an HFO is epileptic/, clinical decisions should not
depend solely upon the presence of HFOs, but should also include
all other clinical data. Our results suggest that HFO rates should
not be considered a simple “always-on” signal of epileptogenic
tissue, just as traditional EEG signals are not. Simply put, in the
perioperative period that characterizes a standard hospital
admission for intracranial monitoring, “finding the channels with
the highest HFO rate” is not a stationary biomarker. The complex
temporal dynamics of HFO rates must be considered when
interpreting HFO data, and short time-scale results may not be
representative nor provide enough information to characterize
the epileptogenic zone. Just as seizures spread beyond their onset
region and sometimes change in location, HFOs may also move
to other regions within or outside the propagation network under
certain conditions. Identifying and understanding HFO locations
will help characterize the full seizure network. Deciding where to
resect is an extremely complex process, and every piece of
information is needed. Instead of using HFOs as an alternative to
that process, we suggest that HFOs can serve as an important
adjunct to current methods, providing unique, interictal infor-
mation about the epileptic network and potentially increasing the
clinician’s confidence in final decisions.

Methods

Patient population. EEG data from patients who underwent intracranial EEG
monitoring were selected from the Mayo Clinic and from the University of
Michigan. Subjects selected from the Mayo clinic were those who met the following
criteria as of June 2015: at least one night with consecutive, interictal data from 1 to
3 AM, with EEG sampling rate at least 5000 Hz. This yielded 103 patients, 91 of
whom had epilepsy and 12 of whom had chronic facial pain. Subjects selected from
the University of Michigan Hospital were those who met the following criteria as of
October 2017: data from both intracranial EEG electrodes (for HFOs) and extra-
cranial EEG electrodes (for sleep scoring), sleep scoring for at least one night
completed by a certified sleep technician, and EEG sampling rate of at least 5000
Hz. One additional patient was excluded who had a hematoma between the grid
and cortical tissue less than 24 h after implantation, disrupting the recording. This
yielded 18 patients (16 adults and two children). The more stringent requirements
applied to the Michigan patients could not be applied to the Mayo patients, as scalp
(extracranial) EEG data were not available to allow sleep scoring. The 121 patients
are divided into three cohorts: the Mayo Cohort includes 91 patients with epilepsy
with interictal data recorded from one night, exactly 1-3 AM; the Control cohort
includes 12 patients without epilepsy from Mayo Clinic, also with one night of data
from exactly 1-3 AM; and the UM Cohort includes 18 patients recorded at the
University of Michigan Health System, who had longer recordings and sleep scores
available. Metadata regarding the seizure onset zone (SOZ) and surgery outcome
were available for both the UM and Mayo cohort. The hours of 1-3 AM were
selected as a time with high likelihood of non-rapid-eye-movement (NREM) sleep,
since actual scoring of sleep was unavailable for the Mayo and Control cohorts.
SOZ was determined by reading the official clinical report after the full hospita-
lization, and RV was determined in direct consultation with the neurosurgeons,
who identified which channel locations were resected after comparing post-op MRI
with pre-op clinical labels.

Mayo epilepsy and Control cohort data were recorded using a Neuralynx
acquisition system (Bozeman, MT) with sampling rate of 32 kHz and a 9 kHz anti-
aliasing filter”. Data for the UM cohort were recorded either using a Blackrock
acquisition system (Salt Lake City, UT) with sampling rate of 30 kHz and a 10 kHz
anti-aliasing filter?®*>, or a Natus Quantum acquisition system with sampling rate
of 4096 Hz and ~1200 Hz anti-aliasing filter. All data from the Neuralynx and
Blackrock systems were downsampled to 5kHz in Matlab (Mathworks, Natick,
MA) using the decimate function, which imposed a 2 kHz anti-aliasing filter.

All patients were adults or children with refractory epilepsy or chronic pain,
and all patients underwent long-term intracranial monitoring. For the epilepsy
patients, the monitoring was in preparation for resective surgery. All data were
acquired with approval of local IRB and all patients consented/assented to share
their deidentified data. Further details about the patient population are provided in
Table 1, section A. For the UM patient cohort, the resected volume was determined
based on official clinical reports, written by the treating neurologists and
neurosurgeons, as well as individual review of each case with the treating
neurosurgeons. For all epileptic patients, the SOZ was based on official clinical
reports completed after the entire recording session. Patient ILAE outcome data are
listed in Table 1, section B; note that the Mayo cohort had significantly more
patients with poor outcomes, so it is difficult to compare results between the two
centers. Interictal data were defined as more than 30 min from the start or end of
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any seizure, based upon previous work showing HFOs change within that time
period®. Note, when identifying segments of interictal NREM sleep, short
microarousals (<1 min) were considered part of the NREM bout but HFOs during
the arousal were redacted, whereas arousals > 1 min signaled a separation between
NREM sleep segments. For this analysis, NREM sleep was defined as sleep stages
2-4. Data were processed using Matlab (Mathworks) and the GDFP program?®°.
The total number of HFOs identified is shown in Table 1, section C. Note that the
majority of the data are from UM, in which sleep scoring was performed.

Experimental design. Three specific hypotheses were tested: 1) HFOs are pre-
ferentially increased within the SOZ (2 h per Mayo cohort, all interictal NREM
sleep for UM cohort), 2) the association of HFOs and SOZ is similar, on average,
whether using 10-min data segments or all available data per patient, and 3) that
the channels with the highest HFO rates are not consistent across varying 10-min
segments. We utilized three cohorts of patients: all consecutive patients with epi-
lepsy from Mayo Clinic meeting criteria; all consecutive patients with epilepsy from
the University of Michigan (UM) meeting criteria; and all patients from Mayo
Clinic with chronic facial pain (i.e., without epilepsy) meeting criteria. The facial
pain group (n = 12) serves as the Control group without epilepsy, which is usually
unavailable in studies of intracranial EEG. All data were analyzed in a pseudo-
prospective fashion, in which the same parameters were applied to all patients.

Computation of HFO rates. HFOs were computed using three methods, and the
full analysis was completed for each method. The first method is the gHFO
method?®. This algorithm uses a common average reference, applies a sensitive
HFO detector (the “Staba detector”)?® and artifact detectors, and redacts HFO
events coincident with detected artifacts. The Staba detector uses an 80-500 Hz
bandpass filter, and identifies HFOs as oscillations with at least 6 peaks and with
the smoothed, rectified signal being greater than five standard deviations above the
background>. The artifact detectors specifically identify fast transients and non-
focal events0. The artifact rejection method was previously found to have 79%
agreement with human reviewers, which is comparable to interrater variability®.
Previous work with the Staba detector was found to be indistinguishable from a
human reviewer>’. The second method (qQHFO-FR) restricts the HFO detections to
those within the “fast ripple” band, and is identical with the exception of using a
200-500 Hz bandpass filter instead of the 80-500 Hz range in the standard gHFO
detector. The third method is quite distinct, and uses a Hilbert transform?#, This
last method was used to assure that the findings were not specific to our automatic
detector, and is included on an open-source HFO-detection software package*®. Of
note, this last method is not well suited to analyzing long-term files under clinical
conditions, as it does not remove artifacts and runs 20 times slower than real time
on our system (our qgHFO detector runs faster than real time on the same system).
Software are available from the authors upon request.

For each HFO detector, the HFO rate (number of events per unit time per
channel) was computed for each 10-min segment of data. Due to microarousals
during NREM sleep, the amount of analyzed time per 10-min segment was, in
some cases, less than 10 min. For visualization, the channels were grouped
according to the SOZ and/or resected volume (when known) and then ordered
such that the channels with similar HFO rates were nearby (using the MATLAB
“optimalleaforder” function). Note that this order has no relationship with the
original channel numbers from a given electrode configuration; it merely aids
visualization of the different groups with similar HFO rate.

Quantifying the relationship between HFO-rate and SOZ. The value of HFOs as
an epilepsy biomarker is based upon the fact that HFO rates tend to be higher
within the epileptogenic zone. An objective way to measure this is to compare the
average HFO rate in one region versus another with a retrospective tool. We
previously used this “HFO rate asymmetry” to document how HFO rates are
increased within the clinically determined SOZ?°. The asymmetry is computed by
first taking the average HFO rate over channels within and without the SOZ. The
difference of these two quantities is then divided by the sum to form the asym-
metry. The asymmetry values can be interpreted similar to correlation values: +1
implies all HFOs are in the SOZ (perfect “correlation”), —1 implies all HFOs are
outside the SOZ (perfect “anti-correlation”) and 0 implies that the mean rate is the
same within and without the SOZ (no “correlation”). The asymmetries are com-
puted either on all analyzed data per patient (2 h per Mayo cohort, all interictal
NREM sleep for UM cohort), or on each 10-min segment of that analyzed data.
Right-tailed Wilcoxon Sign-Rank tests were used to assess whether the median
asymmetries were positive, whereas Wilcoxon Rank-Sum tests were used to assess
differences in the median asymmetry between the distributions for the full and 10-
min cases.

For a more localized analysis, in each 10-min segment we determined the single
electrode that had the highest number of HFOs, for each of the three detectors. For
the entire recording, we then reported the percentage of time each electrode was
the “maximum channel,” as well as how often any maximum channel was within
the SOZ or resected volume. A perfectly stable result would be a single channel
with 100% (Supplementary Fig. 5A,D,G), or that the maximum channel was within
the SOZ (Supplementary Fig. 5B,E,H) or resected volume (Supplementary Fig. 5C,
F,I) 100% of the time.
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Categorization of temporal variability. As demonstrated in Fig. 1, we observed
four categories of temporal variability: a) a single set of channels with consistently
high HFO rates, b) a single set of channels with high HFO rates, but where the
HFO rates are not high over all times considered; c¢) multiple sets of channels with
high HFO rates, each of which has independent temporal evolution; and d) too few
HEFOs are recorded to determine the temporal variability. For sake of quantifica-
tion, we define the “consistent” requirement for case (a) as at least 40% of the 10-
min time epochs having an HFO rate greater than the mean rate over all time
epochs, and that no more than 5% of the time epochs considered have zero HFOs
detected. Likewise, we define “too few” for case (d) as all channels have less than 0.5
HFOs per minute over all time epochs considered.

Next, we sought to develop an automated method to classify which of the four
variability categories pertains to each patient. While case (d) can quickly be
recognized and labeled, the other cases require several steps. These steps are
described in detail below. First, the method determined how many independent
regions (groupings of channels) exist (case (c) versus cases (a) and (b)), as well as
the HFO rate per time epoch for each group. Second, the method applied the
definition of category (a), in case only one group was found, to distinguish
categories (a) and (b).

The process of determining how many independent groups of channels exist
with similar temporal dynamics in HFO rates, while simultaneously determining
the temporal dynamics of each group, is in the class of problems known as blind
source separation. One of the main methods for blind source separation is non-
negative matrix factorization (NMF), where the matrix (number of channels by
number of 10-min epochs) of HFO rates (R) is factorized into a matrix describing
the relative weight of each channel within each group of channels (W) and the
effective HFO rate of each channel group over time (H), with R= W x H'". Note,
this construction assures that both the membership weights and effective HFO
rates are non-negative. We selected units for W and H such that the mean effective
HFO rate per time epoch (using matrix H) is set to equal the mean HFO rate of
W x H, i.e., the approximate overall HFO rate per epoch.

The NMF procedure alone cannot determine the number of channel groups,
but rather finds the optimal channel groups and their temporal evolution for a
specified number (denoted K) of groups. To determine the number K, we start with
K equal to the minimum of the following: the number of time epochs, the number
of channels, and 12 (a reasonable upper bound). After applying the NMF algorithm
with a given value of K, our method considers whether the Spearman correlation in
time (rows of H) or space (columns of W) between signals is found to be greater
than 30%. If so, the procedure is repeated with K being set to K-1. In cases where
the last value of K is greater than one, the data are labeled category (c) (i.e., more
than one cluster of channels is present). Otherwise, K = 1, resulting in either
category (a) or (b). We then apply the consistency rule (definition of category (a))
to the one row of H. As the NMF is stochastic in nature, the entire categorization
algorithm is repeated 10 times for all data, with the final category being the most
frequently assigned category over the 10 repetitions. In case of a tie, the more
complex category is assigned, with order of complexity being (c) most complex,
(b), and (a) least complex. The algorithm was developed utilizing all interictal,
NREM data for the first 10 subjects in the UM cohort, and then applied to all
subjects.

Manual validation. The accuracy of the detector itself was previously validated to
be indistinguishable from human reviewers?®33. Thus, the validation in the current
work was to determine whether the overall results regarding the temporal varia-

bility were true. We verified the variability results manually in 8 subjects to ensure
that the automated categorization reflects actual HFO location. One patient from
each category (a)-(c) was selected at random from the UM cohort and from the
Mayo cohort, plus two additional patients (categories (a) and (c)) from UM, for a
total of 8 patients. Three 10-min epochs and the smaller of either 30 channels or all
intracranial channels were selected. Epochs and channels were chosen based on the
qHFO rates to give a representative picture of the automatically defined category. A
board certified epileptologist experienced in HFO detection (WS) then manually

observed the location of HFOs in each file using RIPPLELAB*S, software specifi-
cally designed for manual HFO scoring, and verified that the category based on the
qHFOs reflected the HFOs viewed manually.

Assessment of sufficient recording time. Given the observed temporal varia-
bility, we considered how much recording time would be sufficient to observe a
complete view of the channel groups and dynamics of the HFO rates. As a simple
measure, we report if the categorization changes between different nights of 1-3
AM data in the UM cohort. As a more advanced measure, we simulated a possible
clinical setting where at some given hour, the decision is made to stop the
recording and interpret all the data recorded thus far. Utilizing the 10 UM cohort
subjects, we simulated ending at each possible hour of the clock, and applied the
categorization algorithm to all interictal, NREM data from the start of the
recording until that time. We then report the resultant category for that time. We
limited the analysis to NREM sleep to avoid the confounding factor of the state of
vigilance; during periods without any new data the most recent determination was
maintained.
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Statistical analysis. This article focuses on reporting observational statistics, such
as HFO rates and the fraction of patients in a given category. The number of
patients in a given category is assumed to follow Poisson statistics, meaning that
the variance is assumed equal to the number of counts. Binary comparisons
between the fraction of patients in two given categories is completed using the x>
statistic with one degree of freedom. Right-tailed Wilcoxon Sign-Rank tests were
used to assess whether median asymmetries were positive, and Wilcoxon Rank-
Sum tests were used to compare distributions of HFO-rate asymmetries.

Data availability. The HFO data and algorithms have been deposited in the Deep
Blue Data repository at the University of Michigan with the identifier https://doi.
org/10.7302/Z29K48F38.
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