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Ontologies are important components of health information management systems. As such, the quality of their content is of
paramount importance. It has been proven to be practical to develop quality assurance (QA) methodologies based on automated
identification of sets of concepts expected to have higher likelihood of errors. Four kinds of such sets (called QA-sets) organized
around the themes of complex and uncommonly modeled concepts are introduced. A survey of different methodologies based
on these QA-sets and the results of applying them to various ontologies are presented. Overall, following these approaches leads
to higher QA yields and better utilization of QA personnel. The formulation of additional QA-set methodologies will further
enhance the suite of available ontology QA tools.

1. Introduction

Ontologies are central components of biomedical informa-
tion management systems, where their hierarchies of concept
definitions serve to standardize knowledge and facilitate
communication. Ontologies have been successfully deployed
in data annotation, semantic integration, knowledge discov-
ery, domain vocabularies, and natural language processing,
among other areas [1–6]. Given these important roles, it is
paramount that the conceptual knowledge within the ontol-
ogy be accurate, consistent, and as complete as possible with
respect to the applications it serves. However, guaranteeing
this can be difficult due to the ordinarily extensive size of
ontologies, typically on the order of thousands up to hun-
dreds of thousands of concepts, and the concepts’ attendant
complexity manifested in potentially millions of relation-
ships connecting them. In fact, it is not unusual to find a vari-
ety of kinds of errors in a large ontology, including incorrect
and omitted IS-A (subsumption) relationships, incorrect
lateral (i.e., nonhierarchical) relationships, and erroneous
relationship targets.

In this paper, we focus on methodologies for QA of
ontologies [7]. Indeed, ontology QA has been a ripe area of
research. A review of QA of medical ontologies can be found
in [8]. Another review extended the subject material to QA

methodologies applied to all forms of controlled biomedical
terminologies [7]. QA approaches have targeted a variety of
existing ontologies including SNOMED CT [9, 10], the
National Cancer Institute thesaurus (NCIt) [11, 12], and
the Gene Ontology (GO) [13, 14]. For example, SNOMED
CT has been analyzed for its compliance with seven impor-
tant ontological principles [15]. Adjectival modification was
used to assess the consistency of terms in SNOMED CT
[16]. A methodology based on Semantic Web technologies
was used to judge the consistency of hierarchical and associa-
tive relationships in the NCIt [17]. An evolutionary terminol-
ogy auditing method was applied to gauge the quality of the
GO [18].

Specifically, in this paper, we present guidelines success-
fully employed as the basis for QA techniques that have been
derived from taxonomies, alternate high-level compact views
of ontologies. In previous work (e.g., [19]), the practicality of
developing taxonomy-based QA techniques involving the
automatic identification of sets of concepts expected to have
higher error rates has been demonstrated. There have been
two overarching themes to this work: complex concepts
and uncommonly modeled concepts. Intuitively, complex
concepts are those that are structurally complex in terms of
their numbers of properties and interconnections, which
naturallymake themmore susceptible to erroneousmodeling.
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If a concept looks very different from all other concepts in its
neighborhood, or even in the context of the whole ontology,
that raises suspicions about its correctness, and we refer to
such a concept as “uncommonly modeled” in a subject area.
The thread running through these two themes is that con-
cepts of this nature are revealed as outlier sets through the
lens of the taxonomies.

A variety of taxonomy-based methodologies have been
developed for and utilized in SNOMED CT, the NCIt, and
the GO. Additional methodologies have targeted ontologies
in the NCBO’s BioPortal [20, 21] including the Ontology of
Clinical Research (OCRe) [22], the Sleep Domain Ontology
(SDO) [23], the Cancer Chemoprevention Ontology
(CanCO) [24], and the Ontology for Drug Discovery Investi-
gations (DDI) [25]. And now with a movement toward
methodologies encompassing all the ontologies in a family
of similar ontologies hosted in the BioPortal [26], it is impor-
tant to survey the known methodologies that are taxonomy-
based so various curators and editors can more readily use
them. Arranging them in the context of the guidelines used
in their development and thus highlighting existing best
practices, it is our expectation that users and researchers will
be encouraged to detect more potentially “higher-error” sets
that could be the basis for further taxonomy-based QA
methodologies.

2. Background

The two foundational taxonomies that have been developed
are the area taxonomy and the partial-area taxonomy. These
have been utilized with hierarchies in SNOMED CT and the
NCIt, among others [27–29]. Variations and extensions to
these taxonomies have been deployed in a number of other
ontologies, including disjoint partial-area taxonomies [30]
and subject-based subtaxonomies [31]. In the following, we
present some of the details of each of these two related struc-
tures, with examples drawn from the NCIt. A review of tax-
onomies can be found in the context of a general treatment
of ontology abstraction networks in [32]. Let us note that
taxonomies have been derived from ontologies in various
formats, including OWL [33], OBO format [34], and
SNOMED CT RF2 [35].

The area taxonomy is a hierarchically organized graph
structure derived automatically from the arrangement of
the hierarchical (i.e., IS-A or subClassOf) and nonhierarchi-
cal (“lateral”) relationships of the concepts in an ontology’s
hierarchy. It should be noted that the notion of lateral rela-
tionship is modeled differently and referred to using various
nomenclatures within the context of different ontology
representations. For example, it is attribute relationship in
SNOMED CT, role in the NCIt, and property restriction in
OWL ontologies. In the latter, all stated and inherited
property restrictions that appear in equivalence axioms or
subClassOf axioms are taken to be lateral relationships. In
the remainder of this paper, we will use only the generic
“IS-A” to refer to a hierarchical relationship; the term “rela-
tionship” will strictly be reserved for lateral relationship,
unless otherwise noted.

Each node of the area taxonomy graph represents one
area, defined to be the set of all concepts in the hierarchy
exhibiting the exact same set of relationships. The node is
labeled with the respective set of relationships and also
includes the number of constituent concepts. For example,
in the NCIt’s Disease, Disorder, or Finding hierarchy, there
are concepts, such as Nervous System Neoplasm, which have
the two relationships Abnormal Cell and Associated Ana-
tomic Site—and only those relationships. (In this example,
the “Disease Has” prefix is omitted from all relationship
names.) See Figure 1(a), where Nervous System Neoplasm
and five other concepts with these exact relationships are
enclosed in a blue, dashed box. (Not all concepts from this
area are shown.) Therefore, there is a node {Abnormal Cell,
Associated Anatomic Site} indicating six concepts in the area
taxonomy—the blue box in Figure 1(b). That figure overall
shows the excerpt of five areas from the NCIt’s Disease,
Disorder, or Finding area taxonomy corresponding to
Figure 1(a).

Nodes of the graph are connected via hierarchical child-of
relationships, whose derivations are based on the IS-As of the
root concepts in areas. A root is defined to be a concept at the
top of an area’s subhierarchy, that is, a concept whose parents
all belong to other areas higher up in the ontology’s hierar-
chy. For example, the NCIt concept Neoplasm by Site has
only the relationship Abnormal Cell and thus belongs to the
area {Abnormal Cell} (Figure 1(a)). Neoplasm by Site’s child
Nervous System Neoplasm is one of the roots of {Abnormal
Cell, Associated Anatomic Site}. From the IS-A between
Nervous System Neoplasm and Neoplasm by Site, a child-of
is derived connecting area {Abnormal Cell, Associated Ana-
tomic Site} to area {Abnormal Cell}. Again, see Figure 1(b)
for an illustration.

The area taxonomy is rooted overall in an area with the
name “root area.” In figures, such as Figure 1(b), we often dis-
play thename as∅, denoting the fact that itsmember concepts
do not exhibit any relationships whatsoever. (There may be
many such concepts, and they may in fact extend deeply into
the ontology, as will be discussed further below.) In figures,
nodes of the area taxonomy are typically color-coded to indi-
cate their respective levels (equal to their numbers of relation-
ships). For example, the two areas at the bottom of Figure 1(b)
have three relationships each and thus have the same color.
The root area resides by itself on level 0.

The partial-area taxonomy extends the area taxonomy
using local configurations of the IS-As within the ontology.
The main difference between the two taxonomies is the inclu-
sion of embedded “subnodes” within area nodes in cases
where the area has multiple roots. In such a case, a subnode,
called a partial-area, is included to represent a concept group
comprising one root and all its descendants within its area.
Given the fact that the root subsumes all the concepts in its
partial-area, its name is used as the label of that group. In
the NCIt’s Disease, Disorder, or Finding hierarchy, the area
{Abnormal Cell, Associated Anatomic Site} has 13 roots
(among them are Reproductive System Neoplasm, Nervous
System Neoplasm, and Eye Neoplasm). Figure 1(c) shows an
excerpt from the Disease, Disorder, or Finding hierarchy’s
partial-area taxonomy, where the three corresponding
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Figure 1: (a) An excerpt of nineteen concepts from NCIt’s Disease, Disorder, or Finding hierarchy. (b) Area taxonomy excerpt for the
concepts in (a). (c) Partial-area taxonomy excerpt for the concepts in (a).

3Journal of Healthcare Engineering



partial-areas of {Abnormal Cell, Associated Anatomic Site}
can be seen. Again, the number of concepts in a partial-area
appears beneath its name. Child-ofs connect partial-areas
and are derived from the underlying roots’ IS-As in a manner
similar to that for areas in the area taxonomy. Certain graph-
ical abridgments are used to reduce the amount of arrows
shown [27].

3. Methods

The overall goal of automated methodologies for ontology
QA is to uncover concepts that are obviously in error or have
a high likelihood of being deemed in error on further analy-
sis. Our previous work has sought to identify concepts that
have a high likelihood of harboring errors or inconsistencies
of different kinds with the taxonomies serving as the guiding
frameworks. Effectively, a methodology of this type carries
out some kind of analytical extraction of such a set of
concepts—which, for example, may already exist in the tax-
onomy or as an aggregate grouping therein—for a subject-
domain expert (e.g., a curator) to review. This saves the
person time and effort in focusing their efforts on concepts
that are more likely to warrant additional attention. In gen-
eral, we would say that it enables better utilization of usually
limited QA resources and increases the QA yield in terms of
discovered ontology problems.

In the context of a given methodology, we refer to the
collection of concepts chosen for review as the “Quality
Assurance set” (abbreviated “QA-set”). In this section, we
introduce four example QA-sets that have been utilized as
the basis for QAmethodologies. Their utility has been empir-
ically verified in the context of a number of ontologies, some
of which are discussed further below in Section 4. Two of the
QA-sets are directly based on the area taxonomy. The other
two have their origins in the partial-area taxonomy. The four
QA-sets are as follows, with the area taxonomy-based ones
listed first:

(1) The root area

(2) The concepts deep in a taxonomy and having many
relationships

(3) Overlapping concepts

(4) Small partial-areas.

In the following subsections, we give the interpretation of
each QA-set with respect to the overarching themes of
complex concepts and uncommonly modeled concepts. In
the last subsection, we introduce some approaches that seek
to combine these themes to further enhance QA efforts.

3.1. Area Taxonomy-Based QA-Sets

3.1.1. QA-Set 1. As discussed, the root area has concepts
having no defined relationships at all. In ontologies, relation-
ships are arguably the most important definitional elements
and serve as crucial differentiae [36]. Therefore, it is expect-
edly uncommon for concepts not to have any relationships
to other concepts. In our work, high percentages of concepts

without relationships have been located in the root area for
some hierarchies. Admittedly, such concepts may have been
left underdefined intentionally for concepts that are by
nature general or abstract. But one would expect the number
to be small. Oftentimes, the omission is unintentional and
should be questioned. Hence, the first kind of area
taxonomy-based QA-set is the set of concepts belonging to
a relatively large root area. The most likely error for such
concepts is a missing relationship.

3.1.2. QA-Set 2. As one moves down an ontology hierarchy,
there is an expectation of increasing attendant complexity
as more and more knowledge is built up—explicitly or
implicitly. Most often, the build-up of knowledge in ontol-
ogies happens through the introduction of new properties
as well as the inheritance of properties from ancestors. The
concepts exhibiting increased knowledge aggregation are
intuitively more difficult and more subtle to model, and it is
natural for errors to more readily occur in such cases. We
find a manifestation of this phenomenon in the second kind
of QA-set.

The concepts within a taxonomy are organized on num-
bered levels according to their numbers of relationships. The
farther from the root area, the higher the level. Concepts
residing deep in the taxonomy, in general, tend to have a
large amount of explicit accumulated knowledge, namely,
many relationships. With many relationships, there is
increased complexity and the chances of erroneous relation-
ships tends to increase. From this, we get the second kind of
area taxonomy-based QA-set: levels of the area taxonomy
containing concepts exhibiting many relationships.

3.2. Partial-Area Taxonomy-Based QA-Sets

3.2.1. QA-Set 3. An overlapping concept is one that resides in
two or more partial-areas within the same area. Such con-
cepts fall under the category of complex concepts due to
the fact that they inherit the structure and semantics from
two or more partial-area roots. As an example, the NCIt con-
cept Childhood Central Nervous System Mature Teratoma
resides in the two partial-areas Central Nervous System
Mature Teratoma and Childhood Central Nervous System
Teratoma and is thus a descendant of the respective roots.
This hierarchical arrangement and grouping into partial-
areas is illustrated in Figure 2(a). A QA-set of overlapping
concepts is typically quite small, and it is beneficial to review
its concepts collectively. In fact, we have developed an addi-
tional specialized framework, called the disjoint partial-area
taxonomy [30], for dealing primarily with this kind of QA-
set. The overlapping concepts are extracted from their
partial-areas to be in separate “overlapping partial-areas” so
that all partial-areas are disjoint. See Figure 2(b) for the cor-
responding disjoint partial-area taxonomy for Figure 2(a).
In Figure 2(b), the overlapping partial-area Childhood
Central Nervous System Mature Teratoma is drawn as two-
colored (red and blue) to denote its concepts’ ancestry in
the roots of the partial-areas Central Nervous System Mature
Teratoma (red) and Childhood Central Nervous System
Teratoma (blue).
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3.2.2. QA-Set 4. A small partial-area falls under the category
of uncommonly modeled concepts because its concepts
exhibit a relatively uncommon combination of structural def-
initional elements (relationships) and hierarchical locality/
grouping. The uncommon combination raises the question
of correctness. Small partial-areas have been proven to be
useful in uncovering ontology errors because although they
may indeed be unusual concepts, it often happens that
their uncommon complexity in modeling is due to error.
Of course, the threshold value defining the meaning of
“small” must be postulated. It has been shown to differ for
various ontologies, but it has shown not to stray from a
small constant.

3.3. Thematic Approaches and Their Combination. Let us
note that the common thread running through the two
themes of complexity and uncommon modeling is that both
kinds of QA-sets consist of outliers in the overall context of
an ontology hierarchy. The complex concepts are outliers
due to their compound modeling that reflects multiple struc-
tural elements and poses challenges for accurate modeling.
The uncommonly modeled concepts are outliers by virtue
of their unusual structural and/or semantic configurations.

It is interesting that these various outliers expressed as
QA-sets are not necessarily obvious on inspection of the
underlying ontology but surface when the ontology is viewed
through the lens of the compact summarizing view afforded
by the taxonomies.

The taxonomies are kinds of abstraction networks [32]
and as such were not created with the primary purpose of
exposing outlier sets that are liable to contain more modeling
errors. Our original intent was to employ them in schemati-
cally capturing the “big picture” of an ontology network, spe-
cifically, its overall content and structure, while ignoring
minutiae. Our first forays into abstraction networks had this
purpose clearly at the forefront as we formulated object-
oriented schemas [37, 38] for the Medical Entities Dictionary
(MED) [39] and the Unified Medical Language System
(UMLS) [40]. Abstraction work on SNOMED CT led to the
creation of the taxonomies as generalizations of the schemas
used previously. (See [27] for further details regarding the
decision-making processes surrounding the creation of
taxonomies. The principal motivation was dealing with less
constrained patterns of relationship introductions.)

The realization that abstraction networks in general and
taxonomies in particular were excellent platforms for
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Figure 2: (a) Overlapping concept Childhood Central Nervous System Mature Teratoma from the NCIt. (b) Disjoint partial-area
taxonomy for (a).
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ontology QA came later. Initial—somewhat capricious—dis-
coveries of ontological errors through the lens of schemas
and taxonomies made us see this potential. Further analysis
revealed that taxonomies tended to cluster the outliers in sets
that were statistically more likely to harbor errors. It was con-
cluded that the benefits to QA arose due to the exposure in
some instances of concepts of exceptional complexity and,
in other instances, concepts of uncommon modeling. This
resulted in the QA-sets described above.

Going further, the themes of complexity and uncommon
modeling can be combined to enhance the effectiveness of QA
regimens and economize the required processing. For exam-
ple, it may make sense to look at concepts exhibiting com-
plexity from two perspectives (two “layers” of complexity).
Or a combination of complex and uncommon characteristics
may serve as the basis for additional scrutiny.

One example is the use of the notion of degree of overlap as
it pertains to overlapping concepts (in the context of QA-set
3). The degree of overlap is defined to be the number of
partial-areas to which an overlapping concept belongs. Its
value is at least two. As an example, consider the GO concept
ascospore formation. Since it belongs to the four partial-areas
morphogenesis, cell cycle process, cell development, and repro-
ductive process, its degree of overlap is four. This characteristic
is in fact another layer of complexity for these already com-
plex concepts. So, while overlapping concepts are expected
to have more of a likelihood of errors, in general, overlapping
concepts of a higher overlap degree are expected to have an
even higher likelihood of error vis-a-vis overlapping concepts
of a lower degree. The intuition beyond this is an elaboration
of additional semantics frommore roots and a more involved
arrangement of IS-A relationships in the underlying ontology
hierarchy—thus, more attendant complexity.

Another example of a combination approach that has
yielded significant results is that of concentrating on small
partial-areas (QA-set 4) when they appear clustered in an
area comprising just a few partial-areas overall—and only
small ones at that. In such a circumstance, the small par-
tial-areas, representing concepts with an uncommon seman-
tics and local hierarchical characteristics, are grouped with
other such concepts based on an uncommon global charac-
teristic, namely, the area’s set of relationships.

An extreme example found originally in the NCIt’s Bio-
logical Process hierarchy is that of the concept transcription
initiation which resided in a partial-area and an area all by
itself [29]. It was the only concept in the whole hierarchy with
the relationship combination: has associated location, has
result process, has result chemical or drug, and is part of pro-
cess. On analysis, it was deemed to be erroneous, and in a
subsequent release of the NCIt, transcription initiation no
longer had this relationship set; that is, this area disappeared
from the area taxonomy. In addition, small partial-areas hav-
ing concepts with many relationships have been seen as being
useful to QA efforts. This latter approach can be viewed as a
combination of QA-set 4 with QA-set 2.

A further example is found in the deeper levels of the root
area (QA-set 1). With concepts in the root area, there is a
build-up of knowledge that is entirely implicit as they do not
have any relationship definitions whatsoever. With most of

these concepts being primitive—in fact, without having multi-
ple parents, certainly so—one would expect that the internal
hierarchical depth of this area to be rather low. If there are
concepts that reside a good distance from the hierarchy’s root
and have no relationships, this raises suspicions: their build-up
of knowledge has not been accompanied by the inclusion of
any explicit knowledge elements, leaving them likely underde-
fined. In fact, concepts deep in the root area fall under both
categories of complex and uncommonly modeled.

4. Results

In this section, we survey some applications of methodolo-
gies that are based on the four kinds of QA-sets defined in
the previous section. The results of the QA efforts, such as
the focus ontology and the scope and kinds of erroneous con-
cepts discovered, are reported. In the Appendix, we include
references to supplementary tables that show the error
reports from two QA studies. Moreover, the Appendix pro-
vides information about accessing the error reports for two
additional QA studies at online locations. Let us note that
the applications of the described QA methodologies were
supported by a number of custom-made software tools, such
as OAF [41], which is available as a plug-in for Protégé [42].

4.1. Area Taxonomy-Based QA-Sets

4.1.1. QA-Set 1: Root Area. QA-sets comprising the concepts
in the root area of an area taxonomy have been the basis of
QA analysis done in the context of the NCIt. The focus in
that context was on missing-relationship errors, a type of
error of omission. In this unpublished study, the root area
of the Biological Process hierarchy’s area taxonomy was seen
to be anomalous in terms of its large relative size compared
with the rest of the area taxonomy. That hierarchy’s root area
contained 513 concepts (44.8%) of its total of 1145 concepts.
On analysis, it was discovered that 232 of these 513 concepts
(45.2%) were missing relationships (referred to as roles in the
NCIt). In comparison to a control sample of concepts within
the same hierarchy, it was shown that the root area harbored
a statistically significantly higher amount of errors using
Fisher’s exact two-tailed test [43].

Some SNOMED CT hierarchies have been shown to
exhibit large root areas, making them suitable for this kind
of QA methodology. For example, body structure has about
90% of its concepts in its root area, and event has 97.5%.
Other SNOMEDCT hierarchies have root areas that are large
in absolute size if not in relative size (i.e., as a percentage of
the entire hierarchy). In such cases, they are suitable for a
combination QA approach, as discussed in Section 4.3.

4.1.2. QA-Set 2: Concepts Deep in a Taxonomy and Having
Many Relationships. This kind of QA-set, with the theme of
a division between deeper and shallower levels of the taxon-
omy, was also used in the context of NCIt’s Biological Process
hierarchy [44]. Those concepts in areas on the deeper levels
of the entire area taxonomy, by definition, have more defined
relationships than the concepts on shallower levels. In [44],
we found that 25% of the analyzed concepts on the levels
between level 3 and level 5 (with corresponding numbers of
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relationships)—with level 5 being the deepest level—were
erroneous. This was confirmed as a statistically significantly
greater number of errors using Fisher’s exact two-tailed test.
The errors were verified by S. de Coronado, a manager of
the NCIt.

This QA-set was also utilized in the context of the ChEBI
ontology [45, 46]. In this unpublished QA study, we asked
two chemistry subject-domain experts to formulate a consen-
sus report regarding erroneous concepts throughout the var-
ious levels of the taxonomy. At the deepest levels (i.e., levels
5–8), we observed a statistically significantly higher error rate
as compared to the shallower levels (as judged again using
Fisher’s exact two-tailed test). The statistical significance
even held as we slightly adjusted the cutoff level between
what we considered shallow and deep. The most prevalent
types of errors found in this analysis were incorrect lateral
relationship targets and incorrect classifications. Modeling
problems that were chemistry specific included a number of
incorrect charge differences between conjugate acids and
conjugate bases and incorrect numbers of cyclic units.

4.2. Partial-Area Taxonomy-Based QA-Sets

4.2.1. QA-Set 3: Overlapping Concepts. QA-sets consisting of
overlapping concepts were among the focus of QA efforts
within the context of SNOMED CT’s Specimen hierarchy
[19], both its 2007 and 2009 versions. In that analysis, it
was shown that overlapping concepts are statistically signifi-
cantly more likely to be erroneous than other concepts. The
statistical significance was determined using Fisher’s exact
two-tailed test. For example, for the 2009 release of the Spec-
imen hierarchy, approximately 20% of its concepts were
overlapping. Of these, more than half exhibited errors of
some kind, including incorrect parents, incorrect relation-
ship types, and incorrect relationship targets. Let us note that
the discovered errors were confirmed by K. A. Spackman,
who at the time was the Chief Terminologist of the Interna-
tional Health Terminology Standards Development Organi-
sation (IHTSDO)—curator of SNOMED CT. (IHTSDO is
now known as SNOMED International.) In general, it was
found that overlapping concepts were 1.89 times more likely
to be in error than nonoverlapping concepts (55% versus
29%) [19].

Additional analysis within SNOMED CT’s Clinical
Finding hierarchy at the subhierarchy rooted at the concept
Bleeding showed that overlapping concepts had an error rate
that was 4.33 times higher than the nonoverlapping concepts
(39% versus 9%) [31]. These results bore statistical signifi-
cance (using the double bootstrap approach [47]) and were
verified by J. T. Case, the acting Chief Terminologist at
SNOMED International.

QA-sets of this kind have been utilized within the Gene
Ontology (GO) [48], where overlapping concepts were also
prone to having a higher error rate than other concepts. Spe-
cifically, in GO’s Biological Process hierarchy, overlapping
concepts were 1.39 times more likely to exhibit errors than
nonoverlapping concepts (30.2% versus 21.8%). The errors
in that study were identified and verified by J. Lomax, who
at the time was a coordinator of the GO Editorial Office.

In a study of the overlapping concepts in the NCIt’s neo-
plasm subhierarchy, from the Disease, Disorder, or Finding
hierarchy, a significantly higher number of erroneous con-
cepts (Fisher’s exact two-tailed test) were found. Let us note
that in this analysis, we only considered errors of a moderate
or severe nature, as predefined by the participating subject-
domain experts. The error rate for overlapping concepts
was found to be 1.6 times that for nonoverlapping concepts
(16% versus 10%). Furthermore, the number of errors per
erroneous overlapping concept was slightly higher than the
number of errors per erroneous nonoverlapping concept
(1.33 versus 1.11).

The same phenomenon was observed in the overlapping
concepts of Uberon [49], where overlapping concepts had an
error rate of 29% versus an error rate of 11% for nonoverlap-
ping concepts [50]. Most of the errors found in this study
were confirmed by C. J. Mungall, the curator of Uberon.
The results were shown to be statistically significant based
on Fisher’s exact two-tailed test.

4.2.2. QA-Set 4: Small Partial-Areas. QA-sets of the concepts
in small partial-areas were also utilized for SNOMED CT’s
Specimen hierarchy (2004 edition) [27, 28]. Concepts in
partial-areas of size seven or fewer were 1.57 times more
likely than other concepts to be in error (10.7% versus
6.8%). All the errors reported in [28] were confirmed by
K. A. Spackman (the Scientific Director of SNOMED CT
at the time and a co-author of the study), and his correc-
tions of the errors were reflected in subsequent SNOMED
CT releases.

The Biological Process hierarchy of the NCIt underwent a
QA review in [29] using this type of QA-set. It was found that
12% of the concepts in partial-areas comprising three or
fewer concepts were in error. Overall, such concepts were
more than two and a half times more likely to be in error than
concepts in the larger partial-areas (12.2% versus 4.6%).

In [51], we analyzed the error rates of concepts in small
partial-areas in SNOMED CT’s Procedure hierarchy. Con-
cepts in small partial-areas were observed to have an error
rate of 15.4% versus 8.8% for concepts in large partial-
areas. This difference was shown to be statistically significant
using Fisher’s exact two-tailed test.

Further work on small partial-areas in the context of the
NCIt’s neoplasm subhierarchy was reported in [52]. The
observed error rate was twice as large for small partial-areas
as compared to large partial-areas. If we considered only
the most common kind of error encountered, namely, the
missing relationship error, small partial-areas had more than
three times the amount of errors.

4.3. Combination Approachess. Further analysis within QA-
set 3 showed that the degree of overlap (i.e., the number of
partial-areas a concept belongs to) is a factor affecting the
expectation of erroneousness. We found that the higher
the degree of overlap, the higher the error rate. For example,
in SNOMED’s “Bleeding” subhierarchy, concepts that over-
lapped between two partial-areas had an error rate of 26.7%,
three partial-areas, 40.8%, and four or more partial-areas,
64.1% [31]. These results were statistically significant using
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the double bootstrap technique. In the GO, it was observed
that the relatively few concepts with a degree of overlap
of four or more had higher error rates (64.7%) compared
to other overlapping concepts [48]. J. Lomax of the GO
Editorial Office verified the findings.

QA-set 4 was further refined to economize the process-
ing, focusing on small partial-areas clustered tightly in cer-
tain areas as well as on small-partial areas whose concepts
had many relationships. Applications of these approaches
were successfully carried out in SNOMED CT’s Specimen
hierarchy [27]. A collection of errors from this work was
reported to K. A. Spackman, SNOMED CT’s former Chief
Terminologist, who eventually accepted over 90% of them
for inclusion in the 2005 release. Further results from this
analysis and verification of their statistical significance were
presented in [28].

In an approach similar to that in [27], the small partial-
areas of the NCIt’s Biological Process hierarchy appearing
together in areas with low numbers of partial-areas in total
were closely studied [29]. Hypotheses pertaining to the
concentrations of erroneous concepts with respect to these
kinds of partial-areas and their aggregations were tested
and confirmed.

When the QA-set 1 has significant depth, then those
concepts deep in the root area (farthest from its overall root
concept) warrant separate attention. For example, analysis
of the concepts on the deeper levels within the root area of
the NCIt’s Biological Process hierarchy yielded results show-
ing erroneous concepts occurring at a significantly higher
rate than on shallower levels (Fisher’s exact two-tailed test).
This again was with respect to missing relationship errors.
Specifically, three out of every five concepts in the deeper
levels of the root area of Biological Process were found to be
erroneous. We observed a similar trend in GO, where
22.5% of concepts at deeper levels had errors [48].

This combination approach is particularly pertinent
when the root areas of hierarchies are large in absolute size,
not just relative size. In such cases, a full review of the root
area is impractical. A practical approach is to focus on the
root area’s deeper levels with a higher expectation of
discovering and resolving problems. Examples of where this
combination approach could be applied are SNOMED CT’s
Clinical Finding and Procedure hierarchies. Clinical Finding
has a root area with 7000 concepts, which is only 6.7% of
the entire hierarchy (nearly 104,000 concepts) in release
20160131. Procedure’s root area consists of 2591 concepts,
4.7% of its approximately 55,000 concepts. In both cases,
the root areas are too large, and a narrowing down of the
scope of the QA review is required.

5. Discussion

Taxonomy-based QA methodologies using automated QA-
set identification have successfully been brought to bear on
a number of ontologies. The amount of time and effort
expended by domain-expert QA personnel has been reduced
with the use of the automated assistance in locating problem-
atic ontology regions. Corrections suggested by our work
have effected changes in some very important ontologies

used worldwide, including SNOMED CT, the NCIt, ChEBI,
and GO.

Moreover, by demonstrating the power and possibilities
offered by existing QA-sets, we expect the identification of
further QA-sets to expand the suite of tools that can be
brought to bear for ontology QA. In particular, the prospects
of the design of hybrid QA-sets, as illustrated in Sections 3.3
and 4.3, are exciting since such hybrid techniques seem to
offer higher error yields when they have been successfully
applied thus far.

Ontologies are human-made representations of knowl-
edge. As such, modeling errors in ontologies are caused
by human factors. Thus, when designing QA methodolo-
gies to identify sets of concepts that have relatively higher
error rates, we are speculating about where the ontology
designers and editors are more likely to commit such
modeling errors. It is noteworthy that such concepts are
outliers, detectable as such not in the original ontology
structure but in the alternate compact view afforded by
the taxonomy. In particular, those outliers, as we elaborated
above, are the QA-sets that follow the two themes intro-
duced in this paper, complex concepts and uncommonly
modeled concepts. Those QA-sets were shown to harbor
modeling errors in a variety of ontologies. Various inter-
pretations of “complex” and “uncommonly modeled” were
illustrated. It is interesting that, when considering hybrid
QA-sets with compound characterizations, the combination
of reasons for errors is manifested by a higher error rate
compared to QA-sets based on only one characterization.
In other works on QA of the MED [39], we have identified
a QA-set consisting of intersection classes with small
extents in the abstraction network obtained as an object-
oriented database schema of the MED [37], another exam-
ple of a hybrid QA-set combining again the theme of com-
plex concept and uncommon modeling in a different
context. We observe that QA-sets constituting hybrid
combinations of these two themes seem to recur across a
diverse range of terminological contexts.

We note that the studies described in this paper used
partial-area taxonomies created from the inferred relation-
ships of each ontology (i.e., after a reasoner had been
applied). This was intentional, as most end users interact
with the inferred version of an ontology, and their applica-
tions will accordingly be affected by the errors in the inferred
relationships. This also means that the QA characteristics
described in this paper were based on the inferred version
of the ontology only. Furthermore, the errors reported in
our previous QA studies, which were used to establish the
error rates for the various characteristics, were errors in the
inferred relationships.

Correcting errors in an ontology’s inferred relationships
typically requires modifying its stated relationships. The
stated corrections needed to fix a given error may not be
apparent based on the type of error found in the inferred
relationships. For example, a missing parent in the inferred
version of an ontology may be caused by a missing relation-
ship in the stated relationships (and thus, the reasoner was
not able to infer the correct parent) rather than there being
a missing stated parent. Indeed, in [53], it was shown that
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taxonomies help to expose errors that cannot be detected
automatically by classifiers. In [31], we identified stated
relationship errors that caused errors in the inferred relation-
ships of overlapping concepts. We plan to further investigate
the association between the characteristics described in this
study and the errors in the stated modeling of ontologies in
a future study.

After a QA analysis is completed and the erroneous con-
cepts have been corrected, several possibilities exist regarding
the characteristics that drew attention to those concepts in
the first place. Ideally, each corrected concept will no longer
exhibit any such characteristics. However, the possibility
exists for a concept to still exhibit the same characteristic
after it has been corrected (e.g., an overlapping concept
may still be an overlapping concept if the only error
identified and corrected was an incorrect relationship)
or exhibit an entirely different characteristic (e.g., removing
an erroneous relationship from a concept that has only
one relationship will cause the concept to move to the
root area).

This also raises the question of the value of our
characteristic-based predictions once errors are reported
and addressed. Interestingly, after 20 years of research on
the QA of ontologies, we have not encountered a situation
where all of the errors in an ontology were corrected and
the ontology is entirely error free. On the contrary, when
we repeated the QA analysis of overlapping concepts in
SNOMED CT’s Specimen hierarchy in 2004 and 2009, we
found that the 2009 version had as many erroneous concepts
as the 2004 version did (though the errors were not the
same). One reason was that when SNOMED CT editors
corrected the previously reported errors, they unwittingly
introduced new errors. Another reason was that when new
concepts were introduced to the ontology, they were intro-
duced with modeling errors. Thus, even though the errors
in the overlapping concepts in the 2004 release were cor-
rected, and some of those concepts were still overlapping
concepts, new erroneous concepts exhibited this character-
istic in the 2009 release.

5.1. Limitations. A limitation of the approach is that the tar-
get ontology be amenable to the derivation of a taxonomy.
The original methodology was designed for certain DL-
based ontologies (terminologies) like SNOMED CT and the
NCIt. For other ontologies, ad hoc adaptations had to be
employed. However, focusing on ontologies in families of
similar ontologies [26] in the BioPortal has made the auto-
matic generation of taxonomies [41] possible across a wide
spectrum of ontologies.

The specific QA-sets presented herein are expected to
help a wide range of curators and editors more effectively
deal with the paramount concern of QA in their ontologies.
However, we point out that not every methodology is
applicable to every ontology, even if that ontology has the
structural characteristics required for the creation of an area
taxonomy or a partial-area taxonomy underlying the
methodology. For example, for QA-set 1, not every ontology
hierarchy has a large root area. In the NCIt, the Gene Product
hierarchy is such an example.

For QA-set 2, an ontology may have only a small number
of concepts exhibiting many relationships. Thus, QA analysis
of such concepts with an expectation of higher error rates
may not be a practical approach for that ontology.

Consider, for example, the case of the neoplasm subhier-
archy of the NCIt’s Disease, Disorder, or Finding hierarchy. It
has 8166 concepts and due to its importance to the mission of
NCI, the quality of their modeling is of high priority to the
NCIt curatorial team (S. de Coronado, NCIt manager, per-
sonal communication). Due to the large number (27) of rela-
tionships available for neoplasm concepts, there are 4824
partial-areas, and 6581 concepts (81% of the total) belong
to small partial-areas for which our QA study has shown
higher error rates.

On the other hand, the number of overlapping con-
cepts in this hierarchy is relatively low, only 225 concepts
(2.7%). The reason for this low number is again the high
number of potential relationships, dividing the concepts
into many relatively small areas and partial-areas. In the
analysis of all these 225 overlapping concepts, they were
shown to have on the average statistically significantly
more errors than concepts in a control sample. But there
are no more overlapping concepts to review, based on this
knowledge. In contrast, in the GO, there are many over-
lapping concepts.

Hence, one should view the various methodologies
described in this paper as a collection of tools in a toolkit.
One should choose to apply for each ontology the proper
approaches that will enable the correction of many concepts
per a given effort of review. In some cases, there are several
applicable methodologies for the same ontology.

There are of course exceptions. For example, in the
Gene hierarchy of the NCIt, all the gene concepts reside in
singletons, that is, partial-areas of size one. Hence, these
concepts are not outliers in this context, and the technique
of reviewing concepts in small partial-areas does not offer
any advantage.

The general QA-set framework has been shown to be
effective in carrying out ontology QA. Our purpose in this
paper is to have ontology QA professionals become familiar
with the various QA-sets so that they can tailor the proper
QA toolkits according to the properties of the ontology
hierarchies they are dealing with.

6. Conclusions

It has proven to be practical to develop QA techniques based
on the automated extraction of sets of concepts (“QA-sets”)
that are expected to have higher error rates. Taxonomies,
kinds of ontology abstraction networks, have been shown to
be excellent frameworks for the identification of such QA-
sets based on various structural features. In this paper, we
discussed different methodologies for identifying four kinds
of QA-sets. Some applications to existing ontologies were
presented. The methodologies were organized around two
basic themes, the notions of complex concept and uncom-
monly modeled concept. Overall, following such approaches
leads to an enhanced suite of ontology QA tools and better
utilization of QA personnel. It is expected that the work
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presented herein will inspire the formulation of additional
QA-sets to further aid efforts in the all-important task of
ontology QA and, in particular, to promote hybrid tech-
niques combining multiple aspects that can raise the error-
discovery yield.

Appendix

We have provided two supplementary tables showing the
error data sets resulting from the studies in [44] and [52],
respectively. The first table, labeled Supplementary Table 1
available online at https://doi.org/10.1155/2017/3495723
and consisting of three columns, lists NCIt Biological Process
concepts along with the errors discovered with respect to a
QA-set 2 analysis. Also included in the table is the number
of role (relationship) types exhibited by each concept. The
second, two-columned table (Supplementary Table 2) shows
NCIt neoplasm concepts and their errors found in a QA-set 4
study. Additionally, the results of the combination QA
approach described in [31] are available online (https://
uscrs.nlm.nih.gov) on the NLM’s SNOMEDCTU.S. Content
Request System (USCRS) under Batch ID 121149. To access
the USCRS, login credentials for the NLM’s UMLS Termi-
nology Services are required. Also available online (https://
github.com/obophenotype/uberon/issues/1243) is the error
report for the QA-set 3 approach applied to Uberon [50],
along with responses from Uberon’s curators.
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