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Abstract: Accurate 3D passive tracking of an underwater uncooperative target is of great significance
to make use of the sea resources as well as to ensure the safety of our maritime areas. In this
paper, a 3D passive underwater uncooperative target tracking problem for a time-varying non-
Gaussian environment is studied. Aiming to overcome the low observability drawback inherent
in the passive target tracking problem, a distributed passive underwater buoys observing system
is considered and the optimal topology of the distributed measurement system is designed based
on the nonlinear system observability analysis theory and the Cramer–Rao lower bound (CRLB)
analysis method. Then, considering the unknown underwater environment will lead to time-varying
non-Gaussian disturbances for both the target’s dynamics and the measurements, the robust optimal
nonlinear estimator, namely the adaptive particle filter (APF), is proposed. Based on the Bayesian
posterior probability and Monte Carlo techniques, the proposed algorithm utilizes the real-time
optimal estimation technique to calculate the complex noise online and tackle the underwater
uncooperative target tracking problem. Finally, the proposed algorithm is tested by simulated data
and comprehensive comparisons along with detailed discussions that are made to demonstrate the
effectiveness of the proposed APF.

Keywords: underwater target tracking; adaptive tracking; particle filter; passive tracking

1. Introduction

The marine resources have significant influences on human’s living and social devel-
opments. Furthermore, the ocean plays an important role for national security and the
underwater target tracking is one of the most significant research areas of marine science
and underwater acoustic engineering nowadays. Therefore, to exploit the ocean resources
and defend the national territory, the technology of accurately and reliably tracking an
uncooperative underwater target is of vital importance.

There are two categories of underwater target tracking techniques, namely the active
underwater target tracking and the passive underwater target tracking. The former always
utilizes high-power active sonar equipment to transmit active detection signals to track the
target in real time [1,2]. This kind of tracking technique is usually participated in the rela-
tively close-range tracking scenarios with fixed ship-borne or shore-based sonar platforms
for the limitation of power supplies. Hence, the active underwater tracking system lacks
mobility and is easy to be discovered by the uncooperative target or third-party surveillance
systems so that the target can make maneuvers to avoid the detections. Considering the in-
creasingly complex modern underwater attacking and defensive environment, the passive
tracking techniques seized the attentions from many researchers [3–5]. Passive tracking
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techniques only utilize the radiation noise from the target to make parameter estimations
without sending any detecting signals during the tracking period. Therefore, the passive
tracking sonar and the combined tracking techniques are of great invisibility and have
many outstanding advantages such as a long detecting range, little power consumption,
and flexible deployment constrains when compared to the active ones. Consequently,
considering the large sea area to be monitored and the increasingly intelligent underwater
target in the research area of underwater target tracking, the high safety coefficient and
low energy consumption advanced passive tracking techniques are of great importance to
be researched.

For the aspect of the passive sonar tracking system, two kinds of measurements
are commonly utilized to track an uncooperative underwater target. The first one is the
angle-based measurements. By collecting the passive signals from an underwater target,
various kinds of DOA algorithms can be utilized to output both the azimuth angle and
the elevation angle of the target [6,7]. Then, considering the angle information as the
measurements, the locations and velocities of an underwater target can be estimated by
various tracking algorithms. Besides the angle measurements, the frequency measurements
(also known as the Doppler frequency measurements) can also provide extra information
about the underwater target and make the tracking process more accurate [8]. However,
for a slowly-moving underwater target, the frequency measurements are usually hard to
utilize. Thus, to track a slowly-moving underwater target (such as the submarines), the
angle information is the only measurement that can be utilized in the tracking procedure.

In order to build a robust and accurate underwater passive tracking system, the ob-
servability along with the accuracy analysis should be firstly studied comprehensively.
Since the passive tracking system only utilizes the radiations from the interested under-
water target to accomplish the tracking process and the frequency-based measurements
are not available when the target moves at a slow speed far from the tracking system,
only the angle information can be obtained and utilized. Therefore, the passive tracking
process sometimes is called the bearing-only tracking in a 2D scenario and angle-only
tracking in a 3D scenario. The observability analyses are comprehensively studied by
several researchers [9–11], and the conclusion is made that the angle-only measurements
by a single static observer is not sufficient to guarantee the system to be fully observable.
In order to make a tracking system observable to satisfy the robustness requirements of the
passive tracking system, the single observer must maneuver with much more agility than
the target or more observers are needed. However, in the scenario of passive underwater
uncooperative target tracking, it is impossible to know the target’s motion details before the
tracking procedure is accomplished. Therefore, the only way of deploying more observers
is realizable. In addition, since the commonly used sonar arrays must be towed or mounted
by a submarine or a ship, which is hard to make concealed passive tracking networks for
realistic reasons during the underwater uncooperative target tracking process, the passive
distributed underwater buoys system is developed to tackle this problem. By deploying
several passive underwater buoys in an interested sea area to different depth, an uncooper-
ative target can be tracked with full 3D observability if combined angle-only measurements
are utilized. Therefore, developing passive tracking techniques which depend on the
distributed underwater buoys has attracted attention from various researchers and rich
research outcomes have been obtained [12–14]. Nevertheless, there are also several crucial
issues to be further studied.

Firstly, the observability of a tracking system is not “constant”. For the nonlinear
system of underwater target tracking, even a full observable tracking system has different
levels of observability for different configurations of the distributed underwater buoys
that participate in the current tracking process. According to ref. [15], the observable
degree is an important index to measure the extent to which a nonlinear tracking system is
observable. For a certain passive distributed underwater buoys system, different topology
of the buoys providing measurements during every tracking step can have a different
observable degree. As a result, choosing certain sets of buoys to form the optimal topology
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of the distributed underwater passive buoys system, depending on real time tracking
results, can make the tracking system more robust so that the topology designing criterion
needs further investigations.

In addition, for a distributed system containing several underwater buoys, it is under-
standable that more measurements being utilized at the same tracking time can provide
more accurate tracking results. However, since the underwater acoustic communicating
resources are very limited, more underwater buoys will cost more underwater acoustic
communicating resources which, as a result, will make the information fusion procedure
much longer and decrease the tracking accuracy at its expense. Hence, the goal is to utilize
an appropriate number of buoys to satisfy the accuracy requirements and save underwater
acoustic communicating resources in the meantime. Therefore, the method of balancing
the tracking accuracy and the system observability is crucial for the passive distributed un-
derwater buoys system and has great researching significance. Although some researchers
have developed the sensor scheduling and control principle for the distributed radar
systems [16–18], the sensor selection and topology design of an underwater distributed
tracking system are still open questions that attracted a number of researchers [13,14].

Besides the considerations of the measurements, the target tracking algorithms also
play an indispensable role in the tracking procedure. Since the underwater uncooper-
ative target always stays in a certain moving mode for a long time and seldom makes
maneuvering, the kinematics of the target can be modeled as the constant velocity (CV)
model like many researchers supposed in ref. [13]. Hence, the passive tracking problem
will be focused on the nonlinear tracking algorithms design under the determined target
model and measurement model. According to the scientific and engineering requirements
of building the advanced passive underwater target tracking system, many researchers
proposed their innovative tracking schemes [19–22]. Among all the existing underwa-
ter target tracking algorithms, the nonlinear Bayesian framework is the most common
and effective approach. For the nonlinear underwater target tracking scenario, ref. [19]
designed the extended Kalman filter (EKF) scheme-based tracking algorithm to make
suboptimal passive estimations of the underwater target. Unlike the EKF using 1st order
Taylor series expansion to linearize the nonlinear measurement model, ref. [20] designed
the unscented Kalman filter (UKF) scheme-based underwater target tracking algorithms to
have the theoretical accuracy enhanced to 2nd order Taylor series expansion. Moreover,
in order to obtain more accurate estimations, some other more complex algorithms are
proposed. The cubature Kalman filter (CKF)-based target tracking algorithm is designed
by ref. [21] along with the sigma-point Kalman filter with interpolation which is proposed
by ref. [22]. Although the rich researching achievements in the underwater target tracking
filed, they all assume the noise to be Gaussian white noise and most of them consider
the noise are time-invariant. However, for the underwater target tracking scenario, the
unknown underwater environment will probably influence the kinematics of the target and
the measurements made by every underwater buoy so that the noise can be time-varying
and non-Gaussian. Considering this assumption, only a limited number of particle filter
(PF)-based researches that utilize the Bayesian posterior estimation method to overcome
the Gaussian white noise limitation are designed [23,24], and very few researchers pay
attention to the time-varying characteristic of the underwater noise.

Considering all the above-mentioned challenges and in order to track the underwater
uncooperative target in a 3D real-time scenario under the time-varying non-Gaussian envi-
ronment by distributed passive submerged buoys, this paper firstly proposed a real-time
optimal topology-forming method of the distributed measurement system that balances
the tracking robustness and accuracy. Then, a robust algorithm that combined the advan-
tages of both the Bayesian posterior estimation techniques and the online noise estimation
techniques is designed. The contributions can be summarized as follows:

1. By utilizing the CRLB and FIM analysis method along with the nonlinear observability
analysis techniques, a real-time optimal topology design method of the distributed



Entropy 2021, 23, 902 4 of 19

passive underwater buoys is proposed to balance the estimation robustness and
accuracy dynamically.

2. An online noise estimator is proposed based on the Sage-Husa estimating tech-
nique to estimate the 1st order and 2nd order momentum of the time-varying
noise dynamically.

3. An intelligent tracking algorithm for a time-varying non-Gaussian environment is pro-
posed, namely the adaptive particle filter (APF). The proposed algorithm guarantees
the convergence of underwater target tracking accuracy.

The rest of this paper is organized as follows. In Section 2, the problem is formulated
by introducing the kinematics of the underwater target and the measurement model of
the distributed passive buoys. In Section 3, the optimal topology design method of the
distributed underwater buoys based on the CRLB and FIM analysis method along with the
observability analysis technique are described in detail. The innovative nonlinear tracking
algorithm for the time-varying non-Gaussian environment, namely the APF, is proposed in
Section 4. Section 5 gives the comprehensive simulating results and discussions to verify
the effectiveness of the designed algorithm. Finally, in Section 6, the conclusions are drawn.

2. Underwater Target Kinematics Model and Distributed Measurement Model

In this section, the kinematics model of the underwater target and the measurement
model of the distributed buoys system are proposed. Assuming the underwater uncooper-
ative target performs a constant velocity (CV) mode, the underwater uncooperative target
usually remains at the same speed to save energy. In addition, the measurements of the
distributed underwater buoys are the passive angle-only information which can be divided
into the azimuth angle information and the elevation angle information. The following
section gives the details of the above-mentioned models, respectively.

2.1. Kinematic Model of the Underwater Uncooperative Target

The main motive of the 3D tracking problem considered in this work is to estimate the
position and velocity of an underwater uncooperative target with CV motion mode using
noise-corrupted angle-only measurements from the passive distributed underwater buoys
system. Consider

[
x y z

]
representing the current 3D location of the underwater target

and
[

vx vy vz
]

representing the 3D velocities, respectively. According to ref. [13], the
kinematics model of the underwater uncooperative target can be represented as:

Xk = Φk/k−1Xk−1 + Wk (1)

where Xk =
[

xk yk zk vxk vyk vzk
]T is the system state at tracking time k, Wk is

the time-varying non-Gaussian process noise caused by the unknown underwater envi-
ronment with 1-st order and 2-nd order moments q and Q, respectively. Φk/k−1 is the state
transition matrix and can be represented as the following matrix if the target is in the CV
operation mode:

Φk/k−1 =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2)

It should be noted that, unlike many researches supposing Wk as the zero mean
Gaussian white noise [13,19–22], here, Wk is modeled as the time-varying non-Gaussian
stochastic process since the unknown underwater environment always perform uncertain
disturbances to the underwater uncooperative target.
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2.2. Measurement Model of the Distributed Passive Underwater Buoys

The measurement model of the i-th buoy at tracking time k can be represented as:

zi,k =

[
θi,k
ϕi,k

]
+ Vi,k (3)

where θi,k and ϕi,k represent the measured azimuth angle and elevation angle by i-th buoy
at tracking time k, respectively. Similar to the consideration of Wk in the process model,
Vi,k is also modeled as the time-varying non-Gaussian measurement noise caused by
the unknown underwater environment with 1-st order and 2-nd order moments rk and
Rk, respectively. In this paper, we assume that all the underwater buoys have the same
stochastic process of the measurement noise.

Assuming the tracking procedure is performing in the free 3D space (as shown in
Figure 1), the measurement model by Equation (3) be represented in the 3D Cartesian
coordinates as:

zi,k = h(Xk) + Vi,k =

 arctan yk−yi,k
xk−xi,k

arctan

√
(yk−yi,k)

2+(xk−xi,k)
2

zk−zi,k

+ Vi,k (4)

where
(

xi,k yi,k zi,k
)

is the location of the i-th buoy at tracking time k.
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3. Topology Design for Distributed Passive Underwater Buoys

In the section, we assume that the distributed passive tracking system contains three
underwater buoys. According to the system observability analyzed by ref. [19], at least
two sets of measurements need to be utilized to perform valid 3D tracking of the under-
water target. In addition, limited by the constrained underwater acoustic communicating
resources, performing accurate tracking by the fewest number of buoys is necessary. There-
fore, in this section, an optimal criterion of topology design for the distributed passive
underwater buoys system is proposed based on the Cramer–Rao lower bound (CRLB) and
Fisher information matrix (FIM) analysis method along with the nonlinear observability
analysis techniques. By an objective function concerning both the observability analysis
results and the theoretical tracking accuracy, this section designed the optimal topology
forming method of the distributed measurement system by selecting the proper buoys
from the whole measurement system based on the real-time estimated the target’s states
and measurements.
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3.1. Accuracy Analysis Based on CRLB and FIM

The proposal of tracking is to estimate the target’s state accurately at every tracking
step. In order to track the target as accurate as possible and utilize the underwater acoustic
communication resources effectively, the accuracy evaluation method is formed by the
CRLB and FIM with the measurements from two individual buoys. According to the
accuracy analysis theory [19], this information can be directly obtained from the time-
updated state Xk/k−1 and the location of the buoys.

From the measurement model (Equation (4)) and the system state
(Xk =

[
xk yk zk vxk vyk vzk

]T), considering there will be two individual buoys to
be utilized at every tracking step, the measurements model can be expressed as:

zij,k =


θi,k
ϕi,k
θj,k
ϕj,k

+ Vij,k

= hij(Xk)+Vij,k =



arctan yk−yi,k
xk−xi,k

arctan

√
(yk−yi,k)

2+(xk−xi,k)
2

zk−zi,k

arctan
yk−yj,k
xk−xj,k

arctan

√
(yk−yj,k)

2+(xk−xj,k)
2

zk−zj,k


+ Vij,k

(5)

where
Vij,k =

[
Vi,k Vj,k

]T (6)

is the united time-varying non-Gaussian measurement noise from the i-th and j-th buoy,
and the definitions of the other parameters are the same as mentioned in Section 2.2.

From Equations (4)–(6) and the time-updated state Xk/k−1, the likelihood function of
Xk/k−1 can be represented as:

P(Zk|Xk/k−1 ) =
2

∏
i=1

P(Zi,k|Xk/k−1 ) =
2

∏
i=1

1
2π

1√
Ri,k

exp
{
−1

2
(Zi,k − h(Xk/k−1))

TR−1
i,k (Zi,k − h(Xk/k−1))

}
(7)

The maximum likelihood estimation-based underwater target tracking problem can
be represented as maximizing the likelihood function P(Zk|Xk/k−1 ), that is:

X̂k = argmax
Xk/k−1

P(Zk|Xk/k−1 ) (8)

Considering L(Xk/k−1)= InP(Zk|Xk/k−1 ), the optimal estimation problem can be re-
formulated as:

X̂k = argmax
Xk/k−1

L(Xk/k−1) (9)

Hence, the FIM of the system formed by Equations (1) and (5) can be represented as:

I(Xk/k−1) =
∂L(Xk/k−1)

∂Xk/k−1
(10)
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which leads to

I(Xk/k−1) =
2

∑
i=1

1
Ri,k



d2
ix diydix dizdix divx

dix divy
dix divz

dix
diydix d2

iy dizdiy divx
diy divy

diy divz
diy

dizdix diydiz d2
iz divx

diz divy
diz divz

diz
divx

dix divx
diy divx

diz d2
ivx

divy
divx

divz
divx

divy
dix divy

diy divy
diz divy

divx
d2

ivy
divy

divz

divz
dix divz

diy divz
diz divz

divx
divz

divy
d2

ivz


(11)

where diζ = ∂h(Xk/k−1)/∂ζ,ζ= Xk/k−1 =
[

xk/k−1 yk/k−1 zk/k−1 vxk/k−1 vyk/k−1 vzk/k−1
]T.

According to ref. [13], the minimum reachable lower bound of the estimated state’s
variance is given by the CRLB, which can be represented as:

R = E
[(

Xk − X̂k
)(

Xk − X̂k
)T
]
≥ CRLB (12)

Additionally, the CRLB can be represented by the inverse of the FIM, namely:

CRLB , FIM−1 = |I(Xk/k−1)|−1 (13)

Consequently, by minimizing the value computed by the above Equation (13), two
out of three buoys of the distributed measuring system can be selected and the optimal
topology based on estimating accuracy can be determined, namely:

Tacc = argmin
s.t. i,j=(1,2)∪i,j(1,3)∪i,j=(2,3)

|I(Xk/k−1)|−1 (14)

3.2. Observability Analysis of the Nonlinear Tracking System

Observability analysis of a nonlinear tracking system is the foundation of making
reliable tracking results. From Equations (1) and (4), it can be found that the system
to be analyzed is highly nonlinear. According to ref. [25], the Gramian matrix can be
represented as:

OG =
m

∑
k=1

Φ(tk, t0)HT
kR−1

k HkΦT(tk, t0) (15)

where
Φ(tk, t0) = Φk/k−1 · · ·Φ2/1Φ1/0 (16)

and m is the discrete tracking step during the overall tracking procedure, Hk is the Jacobian
matrix of the measurement function h(Xk) represented by Equation (4) at tracking time k,
and Rk is the covariance matrix of the time-varying non-Gaussian measurement noise at
tracking time k.

According to the linear observability theory, the states can be estimated from the
measurements at any biased initial guesses when a linear system is fully observable. Hence,
in order to make the tracking procedure reliable and robust, it is essential to guarantee
that the tracking system is fully observable especially when the target to be tracked is
uncooperative, which means that the tracking process must have the ability of convergence
at any random initial guesses. However, unlike the linear system, the theory of determining
whether an arbitrarily nonlinear system is fully observable is still an open question. From
Equation (15), it can be found that the OG matrix is time-varying which leads to the
observability of a nonlinear system having local characteristics.

According to the observability analysis criterion proposed in ref. [25], a nonlinear
system is “nearly” locally weak observable when the OG matrix computed by Equation (15)
at tracking time k has a full rank. Here, “nearly” locally weak observable means that the
states can converge within a certain scope of initial bias but cannot guarantee that the state
can be robustly estimated by any initial guesses since the OG matrix at tracking time k is
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computed by the Jacobian matrix of the measurement function and some deeper nonlinear
features are lost [26]. For the scenario of underwater uncooperative target tracking, the
prior information of the target is very limited so that the initial guesses of the states usually
have randomly initial bias. Consequently, more criterions are needed besides the rank
criterion for the observability analysis of the nonlinear tracking system.

Since the conditional number can reflect whether a matrix is “healthy”, the index of
observable degree is introduced to reveal whether an OG matrix is better under a certain
topology of the distributed buoys. The observable degree is represented as follows:

ob =
max(Γk)

min(Γk)
(17)

where Γk =
[

λ1 λ2 · · · λn
]

is the vector of eigenvalues of the OG matrix at
tracking time k.

From the matrix analysis theory, the OG matrix is more robust to the disturbances
when the value of ob is small. If the value of ob is very large, the maximum eigenvalue is
much larger than the minimum one, which will make the OG matrix become ill-conditioned.
Therefore, the relative smaller value of ob by different sets of buoys participated in the
current tracking procedure indicates a better observable degree of the tracking system.

According to the above analysis, if the tracking system is locally weak observable at
tracking time k, the optimal topology design criterion based on robust tracking aspect can
be represented as:

Tob = argmin
s.t. i,j=(1,2)∪i,j(1,3)∪i,j=(2,3)

|ob| (18)

3.3. Objective Function for Optimal Topology Design of the Distributed Underwater Buoys System

In order to track the underwater uncooperative target as accurate as possible and con-
sume the least acoustic communicating resources, an unity objective function considering
both the tracking accuracy and the communication usage is designed as the following:

Tall = αTacc + (1− α)Tob (19)

where Tacc and Tob are calculated as Equations (14) and (18) under the same sets of buoys.
α is the factor to adjust the relative weight of the accuracy and observability can be tuned
according to the real passive tracking scenario. If more tracking accuracy is needed, the
value of α can be enlarged and vice versa.

Hence, by defining the adjust parameter λ, the optimal topology design criterion of
the passive distributed underwater buoys can be expressed as:

(i, j) = argmin
s.t. i,j=(1,2)∪i,j(1,3)∪i,j=(2,3)

Tall (20)

4. Adaptive Tracking Algorithm for the Time-Varying Non-Gaussian Environment

From Equations (1) and (4), it can be found that the 3D passive tracking process is
a high nonlinear problem with uncertain noise. Unlike many researches which regard
the noise as the Gaussian white noise, we model the process noise and the measurement
noise as the time-varying non-Gaussian noise since this assumption is closer to the reality.
Hence, many of the existing nonlinear estimating algorithms cannot be directly adopted.
To make the time-varying noise estimated online, several adaptive techniques have been
developed [27,28]. However, in order to make the adaptive techniques less computational
complex and easy to implement in the real underwater target tracking scenario, we in-
troduce the modified Sage-Husa online noise-estimating technique [29] to deal with the
time-varying characteristic of the noise. Then, for the nonlinear tracking problem, based on
the online estimated noise, we proposed an adaptive PF (APF)-based optimal tracking algo-
rithm to make acceptable tracking results for the time-varying non-Gaussian environment.
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4.1. Modified Sage-Husa Online Noise Estimator

The Sage-Husa online noise estimator is firstly introduced by ref. [29] for linear system
noise estimation. For the nonlinear tracking system depicted by Equations (1) and (4), the
1st and 2nd momentum of the time-varying noise at tracking time k can be online estimated
by the nonlinear Sage-Husa estimator, respectively, as the following:

q̂k =
1
k

k

∑
j=1

(X̂j|j −Φj/j−1X̂j|j−1) (21)

Q̂k =
1
k

k

∑
j=1

[∆Xj − q]
[
∆Xj − q

]T (22)

r̂k =
1
k

k

∑
j=1

(Zj − h(X̂j|j)) (23)

R̂k =
1
k

k

∑
j=1

[∆Zj − r][∆Zj − r]T (24)

where q and r are the 1-st order momentum of the process noise and measurement noise,
respectively, Φj/j−1 is the transfer matrix from tracking time j− 1 to j, ∆Xj and ∆Zj are
represented as:

∆Xj = X̂j|j −Φj/j−1X̂j|j−1 (25)

∆Zj = Zj − h
(

X̂j|j−1

)
(26)

From Equation (21) to Equation (26), it can be found that the classic nonlinear Sage-
Husa online noise estimator must utilize all the smooth values of the state within a certain
tracking period, which leads to the total process hard to compute. According to ref. [30],
the recursive suboptimal representation of the nonlinear Sage-Husa online noise estimator
can be represented as:

q̂k =

(
1− 1

k

)
q̂k−1 +

1
k

∆Xk (27)

r̂k =

(
1− 1

k

)
r̂k−1 +

1
k

∆Zk (28)

Q̂k =

(
1− 1

k

)
Q̂k−1 +

1
k

(
Kkεkε

T
kKT

k + Pk|k −Φk−1Pk−1|k−1ΦT
k−1

)
(29)

R̂k = R̂k−1 +
1
k

(
εkε

T
k − Pzz,k|k−1

)
(30)

where Kk is the filter gain by a designed tracking algorithm, Pk|k is the covariance of the
estimated state at time k, and εk is the innovation represented as the following:

εk = Zk − h
(

X̂k|k−1

)
− rk (31)

and the representation of Pzz,k|k−1 is depended on different nonlinear tracking algorithms.
For time-varying noise, the latest measurement should be given more attention than

the historical data. Therefore, the fading factor dk at tracking time k is introduced to the
above Equations (27)–(30) as:

q̂k = (1− dk)q̂k−1 + dk∆Xk (32)

r̂k = (1− dk)r̂k−1 + dk∆Zk (33)

Q̂k = (1− dk)Q̂k−1 + dk

(
Kkεkε

T
kKT

k + Pk|k −Φk−1Pk−1|k−1ΦT
k−1

)
(34)
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R̂k = (1− dk)R̂k−1 + dk

(
εkε

T
k−Pzz,k|k−1

)
(35)

with
dk =

1− b
1− bk (36)

It can be found in Equation (36) that, when the index b is close to 1, the noise calculated
by Equation (32) to Equation (35) will focus on the measurements from the total tracking
period. On the contrary, if b is close to 0, the estimated noise will be more focused on
the current time innovation. Consequently, by tuning the value of index b, the fading
factor dk will be changed dynamically to affect the online noise estimation performance.
Combine Equations (32)–(36), we obtain the modified Sage-Husa online noise estimator to
deal with the time-varying characteristic of the process and measurement noise during the
tracking procedure.

4.2. Adaptive Particle Filter (APF) for Underwater Target Tracking

Since the passive underwater target tracking system is highly nonlinear and the
disturbances are time-varying and non-Gaussian, the classic nonlinear estimators cannot be
utilized. Here, we introduce the APF to make reliable estimations under the time-varying
non-Gaussian environment.

The designed APF united the modified Sage-Husa online noise-estimating technique
and the PF tracking technique to track an uncooperative underwater target by a certain
topology of the distributed buoys system. Depending on the nonlinear tracking system
represented by Equations (1) and (5), the APF can be divided into the following steps:

1. Initialization

At tracking time k = 0, selecting n particles (xi, i = 1 · · · n) based on the initial guess
of the state X0 and covariance P0. Among all the selected particles, the initial weight is set
as 1

n .

2. Time update

According to Equations (1) and (32), the time updated by every state particle under
the time-varying non-Gaussian environment can be represented as:

Xi
k/k−1 = Φk/k−1X̂i

k−1
+ q̂k−1 (37)

where q̂k−1 is the 1-st order momentum of the time-varying non-Gaussian process noise Wk−1.

3. Measurement noise online estimation

According to Equations (33) and (35), the measurement noise at time k can be estimated
by the modified Sage-Husa online noise estimator at every sampling time-updated state
as follows:

r̂k = (1− dk)r̂k−1 +
dk
n

(
n

∑
i=1

(
Zk − h

(
Xi

k/k−1

)))
(38)

R̂k = (1− dk)R̂k−1 +
dk
n

n

∑
i=1

(
εi

kε
i,T
k −Pi

zz,k|k−1

)
(39)

where
εi

k = Zk − h(Xi
k/k−1)− rk (40)

Pi
zz,k|k−1 = h

(
Xi

k/k−1

)
hT
(

Xi
k/k−1

)
− ZkZT

k (41)

From Equations (38)–(41), the time-varying non-Gaussian measurement noise Rk can
be estimated by every tracking step as R̂k.

4. Weight calculation
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According to the theory of PF, the weight of every particle can be represented as:

wi
k = wi

k−1

p
(
zk | xi

k
)

p
(

xi
k | xi

k−1

)
q
(

xi
k | xi

k−1,zk

) (42)

where p
(

xi
k | xi

k−1

)
is the prior probability, and q

(
xi

k | xi
k−1,zk

)
is the importance den-

sity function.
According to ref. [31], q

(
xi

k | xi
k−1,zk

)
is always selected as the same as p

(
xi

k | xi
k−1

)
,

which leads to:
wi

k = wi
k−1 p

(
zk | xi

k

)
(43)

From Equation (43), the weight of every particle can be computed by p
(
zk | xi

k
)

recur-
sively. According to the online estimated measurement noise by Equation (39), p

(
zk | xi

k
)

can be represented as:

p
(

zk | xi
k

)
= (2πRk)

−1/2 exp
{
−1

2

(
Zk − h

(
Xi

k/k−1

))
R−1

k

(
Zk − h

(
Xi

k/k−1

))}
(44)

From Equations (43) and (44), the weight of i-th particle can be computed. Then, a
normalization procedure is performed by the following equation:

∼
w

i
k =

wi
k

n
∑

i=1
wi

k

(45)

5. Measurement Update

According to Equations (37) and (45), the measurement updated state based on Monte
Carlo theory can be computed as:

X̂k/k =
n

∑
i=1

wi
kX̂i

k/k−1 (46)

6. Resampling

In order to avoid the particle degradation phenomenon and make the whole tracking
process robust, the resampling method is adopted to generate new particles based on the
weights calculated by Equation (45). The principle of the resampling method is to duplicate
the more likely particles and cut off the less likely ones, which will lead to some same
particles in the new particle system [31]. Before performing the resampling process, the
following index needs to be computed:

N̂e f f =
1

n
∑

i=1

(
∼
w

i
)2 (47)

If N̂e f f is lower than the preset threshold, the resampling process needs to be per-

formed to generate new particles for the next tracking step as
{

X̂i
k

}
i=1,2···n

and the weights

of the new set of resampled particles are set to be as equally as 1
n .

7. Process noise online estimation
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The 1-st order momentum of the time-varying non-Gaussian noise at the current
tracking time can be updated online by the modified Sage-Husa online noise estimator as:

q̂k = (1− dk)q̂k−1 +
dk
n

n

∑
i=1

(
X̂k/k −Φk/k−1X̂i

k|k−1

)
(48)

8. Time propagation

The tracking time will be propagated to k + 1, and the APF will run into step (2) in
the (k + 1)-th tracking step by the new particle sets computed in step (6) until the whole
tracking period is completed. The pseudo-code is listed as Algorithm 1.

Three-dimensional passive underwater target tracking algorithm for the time-varying
non-Gaussian environment by distributed underwater buoys

Considering both the optimal topology design criterion by Section 3 and the de-
signed APF, the 3D passive underwater target tracking algorithm for the time-varying
non-Gaussian environment by distributed underwater buoys can be summarized by the
following steps as Algorithm 1:

Algorithm 1: 3D passive underwater target tracking algorithm for the time-varying
non-Gaussian environment by distributed underwater buoys

1. Optimal topology determination
1 Use every two out of three measurements from the buoys to form the observable measurements
sets as (1, 2), (1, 3) and (2, 3);
2 Calculate the accuracy index Tacc of every topology of the distributed buoys by Equation (14);
3 Calculate the robust index Tob of every topology of the distributed buoys by Equation (18);
4 Use the results from step 1 and 2 to calculate the overall index Tall by Equation (19);
5 With the preset index α, determine the optimal topology of the distributed underwater buoys of
tracking time k by Equation (20).
2. Tracking the underwater uncooperative target by APF under the time-varying
non-Gaussian environment
1 Based on the determined sets of measurements at tracking time k, initialize the first step
particles and the relative weights;
2 Particles are time-updated by Equation (37);
3 Online noise estimation by Equation (39);
4 New weights are calculated by Equation (45);
5 Resampling procedure are checked and performed by Equation (47) and resampling method
introduced by ref. [31];
6 Estimate the current process noise by Equation (48);
7 Time propagation to run the whole algorithm at tracking time k + 1.

5. Simulations and Discussions
5.1. Simulation Scenario

In this section, comprehensive simulations are made to verify the proposed 3D under-
water uncooperative target passive tracking algorithm. In addition, by setting the reference
coordination, the coordinates of every buoy of the distributed system and the target are
represented in the reference coordination. The detailed configuration of the distributed
buoys is set out in Table 1. In this paper, we assume that all the underwater buoys have the
same sensing and communication range, and can perform the proposed algorithm.

Table 1. Detailed configuration of the distributed buoys.

Buoy Number Coordinate

1 (x1, y1, z1) = (0, 600, 50)
2 (x2, y2, z2) = (600, 0, 50)
3 (x3, y3, z3) = (0, 0, 20)
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In the simulations, the underwater target is supposed to perform in the CV motion
mode with the actual initial state as X0 =

[
3000 3000 100 4 −3 0

]
. In addition,

the initial guesses and the relative covariance of the algorithm is set as
X̂0 =

[
0 0 0 0 0 0

]
and P0= diag

(
10000 10000 10000 1000 1000 100

)
,

respectively. The time-varying non-Gaussian process noise is modeled as:

Wk =
[

0 0 0 wvx wvy wvz
]T (49)

with
wvi = wvi,1 + vvi,2.

wvi,2 = ew(i = x, y, z)
(50)

where wvi,1 is the zero-mean Gaussian white noise with the variance matrix of

E
(

wvi,1wT
vi,1

)
= 0.01. In addition, ew is the zero-mean Gaussian white noise with the

variance matrix of E
(
eweT

w
)
= 0.01.

It is also assumed that all the underwater buoys have the same stochastic process of
the time-varying non-Gaussian measurement noise and can be modeled as:

Vi,k =
[

vθ vϕ

]T (51)

with:
vθ = vθ,1 + vθ,2.

vθ,2 = eθ
(52)

and
vϕ = vϕ,1 + vϕ,2.

vϕ = eϕ
(53)

where vθ,1 and vϕ,1 are the zero-mean Gaussian white noises with the variance matrix of

E
(

vζ,1vT
ζ,1

)
= 0.25(ζ = θ, ϕ). Furthermore, eθ and eϕ are the zero-mean Gaussian white

noise with the variance matrix of E
(
eieT

i
)
= 0.01(i = θ, ϕ).

All the simulations in this paper are performed using MATLAB R2019b on the com-
puter with the Microsoft Windows 10 system and the computer is configured with Intel(R)
Core (TM) i7-9700k CPU @3.2 GHz. The simulation results are the average of 50 Monte
Carlo experiments with the particle number of 2000 for every simulation. According to
ref. [13], the total simulation time is set as 60 s with a 1 s measurement interval. In order to
evaluate the performance of the proposed algorithm, the root mean square error (RMSE) for
locations and velocities of the underwater uncooperative target are adopted, respectively,
which can be represented as:

RMSEl =

√
1
N

N
∑

i=1

(
∆x2

k + ∆y2
k + ∆z2

k
)

RMSEv =

√
1
N

N
∑

i=1

(
∆v2

xk + ∆v2
yk + ∆v2

zk

) (54)

with
∆xk = xk − xk
∆yk = xk − yk
∆zk = zk − zk

(55)

and
∆vxk = vxk − vxk
∆vyk = vyk − vyk

∆vzk = vzk − vzk

(56)

where N is the total number of the Monte Carlo trials,
(

xk yk zk
)

and
(

xk yk zk
)

are the real and estimated locations of the underwater target, respectively, along with
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(
vxk vyk vzk

)
and

(
vxk vyk vzk

)
are the real and estimated velocities of the under-

water target, respectively.

5.2. Optimal Topology Design Algorithm Verification

In this subsection, the optimal topology design algorithm proposed by Section 3 is
tested by the APF tracking algorithm. Figures 2–4 show the simulation tracking results of
each state by different topology of the distributed underwater buoys, namely (1, 2), (1, 3),
and (2, 3), and the online optimal topology is determined by Equation (20), respectively.
The RMSEl and RMSEv for the estimating results of different topologies are listed in
Table 2. From the simulation results, all the topologies can make converged estimations of
the underwater uncooperative target, but the accuracies are different under the specific
topology. From Table 2, the RMSEl and RMSEv of the proposed online optimal topology
adjustment method have the lowest values. The accuracies of the RMSEl and RMSEv of
the online topology adjustment method are 15.48 m and 1.52 m/s, respectively, which is
80.4% and 91.7% higher than the worst estimating results by the fixed topology of buoys
as (1, 2). It should be noted that the estimation errors of the velocities are much higher
than their actual values. This phenomenon occurs because the target is performing in a
such low speed which is lower than the lowest location-estimating accuracy. Under this
circumstance, the estimations of the velocities can only provide a convergence and more
meaningful estimations of the location of the target. Nevertheless, for a slow-moving
underwater uncooperative target, the locations are of a higher interest to the observer.
Therefore, the idea that better estimations of the velocities lead to superior estimations of
the locations of the target still has vital importance. The results prove that the estimations
made by the proposed online optimal topology design method has the highest accuracy
than the fixed ones, which shows the effectiveness of the proposed optimal topology
design algorithm.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 19 
 

 

this circumstance, the estimations of the velocities can only provide a convergence and 
more meaningful estimations of the location of the target. Nevertheless, for a slow-moving 
underwater uncooperative target, the locations are of a higher interest to the observer. 
Therefore, the idea that better estimations of the velocities lead to superior estimations of 
the locations of the target still has vital importance. The results prove that the estimations 
made by the proposed online optimal topology design method has the highest accuracy 
than the fixed ones, which shows the effectiveness of the proposed optimal topology de-
sign algorithm. 

  
(a) (b) 

Figure 2. (a) Error of x  by different topologies of buoys; (b) Error of y  by different topologies of buoys. 

  
(a) (b) 

Figure 3. (a) Error of z  by different topologies of buoys; (b) Error of xv  by different topologies of buoys. 

  
(a) (b) 

Figure 4. (a) Error of yv  by different topologies of buoys; (b) Error of zv  by different topologies of buoys. 

  

Figure 2. (a) Error of x by different topologies of buoys; (b) Error of y by different topologies of buoys.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 19 
 

 

this circumstance, the estimations of the velocities can only provide a convergence and 
more meaningful estimations of the location of the target. Nevertheless, for a slow-moving 
underwater uncooperative target, the locations are of a higher interest to the observer. 
Therefore, the idea that better estimations of the velocities lead to superior estimations of 
the locations of the target still has vital importance. The results prove that the estimations 
made by the proposed online optimal topology design method has the highest accuracy 
than the fixed ones, which shows the effectiveness of the proposed optimal topology de-
sign algorithm. 

  
(a) (b) 

Figure 2. (a) Error of x  by different topologies of buoys; (b) Error of y  by different topologies of buoys. 

  
(a) (b) 

Figure 3. (a) Error of z  by different topologies of buoys; (b) Error of xv  by different topologies of buoys. 

  
(a) (b) 

Figure 4. (a) Error of yv  by different topologies of buoys; (b) Error of zv  by different topologies of buoys. 

  

Figure 3. (a) Error of z by different topologies of buoys; (b) Error of vx by different topologies of buoys.



Entropy 2021, 23, 902 15 of 19

Entropy 2021, 23, x FOR PEER REVIEW 15 of 19 
 

 

this circumstance, the estimations of the velocities can only provide a convergence and 
more meaningful estimations of the location of the target. Nevertheless, for a slow-moving 
underwater uncooperative target, the locations are of a higher interest to the observer. 
Therefore, the idea that better estimations of the velocities lead to superior estimations of 
the locations of the target still has vital importance. The results prove that the estimations 
made by the proposed online optimal topology design method has the highest accuracy 
than the fixed ones, which shows the effectiveness of the proposed optimal topology de-
sign algorithm. 

  
(a) (b) 

Figure 2. (a) Error of x  by different topologies of buoys; (b) Error of y  by different topologies of buoys. 

  
(a) (b) 

Figure 3. (a) Error of z  by different topologies of buoys; (b) Error of xv  by different topologies of buoys. 

  
(a) (b) 

Figure 4. (a) Error of yv  by different topologies of buoys; (b) Error of zv  by different topologies of buoys. 

  

Figure 4. (a) Error of vy by different topologies of buoys; (b) Error of vz by different topologies of buoys.

Table 2. The RMSEl and RMSEv for different topologies.

RMSEl (m) RMSEv(m/s)

(1, 2) 79.1 18.41
(1, 3) 52.28 10.53
(2, 3) 36.97 12.48

Optimal topology 15.48 1.52

5.3. APF Verification

In the subsection, the APF algorithm proposed by Section 4 is tested and compared
to the adaptive extended Kalman filter (AEKF) that combined the modified Sage-Husa
online noise estimating technique and the EKF, as described in ref. [19], and the traditional
PF tracking algorithm, as described in ref. [24], under the same simulation environment.
Figures 5–7 show the simulation tracking results of every state by the proposed APF,
AEKF, and the traditional PF by the same optimal topology design method. In addition, the
RMSEl and RMSEv for the proposed APF, AEKF, and the traditional PF are listed in Table 3.
Since the APF can calculate the non-Gaussian time-varying noise online, the results are
more accurate than the ones made by the traditional PF. In addition, the linearization errors
give the AEKF the worst estimating accuracy. From the simulation results, the modified
Sage-Husa adaptive technique can make reliable online noise estimation, which further
makes the final tracking accuracy higher. In addition, the PF technique can overcome the
drawbacks caused by the system nonlinearities.
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Table 3. The RMSEl and RMSEv for APF, AEKF and traditional PF.

RMSEl (m) RMSEv (m/s)

APF 15.48 1.52
PF 211.5 9.18

AEKF 230.5 13.31

From the simulation results, the estimating accuracies are enhanced by 92.4% and
83.4% by the proposed APF for RMSEl and RMSEv, respectively, when compared to the
traditional PF. In addition, it can be found from the simulation results that the convergence
time of the APF is much faster than the one of the traditional PF. As a result, the superior
performance of the proposed APF is verified by the simulation results.

The computational complexity of the APF, AEKF, and traditional PF are shown in
Figure 8 by representing their one-step processing time. It can be found that the APF and
PF have similar one-step processing times since the PF process has the most computational
complexity. Although AEKF is easy to operate and has the least computational load, its
off-line Jacobian matrix calculation efforts and low tracking accuracy under high nonlinear
environments make it the least favorable one to use in our situation.
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6. Conclusions

The 3D passive tracking of the underwater uncooperative target using distributed
underwater buoys for a time-varying non-Gaussian environment is studied in this paper.
Firstly, for the sake of accurate tracking and minimum underwater acoustic resource uti-
lization, the optimal topology of the distributed underwater buoys system is designed
based on both accuracy theory and observability analysis. Then, based on the determined
optimal topology of the distributed underwater buoys at current tracking time, an APF is
proposed to tackle the nonlinear underwater target tracking problem with time-varying
non-Gaussian noise. From the simulation results, the following conclusions can be drawn.
Firstly, the optimal topology design method introduced by this paper can select proper
sets of buoys dynamically and can provide the best estimations among all the possible
configurations of the distributed buoys. Secondly, by adopting the online noise estimation
technique, the APF has significantly higher accuracies compared to the AEKF and the tradi-
tional PF with very little extra computational load. It is believed that the APF proposed by
this paper has great potential in real-time 3D underwater target passive tracking missions.
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