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INTRODUCTION 
 

Osteosarcoma (OS), a common primary bone 

malignancy, tends to metastasize [1]. Between 1973 and 

2012, the overall incidence rate of OS was 4.5 per 

million in the United States [2]. According to statistics 

reported in the United States from 2007 to 2013, the 

five-year relative survival rates of OS patients were 

69.8% and 65.5% in the ages from birth to 14 years and 

15 to 19 years, respectively [3]. Currently, new OS cases 

are administered neoadjuvant chemotherapy and surgery 

to remove the primary and overt metastatic tumors, with 

postoperative adjuvant chemotherapy; this has resulted 

in increased overall survival in OS [4]. However, drug 

resistance has worsened patient prognosis. Therefore, it 

is important to develop additional efficient therapeutics 

to improve survival in OS. 

 

As an emerging treatment, immunotherapy has shown 

promising results for some cancers, including hepato-
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ABSTRACT 
 

This work aimed to investigate tumor-infiltrating immune cells (TIICs) and immune-associated genes in the 
tumor microenvironment of osteosarcoma. An algorithm known as ESTIMATE was applied for immune score 
assessment, and osteosarcoma cases were assigned to the high and low immune score groups. Immune-
associated genes between these groups were compared, and an optimal immune‐related risk model was built 
by Cox regression analyses. The deconvolution algorithm (referred to as CIBERSORT) was applied to assess 22 
TIICs for their amounts in the osteosarcoma microenvironment. Osteosarcoma cases with high immune score 
had significantly improved outcome (P<0.01). The proportions of naive B cells and M0 macrophages were 
significantly lower in high immune score tissues compared with the low immune score group (P<0.05), while 
the amounts of M1 macrophages, M2 macrophages, and resting dendritic cells were significantly higher 
(P<0.05). Important immune-associated genes were determined to generate a prognostic model by Cox 
regression analysis. Interestingly, cases with high risk score had poor outcome (P<0.01). The areas under the 
curve (AUC) for the risk model in predicting 1, 3 and 5-year survival were 0.634, 0.781, and 0.809, respectively. 
Gene set enrichment analysis suggested immunosuppression in high-risk osteosarcoma patients, in association 
with poor outcome. 

mailto:zhangxiaoyun520@126.com


www.aging-us.com 3487 AGING 

cellular carcinoma and breast cancer [5, 6]. The tumor 

microenvironment (TME), a mixture that consists of 

mesenchymal cells, tumor-infiltrating immune cells 

(TIICs), endothelial cells, extracellular matrix 

molecules and inflammatory mediators [7], provides all 

metabolites and factors for controlling proliferation, 

dissemination, dormancy, and drug resistance in OS 

cells [8]. It was suggested that the TME plays a critical 

role in OS development [9]. In the TME, TIICs 

constitute the major type of non-tumor components 

reported to be valuable for prognostic assessment in OS 

[10]. Thus, improving immunotherapy efficacy in OS 

by systematically assessing the TME’s immune 

properties and determining TIIC distribution and 

functions is of prime importance. 

 

An algorithm has been developed to predict the levels 

of TIICs using gene expression data from the cancer 

genome atlas (TCGA) (https://portal.gdc.cancer.gov/), 

and immune score could be calculated for predicting 

immune cell infiltration, by analyzing a specific gene 

expression signature of TIICs [11]. Recently, several 

studies have applied this algorithm to glioblastoma 

multiforme [12] and clear cell renal cell carcinoma 

[13], showing the feasibility of such big-data based 

algorithms, although the immune scores of OS cases 

from the TCGA database have not been investigated in 

detail. Moreover, Cell type Identification By 

Estimating Relative Subsets Of RNA Transcripts 

(CIBERSORT), can use the deconvolution technique to 

assess the levels of 22 TIICs in large amounts of 

heterogeneous samples [14]. CIBERSORT has been 

successfully applied for identifying TIIC landscapes 

and their associations with prognosis in colorectal, 

gastric and breast cancer [15–17]. 

 

To increase immunotherapy efficacy, determining 

immune-associated prognostic biomarkers is especially 

pivotal. Here, we calculated immune score of OS 

cohorts in the TCGA database by taking advantage of 

the algorithm, known as ESTIMATE, retrieved 

immune-associated differentially expressed genes 

(DEGs) in OS, and built a predictive risk model to 

estimate patient outcome. Importantly, we also 

evaluated the associations of the immune-related risk 

score with the levels of TIICs and immune pathways. 

 

RESULTS 
 

The immune score is tightly associated with overall 

survival in OS 
 

We first determined immune score of the normalized 

matrix data of 85 OS samples with complete clinical 

data by applying the ESTIMATE algorithm. Sub-

sequently, the OS cases were assigned to the high and 

low immune score groups respectively, according to 

the median value of immune scores. Kaplan-Meier 

curves revealed that the high immune score was 

significantly associated with improved outcome 

(P=0.002) (Figure 1). The five-year survival rates in 

cases with high and low immune score were 82.1% 

and 48.5%, respectively.  

 

Compositions of TIICs in OS patients with high and 

low immune score 
 

Of all OS samples, 38 and 43 with low and high 

immune score, respectively, were eligible based on 

CIBERSORT P<0.05. The two most common TIICs in 

OS tissues were macrophages and T lymphocytes, 

which accounted for more than 80% of all TIICs. 

Specifically, the proportions of naive B cells (Z=-3.014, 

P=0.003) and M0 macrophages (Z=-3.095, P=0.002) 

were significantly lower in high immune score tissues 

compared with the low immune score group, while the 

proportions of M1 macrophages (Z=-3.047, P=0.002), 

M2 macrophages (Z=-3.785, P<0.001) and resting 

dendritic cells (Z=-2.251, P=0.024) were significantly 

higher (Figure 2). Furthermore, the ratio of M1 

macrophages to total polarized macrophages (M1 and 

M2) showed no significant difference between high and 

low immune score tissues (Z=-1.427, P=0.154). 

Correlations among the 22 TIICs ranged from weak to 

moderate. Obviously, M0 macrophages showed highly 

negative correlations with M1 and M2 macrophages 

(Figure 3). 

 

Gene expression profiles in high and low immune 

score OS tissues 
 

Firstly, we compared 42 low and 43 high immune score 

OS samples of the normalized matrix data. Compared 

with the low immune score group, there were 607 

upregulated and 459 downregulated DEGs in the high 

immune score group (Figure 4A). Subsequently, we 

identified immune-related DEGs. Compared with the 

low immune score group, there were 177 upregulated 

DEGs and 14 downregulated immune-related DEGs in 

high immune score specimens (Figure 4B). 

 

Correlation of the immune-related risk score with 

overall survival 
 

Univariable Cox regression analysis revealed 34 

immune-related genes which were significantly 

associated with improved outcome (P<0.05) (Table 1). 

To assess multicollinearity among different covariates in 

the model, we excluded variables with variance inflation 

factor (VIF) >5 (Table 2). A total of 15 genes were 

excluded, while 19 were included in multivariate Cox 

regression analysis. Finally, a minimum Akaike 

https://portal.gdc.cancer.gov/
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information criterion (AIC) value of 210.64 was 

estimated by the R software to develop the optimal 

multivariate Cox regression model. The predictive 

model was then built with three genes, including 

peroxisome proliferator activated receptor gamma 

(PPARG), immunoglobulin heavy constant gamma 3 

(IGHG3), and pyruvate dehydrogenase kinase 1 (PDK1). 

Based on relative coefficients in multivariable Cox 

regression analysis, the following formula was obtained 

for the risk score: (-0.7728 * PPARG expression level) 

+ (-0.3620 * IGHG3 expression level) + (0.4210 * 

PDK1 expression level). The median value of risk 

scores was used as a cutoff to divide samples into two 

groups (Figure 5A). As shown in Figure 5B, the number 

 

 
 

Figure 1. Overall survival curves obtained by the Kaplan-Meier method indicate that the immune score is significantly 
associated with OS prognosis. Horizontal and vertical axes represent survival times and survival rates, respectively. Red and blue curves 
are samples with immune score higher and lower than the median value, respectively. Plus signs are censored values. Depicted P-values were 
obtained by the log rank test. OS, osteosarcoma. 
 

 
 

Figure 2. Violin plot comparing the proportions of TIICs between low and high immune score OS samples. Horizontal and 
vertical axes respectively represent TIICs and relative percentages. Blue and red colors represent low and high immune score OS samples, 
respectively. Data were assessed by the Wilcoxon rank-sum test. *P<0.05, **P<0.01, ***P<0.001. NS, no significance; TIICs, tumor-infiltrating 
immune cells; OS, osteosarcoma; NK, natural killer. 
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of deaths was significantly higher while overall survival 

was shorter in high-risk cases compared with the low-

risk group. Furthermore, in comparison with the low-

risk group, high-risk cases had lower expression levels 

of IGHG3 and PPARG, and higher PDK1 amounts 

(Figure 5C). High risk score was significantly 

associated with poor outcome (P<0.01), revealing this 

score as a good predictive tool (Figure 6). The five-year 

survival rates of high and low risk score cases were 

45.4% and 83.8%, respectively. Moreover, the areas 

under the curve (AUC) for the risk model in predicting 

1, 3 and 5-year survival were 0.634, 0.781, and 0.809, 

respectively (Figure 7A–7C). 

 

Correlation of the immune-related risk score with 

the proportions of TIICs 
 

As shown in Table 3, the risk score was positively 

correlated with the proportions of memory B cells 

(r=0.252, P<0.05), M0 macrophages (r=0.305, P<0.01) 

and resting dendritic cells (r=0.246, P<0.05), and 

negatively correlated with those of gamma delta T cells 

(r=-0.245, P<0.05) and M2 macrophages (r=-0.244, 

P<0.05). 

The immune related risk score predicts the 

involvement of immune pathways 

 

Two immune gene sets, including M19817 (immune 

response) and M13664 (immune system process), were 

retrieved from the Molecular Signatures Database v4.0 

(http://software.broadinstitute.org/gsea/downloads.jsp). 

As shown in Figure 8A, 8B by gene set enrichment 

analysis (GSEA), both immune response and immune 

system process gene sets were significantly enriched in 

the low-risk group (P<0.001). 

 

DISCUSSION 
 

As is calculated by the ESTIMATE algorithm, it is well 

admitted that elevated immune score is significantly 

correlated with poor prognosis in clear cell renal cell 

cancer patients [13]. This aroused our interest in 

exploring a potential association of immune score with 

survival in OS patients. To the best of our knowledge, 

this is the first study building an immune-related risk 

model to predict outcome in patients with OS by mining 

the TCGA database. In the present study, we firstly 

 

 
 

Figure 3. Correlation matrix of all 22 TIICs proportions. Horizontal and vertical axes both represent TIICs. TIICs with higher, lower, and 
same correlation levels are shown in red, blue, and white, respectively. TIIC, tumor-infiltrating immune cell. 

http://software.broadinstitute.org/gsea/downloads.jsp
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evaluated approximate proportions of TIICs in OS 

TME, calculating immune score by applying the 

ESTIMATE algorithm. Importantly, a high correlation 

was found between the immune score and overall 

survival in OS patients. It has been demonstrated that 

TIICs are significantly relevant to the progression and 

prognosis of OS [18]. In order to explore specific 

differences in the proportions of TIICs, OS cases were 

assigned to the high and low immune score groups. 

Then, the types of TIICs were assessed in both groups 

of OS tissues with CIBERSOTR. Subsequently, 

immune-related DEGs were screened between high and 

low immune score OS tissues, and an optimal immune-

related risk model was built by univariate and 

multivariate Cox regression analyses. In this model, 

high risk score, calculated by the expression levels of 

three immune-related DEGs, was associated with poor 

outcome. Moreover, of these three genes, PDK1 

overlapped with the gene signatures found on the 

CIBERSORT platform, which implied that immune-

related risk score and the proportions of TIICs may be 

somehow associated. Fortunately, correlations of the 

risk score with the proportions of 5 TIICs were 

determined in this study. Finally, we applied GSEA to 

assess the associations of immune pathways with the 

determined risk score. 

 

It has been reported that tumor-associated macrophages 

(TAMs) and T-lymphocytes are the main components 

of the immune environment in OS [19], in agreement 

with the above results. We found that OS cases with 

elevated immune cell infiltration in the micro-

environment had better prognosis. Compared with low 

immune score cases, patients with high immune score 

showed markedly decreased levels of M0 macrophages 

and significantly increased amounts of M1 and M2 

macrophages, especially M2 macrophages. Furthe-

rmore, the risk score was negatively correlated with the 

proportions of M1 and M2 macrophages, and positively 

correlated with the proportion of M0 macrophages, 

suggesting that the polarization level of M0 to M1 or 

M2 macrophages may be associated with improved 

outcome in OS patients. In preclinical models of OS, 

M2-TAMs are associated with increased tumor growth, 

metastatic dissemination and vascularization [18]. 

Excitingly, contrary to findings reported for other solid 

tumors, such as gastric cancer [15], lung adeno-

carcinoma [20], and colon cancer [21], studies by Anne 

Gomez-Brouchet et al. [22] indicated that the presence 

of CD163-positive M2-polarized macrophages is 

essential for inhibiting OS progression, which 

represents an important discovery. However, Buddingh 

et al. [23] described TAMs in OS as a heterogeneous 

cell population with both M2 pro-tumor and M1 anti-

tumor characteristics. Interestingly, Cristiana Guiducci 

et al. [24] reported the plasticity of TAMs, with CpG 

combined with anti-interleukin-10 receptor antibodies 

readily switching them from M2 to M1. Recently, 

switching TAMs from M2 to M1 has been suggested for 

developing novel treatments [25]. It has been

 

 
 

Figure 4. Gene expression profiles in high and low immune score OS samples. (A) Heat map of DEGs based on immune score in OS 
samples. (B) Heat map of immune-related DEGs based on immune score in OS samples. Horizontal and vertical axes represent OS samples 
and genes, respectively. Genes with higher, lower, and same expression levels are shown in red, green, and black, respectively. Color bars on 
top of the heat map represent sample types, with blue and pink indicating low and high immune score samples, respectively. DEGs, 
differentially expressed genes; OS, osteosarcoma. 
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Table 1. Univariate and multivariate regression analyses of prognostic factors for overall survival. 

Variables Categories 
Univariate COX analysis Multivariate COX analysis 

HR(95% CI) P-value HR(95% CI) P-value 

PPARG High/low 0.456(0.287, 0.723) 0.001 0.462(0.281, 0.760) 0.002 

IGHG3 High/low 0.619(0.397, 0.965) 0.034 0.696(0.467, 1.038) 0.075 

PDK1 High/low 2.115(1.386, 3.227) 0.001 1.523(0.982, 2.363) 0.060 

CD209 High/low 0.575(0.366, 0.902) 0.016   

CCL8 High/low 0.519(0.299, 0.900) 0.020   

TLR2 High/low 0.507(0.295, 0.871) 0.014   

TLR7 High/low 0.459(0.221, 0.951) 0.036   

TLR8 High/low 0.221(0.052, 0.944) 0.042   

GRN High/low 0.589(0.393, 0.882) 0.010   

TLR1 High/low 0.463(0.214, 0.999) 0.050   

MSR1 High/low 0.635(0.418, 0.965) 0.033   

SLC11A1 High/low 0.463(0.221, 0.970) 0.041   

CD14 High/low 0.774(0.601, 0.997) 0.048   

HMOX1 High/low 0.736(0.556, 0.974) 0.032   

CCL2 High/low 0.580(0.389, 0.866) 0.008   

IL10 High/low 0.186(0.041, 0.845) 0.029   

FCER1G High/low 0.719(0.555, 0.931) 0.012   

HCK High/low 0.656(0.436, 0.988) 0.044   

VAV1 High/low 0.470(0.257, 0.859) 0.014   

CARD11 High/low 0.349(0.133, 0.915) 0.032   

PIK3R5 High/low 0.318(0.135, 0.749) 0.009   

LILRB3 High/low 0.295(0.100, 0.875) 0.028   

FCGR2B High/low 0.315(0.121, 0.822) 0.018   

IGHG2 High/low 0.675(0.471, 0.968) 0.032   

IGLC2 High/low 0.728(0.542, 0.978) 0.035   

FPR1 High/low 0.450(0.249, 0.812) 0.008   

TNFSF8 High/low 0.223(0.079, 0.625) 0.004   

C3AR1 High/low 0.610(0.419, 0.888) 0.010   

CSF3R High/low 0.360(0.152, 0.856) 0.021   

IL2RA High/low 0.215(0.068, 0.679) 0.009   

IL2RG High/low 0.617(0.392, 0.973) 0.038   

LCP2 High/low 0.534(0.307, 0.929) 0.026   

PRF1 High/low 0.544(0.296, 0.998) 0.049   

PTPRC High/low 0.621(0.392, 0.985) 0.043   
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Table 2. Variable filtration by multicollinearity diagnostics. 

Variables 

Unstandardized 

coefficients 

Standardized 

coefficients t Sig. 
Collinearity statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 2.116 1.894  1.117 0.268   

CD209 -0.494 0.689 -0.158 -0.718 0.475 0.255 3.916 

TLR2 -0.189 0.820 -0.046 -0.230 0.819 0.314 3.182 

TLR1 0.722 1.165 0.121 0.619 0.538 0.323 3.093 

SLC11A1 0.391 1.193 0.077 0.328 0.744 0.224 4.460 

HMOX1 0.342 0.335 0.169 1.020 0.311 0.450 2.224 

CCL2 0.448 0.469 0.182 0.953 0.344 0.336 2.980 

IL10 -0.247 1.559 -0.030 -0.158 0.875 0.352 2.844 

PPARG 1.219 0.487 0.365 2.505 0.015 0.579 1.727 

HCK -0.039 0.777 -0.011 -0.050 0.960 0.250 4.007 

LILRB3 -2.311 1.651 -0.325 -1.400 0.166 0.227 4.396 

FCGR2B 0.336 1.065 0.059 0.316 0.753 0.350 2.859 

IGHG3 -0.124 0.300 -0.058 -0.414 0.680 0.621 1.611 

FPR1 0.351 0.810 0.093 0.433 0.666 0.267 3.742 

CSF3R -1.273 1.297 -0.209 -0.982 0.330 0.271 3.684 

IL2RA -0.403 1.125 -0.067 -0.358 0.721 0.346 2.890 

IL2RG 0.610 0.608 0.198 1.002 0.320 0.315 3.175 

PRF1 -0.172 0.691 -0.047 -0.248 0.805 0.349 2.868 

PTPRC -0.330 0.837 -0.091 -0.394 0.695 0.233 4.291 

PDK1 -0.362 0.602 -0.084 -0.601 0.550 0.635 1.575 

 

demonstrated that all-trans retinoic acid suppresses 

pulmonary metastasis of OS cells by inhibiting M2-

like TAMs [26], which may lead to clinical 

application in metastatic OS. Based on the above 

findings, we further analyzed the balance between M1 

and M2 macrophages in OS tissues. The ratio of M1 

macrophages to total polarized macrophages (M1 and 

M2) was only slightly elevated in the high immune 

score group (6.040%) compared with the low immune 

score group (4.741%), but this difference was not 

statistically significant. Therefore, we speculated that 

small changes in the balance of polarized 

macrophages may be an important factor affecting the 

prognosis of OS patients. 

 

In this study, the proportion of resting dendritic cells 

in high immune score tissues was significantly higher 

than that of the low score group. Moreover, the risk 

score was positively correlated with the proportion of 

resting dendritic cells, implying that the activation 

level of dendritic cells may be associated with 

improved outcome in OS patients. Masanori Kawano 

et al. [27] reported that combining agonist anti-

glucocorticoid-induced tumor necrosis factor receptor 

(GITR) antibodies with tumor lysate-pulsed dendritic 

cells reduces the amounts of immunosuppressive 

cytokines in OS tissues as well as serum. 

Furthermore, it has been confirmed that pulsing of 

dendritic cells with LM8 cell lysate, derived from OS, 

efficiently enhances CD4+ and CD8+ T cell 

proliferation and decreases serum interleukin-4 [28]. 

While assessing synergistic effects with chemo-

therapy, it was found that combining doxorubicin, 

which induces immunogenic cell death, with resting 

dendritic cells boosts systemic immune reactions, 

leading to OS inhibition in mouse models [29]. 

Currently, the dendritic cell-based vaccine, a form of 

active specific immunotherapy, is considered to 

confer a possible overall survival advantage in 

children with cancer, similar to findings in adults 
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[30]. The most promising clinical effects were 

observed in cases with limited disease or complete 

response, in whom the complete response state could 

be maintained upon dendritic cell-vaccination, 

preventing the tumor from recurring. Conversely, 

dendritic cell-vaccination shows reduced effects in 

cases with progressive disease or elevated residual 

tumor load, most likely for the extremely high 

immunosuppressive burden of malignant cells, with 

insufficient time to produce appropriate antitumor 

immune reactions [31]. 

 

We screened differentially expressed immune-associated 

DEGs, and performed univariable and multivariable Cox 

analyses to generate a risk model for predicting the 

prognosis of OS patients. Three DEGs were used to 

construct the model. PPARG and IGHG3 are two 

protective immune-related DEGs, while PDK1 is a risk 

 

 
 

Figure 5. Associations of the risk score with the expression levels of three immune‐related genes included in the risk model. (A) 
Dot plot of risk score. Vertical and horizontal axes respectively represent risk score and OS samples, ranked by increasing risk score. Red and 
green colors represent high and low risk cases, respectively. (B) Dot plot of survival. Vertical and horizontal axes respectively represent survival 
times and OS samples, ranked by increasing risk score. Orange and purple colors represent dead and living OS cases, respectively. (C) Heat map of 
the expression levels of the three genes. Vertical and horizontal axes respectively represent genes and OS samples, ranked by increasing risk 
score. Genes with higher, lower, and same expression levels are shown in red, green, and black, respectively. Color bars at the bottom of the heat 
map represent sample types, with pink and blue indicating low and high risk score samples, respectively. OS, osteosarcoma. 
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Figure 6. Overall survival curves obtained by the Kaplan-Meier method indicate that the risk score is significantly associated 
with OS prognosis. Horizontal and vertical axes represent survival times and rates, respectively. Red and blue curves are samples with risk 
score higher and lower than the median value, respectively. Plus signs indicate censored values. Depicted P-values were obtained by the 
logrank test. OS, osteosarcoma. 

 

 
 

Figure 7. Survival prediction based on the risk score, determined by time‐dependent ROC curve. Horizontal and vertical axes are 
false positive and true positive rates, respectively. The AUC values for the risk model in predicting the 1-year (A) 3-year (B) and 5-year (C) 
survival were 0.634, 0.781, and 0.809, respectively. ROC, receiver operating characteristic; AUC, area under the curve. 
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Table 3. Spearman rank analysis to determine the association between risk score and the levels of 22 TIICs in OS 
tissues. 

Tumor-infiltrating immune cell 
Risk score 

Correlation coefficient P-value 

B cells memory 0.252 0.023 

B cells naive 0.090 0.425 

Dendritic cells activated 0.093 0.408 

Dendritic cells resting 0.246 0.027 

Eosinophils -0.062 0.580 

Macrophages M0 0.305 0.006 

Macrophages M1 -0.215 0.054 

Macrophages M2 -0.244 0.028 

Mast cells activated -0.028 0.805 

Mast cells resting 0.010 0.927 

Monocytes -0.053 0.638 

Neutrophils -0.097 0.390 

NK cells activated -0.041 0.715 

NK cells resting 0.130 0.248 

Plasma cells -0.129 0.251 

T cells CD4 memory activated -0.149 0.185 

T cells CD4 memory resting 0.057 0.612 

T cells CD4 naive -0.010 0.927 

T cells CD8 -0.153 0.172 

T cells follicular helper -0.004 0.968 

T cells gamma delta -0.245 0.027 

T cells regulatory (Tregs) -0.086 0.448 

 

immune-related DEG. The AUC values for the risk model 

in predicting 1, 3 and 5-year survival were 0.634, 0.781, 

and 0.809, which indicates a good capability for 

predicting survival in OS patients of the three-gene 

combination. Cases were assigned to the high- and low-

risk groups based on the median risk score. More than 

40% of high-risk cases died within three years of 

diagnosis, while less than 14% died in the low-risk 

group. Therefore, extremely frequent follow-up and 

more aggressive treatments should be applied in the 

high-risk group. Finally, GSEA further confirmed the 

close connection of the risk signature with immune 

pathways. As shown above, immune response and 

immune system process gene sets were significantly 

enriched in the low-risk group, which suggests that 

immunosuppression may exist in high-risk OS patients, 

and is associated with poor outcome. 

PPARG is a ligand-activated transcription factor, 

belonging to the nuclear hormone receptor family [32]. 

Accumulating evidence confirms that activation of 

PPARG could confer inhibitory effects on tumors. A 

meta-analysis identified an association of PPARG c.1347 

C > T polymorphism with elevated risk of developing 

malignancies such as glioblastoma and esophageal cancer 

[33]. In clear cell renal cell cancer, PPARG suppresses 

cell migration and proliferation and induces apoptosis by 

inhibiting SIX homeobox 2 [34]. Sabatino et al. [35] 

reported that ring finger domains 1 regulates PPARG 

negatively and is associated with higher clonogenic, 

proliferative and migratory potential in colorectal cancer. 

These findings suggest that PPARG might also represent 

a tumor suppressor gene in OS. In addition, it has been 

demonstrated that PPARG is a direct target of miR-27a by 

luciferase reporter assays [36]. Analysis of differentially 



www.aging-us.com 3496 AGING 

expressed miRNAs and their target genes in OS samples 

showed that miR-324-5p targets PPARG [37], which 

needs to be verified in future experiments. Furthermore, 

PPARG expression is independently associated with 

prolonged survival in colorectal cancer, as demonstrated 

in two separate prospective cohorts [38], corroborating the 

findings of the present study in OS patients. 

 

IGHG3 is a member of the immunoglobulin G family 

[39]. Several studies indicated that IGHG3 is over-

expressed in multiple cancer types, such as prostate, 

breast, and lung cancers, which can differentiate tumor 

from normal tissues [40–42]. Hsu et al. [39] suggested 

that IGHG3 expression is tightly associated with 

improved outcome in breast cancer, which is consistent 

with our findings in OS. The relationship between 

IGHG3 expression and OS progression deserves further 

attention. 

 

PDK1 is a hypoxia-inducible factor-1α target anta-

gonizing pyruvate dehydrogenase (PDH), a pivotal rate-

limiting enzyme of the tricarboxylic acid cycle. In 

hypoxia, pyruvate transformation into acetyl-CoA is 

suppressed due to PDK1-dependent inhibition of PDH, 

reducing the amounts of glucose-derived pyruvate 

entering the tricarboxylic acid cycle [43, 44]. It was 

reported that PDK1 downregulation in metastatic breast 

cancer greatly alters the tumor cell capability to utilize 

glucose as an energy source for the mitochondria under 

hypoxic or limited glucose conditions. Moreover, for 

coping mechanisms against stress during metastasis, 

PDK1 mediates the adaptability of breast cancer cells 

metastasizing to the liver [45]. Meanwhile, Liu et al. 

[46] confirmed that downregulation of PDK1 could 

inhibit migration and metastasis in human breast cancer 

cells. In addition, overexpression of PDK1 has been 

reported in multiple myeloma [47], acute myeloid 

leukemia [48], breast cancer [49] and OS [50]. Li et al. 

[50] demonstrated that overexpression of PDK1 

promotes the proliferation of OS cells. More 

importantly, PDK1 is a direct target of miR-379, which 

functions as a tumor-inhibiting miRNA by targeting 

PDK1 in OS. Two novel PDK1 inhibitors were shown 

to concentration-dependently reduce the phospho-

rylation of the pyruvate dehydrogenase complex in MG-

63 OS cells, whose proliferation was inhibited as a 

result [51]. 

 

There were several limitations in this study. First, the 

number of OS tissue samples in the TCGA cohort was 

relatively small, which could lead to some bias. 

Secondly, the landscape differences of TIICs and 

immune-related DEGs between tumor and normal 

samples were not analyzed in the TCGA cohort because 

noncancerous samples were not included, and sampling 

normal bone tissue is subject to restriction in clinic to 

some extent. Thus, the present findings could only be 

applied to predict the prognosis of OS patients with 

definite diagnosis. Thirdly, because the clinical 

information in the database does not include the tumor 

 

 
 

Figure 8. GSEA of the risk score in OS. Both immune response and immune system process gene sets were enriched in the 
low-risk group. The horizontal axis represents genes of the immune response (A) and immune system process (B) gene sets, ranked by 
decreasing risk score. The vertical axis represents enrichment score. The enrichment score increased with the number of enriched genes and 
vice versa. ES, enrichment score; NES, normalized enrichment score. 
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stages of OS tissues, we could not perform subgroup 

analysis based on tumor stage. However, gene 

expression in OS tissues of different tumor stages may 

be different, and further research is warranted to address 

this issue. Finally, the present study performed no 

external validation based on other available databases; 

therefore, the current conclusion requires validation in 

future experiments. 

 

In summary, according to the ESTIMATE algorithm-

based immune score that was significantly correlated 

with improved outcome, 22 TIICs in OS TME were 

assessed for their levels. Then, a list of immune-related 

DEGs was extracted, and three such genes (PPARG, 

IGHG3, and PDK1) were included in a predictive risk 

model, which could assist clinicians in assessing the 

prognosis of OS patients and selecting appropriate 

targets for immunotherapy. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

The gene expression quantification data of 88 OS 

samples were of the HTSeq-FPKM type, and 

downloaded from TCGA (version 18.0) on August 17, 

2019. Updated clinical data related to these OS samples, 

such as age, gender, race, overall survival time and vital 

status, were also downloaded from the TARGET 

database (https://ocg.cancer.gov/programs/target) on 

August 17, 2019. In order to screen out the matrix data 

of mRNAs with gene properties, the gene expression 

profiles were compared with the human genome 

annotation GTF file, which was downloaded from the 

GenCode platform (https://www.gencodegenes.org/). 

Subsequently, the matrix data of the gene expression 

values was organized by the Perl software (version 

5.24.3) (https://www.perl.org/). 

 

Immune score determination for the OS 

microenvironment 
 

The matrix data of gene expression amounts were 

normalized with the limma package of the R software 

(version 3.5.2) [52]. Then, immune score was calculated 

by applying the ESTIMATE algorithm to the matrix 

data [11]. Furthermore, the OS cases were assigned to 

high- and low immune score groups based on the 

median value of immune scores, to identify a possible 

association of immune score with overall survival. 

 

Analysis of the relative proportions of TIICs in OS 

tissues 
 

TIICs in OS samples from the TCGA cohort were 

assessed by applying the CIBERSORT deconvolution 

algorithm. The gene expression signature matrix of 22 

TIICs was obtained from the CIBERSORT platform 

(https://cibersortx.stanford.edu). The matrix data of 

gene expression levels were compared with those of the 

signature matrix of 22 TIICs from the CIBERSORT 

platform to generate a proportion matrix for the 22 

TIICs in OS tissues of the high and low immune score 

groups using support vector regression [53]. By Monte 

Carlo sampling, the algorithm derives a P-value for the 

deconvolution of each sample, offering a measure of 

confidence for the obtained data. The results of the 

inferred proportions of TIICs assessed by CIBERSORT 

were considered to be accurate at a threshold of P<0.05 

[17]. Therefore, only samples with a CIBERSORT 

P<0.05 were deemed qualified for further analysis. 

Moreover, the number of permutations of the default 

signature matrix was set to 100. 

 

Analysis of immune-related DEGs in OS tissues 
 

To further examine the DEGs between low and high 

immune score OS samples of the TCGA cohort, the 

normalized matrix data of gene expression levels were 

analyzed with the limma package of the R software. 

Log fold change >1 or <-1 and adjusted P<0.05 were set 

as cut-offs for filtering DEGs. In addition, immune-

associated genes were retrieved from the ImmPort 

platform (https://www.immport.org/) [54], and used to 

identify immune-related DEGs for constructing 

predictive risk model. 

 

Statistical analysis 
 

Only samples with complete clinical data were included 

in survival analysis, and the logrank test was performed 

for comparing Kaplan-Meier curves between groups. 

Differences and correlations among TIICs were analyzed 

with the vioplot (https://cran.r-project.org/web/packages/ 

vioplot/index.html) and corrplot (https://cran.r-project. 

org/web/packages/corrplot/index.html) packages of the 

R software. The differential proportions of the 22 TIICs 

in the TCGA cohort were evaluated by the Wilcoxon 

rank-sum test. A heat map was generated using the 

pheatmap package of the R software (https://cran.r-

project.org/web/packages/pheatmap/index.html). The Cox 

proportional-hazards model was used for analyzing 

associations of the levels of immune-related DEGs with 

overall survival. Collinearity diagnostics was performed 

with the SPSS software (version 24.0) (SPSS, USA). 

The multicollinearity of each variable was estimated by 

calculating the VIF. A variable with VIF>5 was 

considered to show high collinearity [55], and would be 

excluded from multivariable Cox regression analysis. 

The optimal multivariable Cox regression model was 

selected according to the lowest AIC [56]. Coefficients 

for each covariate were determined by the multivariable 

https://ocg.cancer.gov/programs/target
https://www.gencodegenes.org/
https://www.perl.org/
https://cibersortx.stanford.edu/
https://www.immport.org/
https://cran.r-project.org/web/packages/vioplot/index.html
https://cran.r-project.org/web/packages/vioplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Cox regression model, and a total risk score was 

calculated. The specificity and sensitivity of survival 

prediction according to the determined risk score were 

obtained by time-dependent receiver operating 

characteristic (ROC) curves, with AUC values 

quantified with the survivalROC package (https://cran.r-

project.org/web/packages/survivalROC/index.html). Next, 

the association of the immune-related risk score with 

TIIC levels was assessed by spearman rank correlation 

using the R software. GSEA (http://www.broadinstitute. 

org/gsea/index.jsp) was carried out to evaluate 

associations of immune pathways with the immune-

related risk score using the GSEA software (version 

4.0.1) [57]. P< 0.05 indicated statistical significance. 

 

Abbreviation 
 

OS: osteosarcoma; TME: tumor microenvironment; TIIC: 

tumor-infiltrating immune cell; TCGA: The Cancer 

Genome Atlas; CIBERSORT: Cell type Identification By 

Estimating Relative Subsets Of known RNA Transcripts; 

DEG: differentially expressed gene; VIF: variance 

inflation factor; AIC: Akaike information criterion; ROC: 

receiver operating characteristic; AUC: area under the 

curve; GSEA: gene set enrichment analysis; NS: no 

significance; NK: natural killer; PPARG: peroxisome 

proliferator activated receptor gamma; IGHG3: 

immunoglobulin heavy constant gamma 3; PDK1: 

pyruvate dehydrogenase kinase 1; ES: enrichment score; 

NES: normalized enrichment score; TAM: tumor-

associated macrophage; PDH: pyruvate dehydrogenase 
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