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Abstract: Many workers are exposed to heat stress that can be exacerbated by the type of clothing
they wear. The resulted heat strain can lead to short or long-term heat-related disorders. This study
aimed to measure clothing properties of sugarcane field workers and evaluate the heat strain by
an international standard, predicted heat strain model (PHS). The clothing thermal insulation and
evaporative resistance values of sugarcane cutter and chemical sprayer outfits were acquired for
the whole body, body regions and specific body parts via thermal manikin measurements. The
detailed clothing insulation values of body parts can be utilized in advanced thermo-physiological
models, while in this study, the values for the whole body together with weather data were used
in PHS. Estimated duration limited exposure times (DLE) for an hour-by-hour prediction over a
workday and for a range of high humidity scenarios were calculated. Such evaluation tools can
be used for risk assessment and management to support organizational measures and prepare
equipment and materials in the case of hot weather events in order to avoid dehydration and other
heat-related disorders.

Keywords: heat stress; dehydration; protective clothing; sugarcane field workers; prevention;
clothing insulation; evaporative resistance; predicted heat strain; exposure evaluation; human
thermal modeling

1. Introduction

Agricultural jobs are very much dictated by season and climate. This type of work needs to be
done at specific times of the year and often these jobs are connected with warm or warm and wet
seasons. Jobs related to sugarcane production are no exception. Sugarcane production in some parts of
the world still requires heavy manual labor in a hot environment. Repeated heat exposure together
with insufficient water replacement has been related to chronic kidney disease of unknown etiology
(CKDu) [1,2]. CKDu is associated with a high mortality rate and has reached epidemic levels in several
tropical countries, including Latin America, e.g., Nicaragua, El Salvador, etc. According to Moran and
Gaffin [3] with reference to Knochel [4] and Knochel and Reed [5], heatstroke results in a 25% higher
risk of kidney failure. If heatstroke does indeed increase the risk of kidney failure, then long-term
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exposure that is close to heat tolerance limits may do so as well. Industrial sugarcane workers perform
difficult, strenuous work under hot environmental conditions. All measures to reduce heat stress
and improve the situation for these agricultural workers are needed. It is possible that clothing and
protective gear further exacerbate worker’s heat exposure, as clothing has a strong thermal impact
on humans. The insulation and evaporative resistance can have opposing effects on thermal balance:
the insulation effect can limit the radiant heat load, while the evaporative resistance impairs sweat
evaporation and thereby promotes heat storage. Additionally, body motion creating a pumping effect
in clothing at approximately similar workloads may allow lower thermal stress than in more static tasks
due to enhanced evaporation. In connection to the changing climate, the human thermo-physiological
and clothing models would allow making long-term impact predictions on humans based on climate
change models. In order to reduce protective clothing-induced stress, we need to know the thermal
performance of the available clothing items and other protective gear. The objectives of this study
were to:

(a) measure the insulation and evaporative resistance of the clothing used in the agricultural sector
for the sugar industry for two tasks—sugarcane harvesting and chemical spraying and-

(b) utilize the outcome in a predicted heat strain model (PHS) according to an international standard [6]
for allowed exposure time prediction and recommendations.

2. Materials and Methods

In order to meet the objectives, the study was split into two sections. The first part dealt with
measurements of clothing insulation and evaporative resistance. The second part utilized the acquired
clothing properties and available information on the working conditions to predict the heat stress in
selected conditions that may allow for preventive-measures planning.

2.1. Measurements of Clothing Properties

The thermal manikin Tore at Lund University, Sweden [7,8] was used for testing. Tested clothing
ensembles were acquired from Ingenio San Antonio, the largest sugar mill in Nicaragua, and are
currently worn by field workers (Figure 1). The sugarcane cutter (5C) outfit consisted of boxer shorts,
socks, jeans, synthetic long-armed shirt, cap with textile for neck protection, protective boots, eye
protection of metal mesh, glove on one hand and leg protection made of metal grid on one leg, with a
total weight of 2.8 kg. The chemical (pesticide) sprayer (CP) outfit consisted of boxer shorts, socks,
partially impermeable coveralls, impermeable apron covering front and back, protective gloves, cap,
respirator and protective boots, with a total weight of 4.1 kg.

(a) (b) (c) (d)

Figure 1. Tested clothing: (a) underwear for both systems (provided by the laboratory), (b) sugarcane
harvester’s outfit (glove only on one hand and leg protector on one leg), (c) chemical sprayer’s protective
coveralls on top of underwear and (d) chemical sprayer’s complete outfit with outer protective layers.
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2.1.1. Clothing Insulation

The clothing insulation was measured following the methods described in standards ISO 15831 [9]
and ISO 9920 [10] with some modifications. The tests were carried out at 20.0 = 0.1 °C with 0.21 = 0.08 m/s
air velocity in static (I1) and dynamic (I,, walking 90 steps/min, corresponding to the speed of about
3.5 km/h) conditions. Clothing basic insulation (I) for PHS predictions was calculated according
to the standards, considering air layer insulation (I;) and clothing area factor (f;). The latter was
acquired from a photographic method taking pictures of the garment ensembles and the nude manikin
from front and from the side [11]. For basic information for evaporative resistance calculations, the
insulation of the textile, simulated sweaty skin was also measured but only in static conditions. Air
layer insulation around the human body shape was measured with a nude manikin. Insulation was
measured with hair (wig) on the manikin’s head.

2.1.2. Evaporative Resistance

Total evaporative resistance (Ret) of the clothing sets and the wet textile skin was measured
following ASTM F2370-15 [12] at so-called isothermal conditions with the manikin surface and air
temperature being set to 34 °C and utilizing the heat-loss method for evaporative resistance calculations.
Evaporative resistances were measured without using a wig on the manikin’s head, and the air velocity
was kept at 0.54 = 0.09 m/s in order to avoid build-up of water vapor pressure in the air near the
manikin surface that could affect the evaporation. The evaporative resistance values were corrected for
differences in the manikin surface and textile skin based on heat loss according to Wang et al. [13].

2.1.3. Data Presentation

Each condition was tested twice. In order to utilize the insulation and evaporative resistance
values in advanced thermal models, insulation or evaporative resistance of individual body areas
are needed, as thermoregulatory responses (i.e., blood flow and sweating) are heterogeneous across
the body and not uniformed. Therefore, an average value for a clothing set does not allow proper
evaluation of localized discomfort, though simple and low-cost models, including the PHS, utilize an
average whole-body value for a complete clothing set. Therefore, the results are presented as average
values for individual zones, regional areas and an average whole-body value.

The insulation results are sorted by the percentage differences of air layer insulation in static as
compared to dynamic conditions. The evaporative resistance results are sorted by the magnitude of
difference between measured and corrected wet textile skin total evaporative resistance values.

2.2. Exposure Evaluation According to Predicted Heat Strain Model (PHS)

In spite of criticism on the PHS model [14-16], we considered that the PHS model is easily
available for everybody, has a low cost and has been validated in a wide range of hot conditions. If to
consider the limitations related to heavily insulating clothing [16] and repeated exposures [14,15], it
still gives a reasonably good prediction, that is very useful for planning a workday in advance and
preparing preventive measures against heat stress. Thus, a web tool based on PHS algorithms [6]
at http://www.eat.lth.se/fileadmin/eat/Termisk_miljoe/PHS/PHS. html was utilized for the exposure
evaluations. The programmer had access to ISO/FDIS 7933: 2004; however, it was verified that the DIS
version and final standard [6] were the same. Exposure characteristics were calculated as the limit
values based on the core temperature and water loss based on an hour-by-hour approach for one hot
day weather conditions (Ta = 18.6-36.4 °C, Tg = 20.5-52.1 °C; see Figure 2) for several activity level
combinations. Predictions were made for each hour conditions and did not reflect the physiological
status of the previous hour. Thus, the predictions for the morning period may overestimate the
duration limited exposure (DLE), while afternoon periods may underestimate it.
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Figure 2. Environmental parameters for one day (14 January 2015) in a sugarcane field in Nicaragua.

(a) Temperatures (°C): thw—natural wet bulb temperature, WBGT—wet bulb globe temperature index;

ta—air temperature, t;—temperature of a globe thermometer and t,—mean radiant temperature;

(b) humidity: RH—relative humidity (%) and p,—absolute humidity expressed as water vapor pressure

in the air (kPa). Average wind speed over the day was relatively stable around 2 m/s.

Additionally, a range of temperature conditions (Ta = 28-36 °C) was selected as a fictive pedagogical
example where each selected workload, in combination with the tested clothing, would show some
DLE for the core temperature. Thus, in this simulation, the selected temperatures were combined
with the same high constant relative humidity (70%). The whole range of set conditions would not be
relevant for specific agricultural activities. Instead, some of these may be relevant for specific process
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industries; for example, the paper industry, where some urgent tasks have to be carried out at high
temperatures and humidity, or the glass industry, where similar clothing (except for specific leg and
hand protections) may be used. The selected conditions with high temperatures and humidity may
also resemble the conditions in restaurant kitchens and laundries in warm countries [17].

From manikin tests, the clothing properties (basic insulation and evaporative resistance;
for methods, see Section 2.1) for both sets were were close to the limits of PHS requirements
(Iasc = 0.107 m? K/W, I cp = 0.177 m? K/W; Req sc = 13.2 m? Pa/W, Reei cp = 74 m? Pa/W). Clothing
properties and hourly sugarcane field weather data were used in the PHS tool to evaluate the heat stress
in the present conditions for one day (Figure 2). For the high humidity scenario, the wind speed (v,)
was kept 2 m/s as measured in the field today, while relative humidity (RH) was set to 70%, allowing
water vapor pressure in the air (p,) to change depending on air temperature. Additionally, the mean
radiant temperature (f;) 70 °C and alt. globe temperature (tg) 44 °C were kept constant for this scenario.
Estimated activity levels (200-300 W for CP and 250-350 W for SC) and other required parameters
were also entered into the PHS model. Activity levels were based on heart rate measures taken from
sugarcane workers in the field and estimated according to ISO 8996 [18], as well as from previous
measurements and estimations in the field [17]. The workers were assumed to be acclimated, and
drink was freely available. For predictions, some anthropometric parameters were taken as estimated
averages. It was also assumed that workers were frequently in a standing posture with an average
walking velocity (vw) of 0.5 m/s. Table 1 lists most of the input parameters; however, some parameters
are not listed, as they are mentioned in the text above or did change depending on other input data; for
example, water vapor pressure in the air was calculated by air humidity and air temperature.

Table 1. Input to predicted heat strain model (PHS) for the high humidity (RH = 70%) scenario.

Parameter SC cP
Acclimatization 1 1
Drink freely available 1 1

Body height 1.75 1.75

Body mass 70 70

Body surface area (calculated from mass and height, m?) 1.84 1.84
Posture: (1 = sitting, 2 = standing, 3 = crouching) 2 2

Air temperature 34 (28-36) 34 (28-36)
Air velocity 2.0 2.0
Metabolic energy production 250, 300, 350 200, 250, 300
Clothing basic insulation (1 clo = 0.155 m?2 K/W) 0.69 1.14

Static moisture permeability index(calculated from

. . . . 0.55 0.19
insulation and evaporative resistance)
Fraction covered by reflective clothing 0 0
Angle between wind and walking direction not used not used
Walking speed 0.5 0.5
Mechanical power 0 0

Note: SC—sugarcane cutter and CP—chemical sprayer outfits, respectively.

3. Results

3.1. Manikin Tests

Clothing area factors from the photographic method for SC and CP were 1.26 and 1.41, respectively.
Clothing total and total resultant insulation for different body parts, body regions and for the whole
ensembles (marked as “total”) values for the air layer, sweating skin and tested ensembles are given in
Table 2. Clothing total evaporative resistance for body parts, body regions and for the whole ensembles
are given in Table 3.



Int. |. Environ. Res. Public Health 2020, 17, 3074 6 of 12

Table 2. Total and total resultant insulation of the whole body, body regions and individual zones
(m2 K/W) with percentual differences between static (IT) and dynamic (I'1;) values.

Air Layer Textile Sugarcane Cutters Chemical Sprayers
It I  Diff . Diff Diff
B P kinT I I It/ I I It/

ody Parts (L) (=) (%) Sk I T /It (%) T Tr /It (%)
L.Hand 0.108 0.055 -48.7 0135 0.180 0114 063 -365 0181 0.123 068 -32.1
Hands 0.100 0.053 -475 0132 0.137 0.077 056 -44.0 0172 0115 067 -333
R.Hand 0.093 0.050 -465 0.129 0.109 0.057 052 —-479 0165 0.108 065 —3438
Feet 0.103 0.057 -447 0122 0.181 0.144 080 -20.0 0208 0.149 072 -281

Lower Arms 0.101 0.056 -442 0.142 0172 0105 061 =393 0259 0.165 064 -36.1
L.Lower leg 0.082 0051 -383 0111 0.168 0128 076 -240 0269 0205 076 -23.8
Arms 0.104 0.069 -334 0147 0194 0115 059 -405 0258 0160 0.62 -38.1
Upper arms 0.105 0.078 -25.8 0.149 0209 0122 059 -414 0259 0158 0.61 -39.3
Lower legs 0.082 0.063 -232 0116 0.181 0147 081 -189 0255 0212 0.83 -169

Total 0.098 0076 -220 0131 0191 0143 075 =253 0257 0.188 073 —26.8
Legs 0089 0071 -19.8 0118 0206 0154 074 -256 0287 0205 071 -286
Head hands& 05 076 _184 0131 0195 0146 075 -253 0278 0200 072 —283
feet excluded
Belly 0093 0078 -162 0121 0331 0261 079 -211 0457 032 070 -29.6
Thighs 0095 0080 -152 0121 0229 0160 070 -299 0316 0202 064 -359

R.Lower leg 0082 0075 =81 0121 0194 0166 086 -144 0241 0219 091 -9.2
Buttocks 0070 0064 -79 0107 0253 0220 087 -13.1 0.39% 0.281 071 =291

Torso 0.092 0.086 -63 0135 0187 0163 087 -12.8 0283 0226 080 -20.2
Back 0.093 0.09 -40 0146 0.158 0.141 0.89 -11.3 0228 0.190 083 -16.7
Chest 0.105 0.104 -06 0152 0.160 0.141 088 -11.8 0.262 0216 082 -17.7
Head 0.174 0.184 59 0.144 0208 0208 1.00 0.1 0198 0.193  0.98 -22

Note: L—left, R—right.

Table 3. Corrected total evaporative resistance of the whole body, body regions and individual zones

(m? Pa/W).

Body Parts Textile Skin Sugarcane Cutters Chemical Sprayers
R.Hand 4.6 6.0 446.6
Hands 5.8 9.2 305.3
L.Lower leg 7.8 32.6 132.4
Legs 7.8 28.1 65.7
Thighs 74 27.7 56.7
L.Hand 7.7 16.1 245.8
Lower Arms 8.1 14.7 87.0
Belly 6.9 437 585.3
Lower legs 9.1 294 99.5
Total 8.2 20.9 81.0
Head, hands & feet 83 212 902
excluded
Hands & feet excluded 8.4 20.6 73.7
Hands excluded 8.4 22.2 78.1
Feet 74 65.6 188.8
Arms 8.7 184 739
R.Lower leg 10.3 26.3 66.5
Torso 8.7 18.2 180.9
Back 9.0 13.8 165.1
Upper arms 9.1 21.2 70.4
Buttocks 9.2 32.3 98.6
Chest 9.2 14.6 203.1
Head 9.9 16.0 20.4

Note: L.—left, R.—right.
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3.2. Evaluation of Heat Strain with PHS

Figures 3 and 4 show the duration limited exposure (DLE) based on core temperature and water
loss criteria, respectively, during one day hour-by-hour in sugarcane cutter and chemical sprayer
outfits. Although, outdoor work has a changing environment and PHS cannot really accommodate
that, still the example here, reflected in Figures 3 and 4, is an attempt to show a possibility to manage
that shortcoming with hour-by-hour calculations based on the environmental data given in Figure 2.
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Figure 3. Expected daily duration limited exposure (DLE) for sugarcane cutters (5C) and chemical
sprayers (CP) at various activity levels based on core temperature (criterion Trec < 38 °C). At the lowest
activity for sugarcane cutters (SC: 250 W), DLE was above 8 h (480 min), and therefore, the line cannot
be seen in this diagram.

Figure 5 shows the DLE based on the core temperature depending on the air temperature (air
humidity was always set to 70% independent of the temperature) and workload for SC and CP,
respectively. Figure 6 shows the DLE based on water loss for SC. For CP, the core temperature was
always the major limiting parameter, and the water loss limit stayed commonly the same for almost all
conditions around 250 min. Here, it has to be pointed out that, for a practical application, the lowest
DLE value has to be selected as an allowed work limit.
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Figure 5. Expected duration limited exposure for sugarcane cutters (SC) and chemical sprayers
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humidity scenario.
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Figure 6. Expected duration limited exposure for sugarcane cutters at various activity levels based on
water loss (criterion Dy jim < 5%) in a fictive high humidity scenario.

4. Discussion

4.1. Manikin Tests

Total and total resultant clothing insulation for the air layer (AL), sugarcane cutters (SC) and
chemical sprayers (CP) were 0.098 and 0.076, 0.191 and 0.143 and 0.257 and 0.188 m? K/W, respectively.
This means a reduction in total insulation due to defined body motion by 22.0%, 25.3% and 26.8%,
respectively. Considering the Iy to It ratio (I/IT) of the complete garment ensembles (SC and CP), and
the values drawn in ISO 9920 (Equation 32 and Figure 4 of [10]), then these values were comparable
and stayed somewhat above 0.7.

However, insulation in different body parts could change from +6% (Head in AL) to —49% (Left
Hand in AL). In SC and CP, the changes were from 0% (Head) to —48% (Right Hand) and from —2%
(Head) to —39% (Upper arms), respectively. The results, especially from AL, show clearly the effect of
body parts’ swinging radius or being rigidly fixed in the walking manikin tests. The biggest change is
for hands and feet followed by arms and legs, then torso zones and, finally, the head. Variation with
clothing is modified by body area coverage, e.g., asymmetrical protection of hand and lower leg in SC
(Figure 1b), and air permeability of the layers in CP (Figure 1c,d). Part of the difference could be also
related to a variation in local air velocity at specific zones. Total thermal insulation of the textile skin
(TS; complete coverage of the body, including hands feet and head) was 0.131 m? K/W.

For technical measurements and various model evaluations, we need to consider what differences
between the zones or changes do not match the reality. This may be built in the established correction
equations, e.g., for walking. We may need to consider applying wind during testing in order to
compensate for that. For example, walking at 3.5 km/h with a manikin may require 1 m/s wind to
simulate the realistic influence of the motion. The same question may be raised to some extent for
validation of the manikin results by humans walking on a treadmill.

The corrected total evaporative resistance of TS, SC and CP was 8.2, 20.9 and 81.0 m? Pa/W (SC
and CP include the skin and air layer resistance). Regional total evaporative resistance of TS shifted
from 4.6 (right hand, thinner cotton glove was used) to 10.3 (right lower leg) m? Pa/W. As mentioned
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above, some effect could be related to a variation in local air velocity around specific zones, but in this
case, also to thickness of the skin and some overlap of separate layers (gloves at hands and socks on feet
for skin simulation). Values for different parts of SC varied from 6.0 (right hand, almost nude, but with
slight coverage of the end of the sleeve) to 65.6 (feet with boots) m? Pa/W. Variation in CP was from
20.4 (head with some parts uncovered) to above 500 (belly, two tight layers above each other). There
has been a discussion among manikin testers on how potential exclusion of the zones not covered by
wet textile skin may affect the total evaporative resistance. Here, the total; total excluding the head,
hands and feet; total excluding the hands and feet and total excluding the hands were calculated. The
difference from the total was, on average, 2.0% (8.3-8.4 m? Pa/W), 2.2% (20.6-22.2 m? Pa/W) and
0.0% (73.7-92.2 m? Pa/W) for TS, SC and CP, respectively, showing the influence of even or uneven
evaporative resistance distribution; i.e., depending on tested clothing, the elimination of some body
parts may influence increasing or decreasing the total insulation and thus, point to the importance of
full-body coverage with wet skin.

In spite of these shortcomings, the current study managed to collect detailed data on real protective
clothing used by workers in sugarcane fields. This study utilized only the values for the complete
ensemble in a standard occupational heat strain model. However, the reported detailed data could
be used in advanced human thermoregulatory models [19]. Additionally, detailed information on
different body regions may allow improving the clothing for better ventilation and heat dissipation.
This may be difficult in the case of chemical protection, while some new ideas may be generated for
specific solutions, for example, using cooling systems in clothing [20-22].

4.2. Evaluation of Heat Strain with PHS

According to the model predictions, the heat exposure in chemical protective clothing was strongly
limited by the increasing core temperature (Figure 3) and would be so under any (worse-case) high
humidity scenario (Figure 5), too. Simultaneously, cane cutters” core temperatures reached above
38 °C only at the highest activities and hottest periods of the hot day (Figure 3). In these cases, the
continuous exposure should not exceed 50 min, and regular rest and drinking breaks are needed.
The outcome clearly supports a known recommendation to have a long recovery/lunch breaks (>2 h)
in well-ventilated areas in the shade and sufficient fluid replacements during the hottest period of
the day. For the scenarios with high air humidity but lower solar loads, air temperatures above
34 °C may become a problem (Figure 5). In most of the evaluated conditions, dehydration can be
a stronger limitation (Figures 4 and 6): core temperature rises may trigger rest breaks, and during
breaks, people drink. Alternatively, as the thirst sensation is not as strong a factor as core temperature
rise, dehydration is harder to notice subconsciously [23]. The results from the current study strongly
recommended that, depending on the weather conditions, more or less frequent drinking rest breaks
should be enforced by the organization. As the PHS model calculates water loss, then advice for
quantities and the frequency of drinking may be estimated. The PHS data also provides estimations
of exposure time and rest break frequency based on core temperature calculations. This enables the
evaluation of work situations, risk assessments and of the work/rest schedules. Lundgren et al. [15] has
pointed out that the predictions for females have larger discrepancies from actual measurements; thus,
the larger safety margins have to be applied for females and possibly for other specific population
groups. Still, knowing the weather forecast or climate change predictions in addition to knowledge on
clothing properties and workloads allows organizations to prepare for harsh conditions in advance
and organize work practices that reduce negative health impacts with minimal losses in productivity.
It is also important that risk assessments of work tasks are conducted regularly and in good time before
any casualties occur, for example, according to the SOBANE strategy [24,25].

5. Conclusions

This study measured the properties of clothing used in sugarcane fields and utilized them in
a standard tool for heat strain prediction. In spite of criticism on the PHS model, it allows a rough
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estimation of heat strain in the working population, as well as the preparation of countermeasures
under hot conditions. This study also showed that weather data can effectively be utilized as input
into the prediction models, and such automated inputs into a webtool or app can make a complex
model into an easy-to-handle tool for practitioners, e.g., ClimApp [26]. The detailed clothing insulation
and evaporative resistance values collected in the current study could be used in more advanced
thermo-physiological models and, in combination with local weather data, could be used to support
workplace policies and decision-making processes during hot weather or heatwaves. However, it must
be considered that any model outcome must be utilized with care, as no model is perfect. Furthermore,
the data used in model validations needs to be selected carefully, as test conditions may not always
reflect real-world situations.
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