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ABSTRACT

BACKGROUND/OBJECTIVES: Atherosclerosis particularly due to high circulating level of 
low-density lipoprotein is a major cause of cardiovascular diseases. Ellagic acid is a natural 
polyphenolic compound rich in pomegranates and berries. Our previous study showed 
that ellagic acid improved functionality of reverse cholesterol transport in murine model 
of atherosclerosis. The aim of this study is to investigate whether ellagic acid inhibited 
inflammation-associated atherosclerotic plaque formation in cholesterol-fed apolipoprotein 
E (apoE)-knockout (KO) mice.
MATERIALS/METHODS: Wild type mice and apoE-KO mice were fed a cholesterol-rich Paigen 
diet for 10 weeks to induce severe atherosclerosis. Concurrently, 10 mg/kg ellagic acid was 
orally administered to the apoE-KO mice. Plaque lesion formation and lipid deposition were 
examined by staining with hematoxylin and eosin, Sudan IV and oil red O.
RESULTS: The plasma leukocyte profile of cholesterol-fed mice was not altered by apoE 
deficiency. Oral administration of ellagic acid attenuated plaque lesion formation and lipid 
deposition in the aorta tree of apoE-KO mice. Ellagic acid substantially reduced plasma levels 
of soluble vascular cell adhesion molecule and interferon-γ in Paigen diet-fed apoE-KO mice. 
When 10 mg/kg ellagic acid was administered to cholesterol-fed apoE-KO mice, the levels of 
CD68 and MCP-1 were strongly reduced in aorta vessels. The protein expression level of nitric 
oxide synthase-2 (NOS2) in the aorta was highly enhanced by supplementation of ellagic 
acid to apoE-KO mice, but the expression level of heme oxygenase-1 (HO-1) in the aorta 
was reduced. Furthermore, ellagic acid diminished the increased aorta expression of the 
inflammatory adhesion molecules in cholesterol-fed apoE-KO mice. The treatment of ellagic 
acid inhibited the scavenger receptor-B1 expression in the aorta of apoE-KO mice, while the 
cholesterol efflux-related transporters were not significantly changed.
CONCLUSION: These results suggest that ellagic acid may be an atheroprotective compound 
by attenuating apoE deficiency-induced vascular inflammation and reducing atherosclerotic 
plaque lesion formation.
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INTRODUCTION

Apolipoprotein E (apoE) plays a significant role in the normal catabolism of triglyceride-rich 
lipoprotein constituents [1]. A defect in lipoprotein metabolism in apoE-knockout (KO) mice 
results in hypercholesterolemia and atherosclerosis [2]. The apoE-KO mouse model develops 
extensive lesions associated with all phases of atherosclerosis throughout the arterial tree [3]. 
Accordingly, apoE-KO mice are used as representative models of atherosclerosis [2,4]. Several 
cellular and molecular events in the vessels are involved in the development of atherosclerosis 
[5]. Atherosclerosis is a thickening or hardening of the arteries that is caused by a gradual 
deposit of atheromatous plaques in the inner lining of an artery [6,7]. Atheromatous 
plaques are composed of sticky lipid substances, cellular waste products, and calcium [7]. 
Atherosclerotic progression to thrombosis involves smooth muscle cell proliferation, cell 
death and plaque rupture [8,9]. High-fat diet and high-cholesterol diet are commonly used to 
induce atherogenic status in atherogenesis-prone animals. Long-term fat-feeding of apoE-KO 
mice is a useful model of atherosclerotic plaque rupture [10]. Currently, the apoE-KO mouse 
model has been used for the development of new drugs to protect against atherosclerosis [11].

Atherosclerosis is a chronic inflammatory and complicated vessel disease [8,12]. Evidence 
suggests that immune cells, including monocytes and macrophages, are recruited to the 
subendothelial space of vessels and contribute to the development of atherosclerotic plaques 
together with extracellular matrix components [5,13]. Infiltrated monocytes differentiate into 
macrophages in the subendothelial intima, and induce inflammation and subsequent foam 
cell formation by taking up modified low-density lipoprotein (LDL) via scavenger receptors 
(SR), thereby promoting cholesterol loading [8,14]. Lipid-laden macrophages play a key 
role in atherosclerotic plaque rupture by producing various proinflammatory mediators and 
coagulants, as well as reactive oxygen species [8]. It has been shown that the inflammatory 
reactions of macrophages can influence the development of atherosclerotic plaques [15]. 
Accordingly, numerous studies have developed therapeutic strategies targeting inflammation 
and immunity in atherosclerosis [16,17]. Currently, treatment for arteriosclerosis is mainly 
focused on reducing risk factors such as hyperlipidemia. Several anti-inflammatory strategies 
have emerged as potential treatments for atherosclerotic disease, in addition to existing 
lipid-lowering therapies [18]. However, treatments targeting the inflammatory disposition 
associated with atherosclerosis are still limited.

Polyphenols have attracted much attention due to their health-promoting effects, including 
their antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties, making 
them valuable in biomedical applications [19,20]. Ellagic acid (Fig. 1A) is a polyphenolic 
compound present in berries, pomegranates and nuts that has antioxidant, anti-
inflammatory and antiproliferative properties [21,22]. Our previous study showed that ellagic 
acid inhibited atherosclerosis by promoting cholesterol efflux from lipid-laden foam cells 
[23]. Based on previous results showing the in vitro effects of ellagic acid on atherogenesis, 
the present study investigated the atheroprotective effects of ellagic acid on inflammation-
associated atherosclerotic lesion formation in vivo. It was examined whether ellagic acid 
reduced atherosclerotic lesions in atherogenesis-prone animals fed a cholesterol-rich diet 
through ameliorating vascular inflammation. This study examined various inflammatory 
mediators and atherosclerotic plaques in the aorta vasculature of apoE-KO mice. In addition, 
systemic inflammation was examined by measuring plasma levels of proinflammatory 
mediators. The current results established that dietary ellagic acid may be an atheroprotective 
agent that reduces vascular inflammation and lessens atherosclerotic lesion formation.
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MATERIALS AND METHODS

Chemicals
Ellagic acid and other chemicals were supplied by Sigma Chemical (St. Louis, MO, USA), 
as were all other reagents unless specifically stated otherwise. Fetal bovine serum (FBS) 
was obtained from BioWhittaker (San Diego, CA, USA). Antibodies for CD68, vascular cell 
adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), P-selectin, 
platelet endothelial cell adhesion molecule-1 (PECAM-1), nitric oxide synthase 2 (NOS2), 
heme oxygenase-1 (HO-1) and tissue factor (TF) were supplied by Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). Monocyte chemoattractant protein-1 (MCP-1) antibody were obtained 
from Abcam (Waltham, MA, USA). Antibodies for ATP-binding cassette transporter 
(ABC) A1, ABCG1 and SR-B1 were purchased from Novus Biologicals (Littleton, CO, USA). 
Horseradish peroxidase (HRP, Rockland Immunochemicals, Pottstown, PA, USA)-conjugated 
goat anti-rabbit immunoglobulin G (IgG), goat anti-mouse and donkey anti-goat IgG were 
obtained from Jackson ImmunoResearch Laboratories (West Grove, PA, USA). β-Actin 
antibody was obtained from Sigma Chemicals (St. Louis, MO, USA).

Animals and diets
Wild type C57BL/6 mice (male, 5 weeks old, average body weight of 20 g) and homozygous 
apoE-KO mice (C57BL/6 background) were provided by Shizuoka Prefecture Laboratory 
Center (Hamamatsu, Japan). Mice were individually housed in cages and maintained kept on 
a 12-h light and dark cycle at 23 ± 1ºC with 45–65% relative humidity under specific pathogen-
free conditions. The mice were allowed to acclimatize for a week before commencing the 
experiments. All mouse experiments were performed in accordance with the University’s 
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Fig. 1. Wild-type mice and apoE-deficient (apoE-KO) mice were fed an atherogenic Paigen diet for 10 weeks daily with and without oral administration of 10 mg/
kg ellagic acid. Cells in blood were counted using a Hemavet HV950 Multispecies Hematologic Analyzer (Drew Scientific). (A) Chemical structure of ellagic acid, 
(B) schematic illustration of animal experimental design/timeline, and (C) leukocyte profile in blood. 
apoE, apolipoprotein E; KO, knockout.



Guidelines for the Care and Use of Laboratory Animals approved by the Committee on 
Animal Experimentation of Hallym University (Hallym2011-10).

All mice were fed a Paigen diet (40 kcal% fat, 1.25% cholesterol, 0.5% sodium cholate 
[D12336; Research Diets, Inc., New Brunswick, NJ, USA]) for 10 weeks. The diet constituents 
were shown in Table 1. The atherogenic Paigen diet is known to develop severe atherosclerotic 
plaques [24,25]. Animal experimental design and timeline were depicted in Fig. 1B. Mice were 
allocated to 3 groups; 1) wild type fed Paigen diet, 2) apoE-KO mice fed Paigen diet, 3) apoE-
KO mice fed Paigen diet and given 10 mg/kg ellagic acid as gavage. After 10 weeks of the diet 
intervention, mice were sacrificed under zoletin/lumphoon anesthesia. Blood was collected 
from the abdominal aorta into ethylenediaminetetraacetic acid-coated tubes and plasma 
was obtained by centrifugation at 3,000 rpm for 10 min and stored at −70°C. The aortas were 
collected, frozen in liquid nitrogen, and kept at −80°C until used for Western blotting, or were 
preserved and fixed in 4% paraformaldehyde for immunohistochemical analyses.

The numbers of leukocytes in blood were determined using a Hemavet HV950 Multispecies 
Hematologic Analyzer (Drew Scientific, Oxford, CT, USA). ApoE deficiency did not alter the 
leukocyte profile in the blood of mice fed Paigen diet (Fig. 1C). In addition, ellagic acid did 
not change the amounts of neutrophils and lymphocytes in blood.

Assessment of atherosclerotic lesions
Atherosclerotic lesions were assessed by measuring lipid deposition in the mouse aorta. After 
the mice were euthanized, the aortas were dissected with removal of adventitial fat, fixed 
with 4% paraformaldehyde overnight and soaked with 30% sucrose for dehydration. Whole 
aorta were opened longitudinally from the aortic arch to the iliac bifurcation, mounted en 
face, and stained lipids with 0.5% Sudan IV dissolved in acetone:ethanol:double distilled 
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Table 1. Composition of atherogenic Paigen diet
Atherogenic Paigen diet mg kcal
Casein 75 300
Soy protein 130 520
DL-methionine 2 8
Proteins (% of total energy) 207 (22.7%) 828 (20.3%)
Corn starch 275 1,100
Maltodextrin 10 150 600
Sucrose 30 120
Cellulose, BW 200 90 0
Carbohydrates (% of total energy) 545 (59.8%) 1,820 (44.5%)
Soybean oil 50 450
Cocoa butter 75 675
Coconut oil 35 315
Lipids (% of total energy) 160 (17.5%) 1,440 (35.2%)
Total energy nutrients (%) 912 (100%) 4,088 (100%)
Mineral mix s10001 35 0
Calcium carbonate 5.5 0
Sodium chloride 8 0
Potassium citrate 10 0
Vitamin mix v10001 10 40
Choline bitartrate 2 0
Cholesterol, USP 12.5 0
Sodium cholic acid 5 0
FD&C Blue dye #1 0 0
FD&C Red dye #40 0.1 0
Experimental Paigen diets (#12336) were obtained from the Open-Source Diets (Research Diets, New Brunswick, 
NJ, USA).



water (50:35:15) for 15 min. Overstained colors were reduced by 80% ethanol, and then rinsed 
with tap water for 1 h. Images for atherosclerotic plaque areas were captured using an optical 
microscope AXIOIMAGER (Zeiss, Göttingen, Germany). To determine lipids accumulation in 
the atherosclerotic lesions, cut-aorta tissues were stained with pre-warmed oil red O solution 
for 10 min in 60°C oven. After staining with 85% propylene glycol for 5 min, stained tissues 
were observed with Zeiss microscopes.

Staining with hematoxylin and eosin (H&E)
For histologic H&E staining for atherosclerotic lesions, aorta tissues were fixed and 
dehydrated with 4% paraformaldehyde and 30% sucrose. Tissues were embedded with 
Tissue-Tek OCT compound and cut by a cryostat microtome (Leica Microsystems, Nussloch, 
Germany) into 5–6 μm thickness. After staining with Mayer’s hematoxylin for 30 s, the tissues 
were further stained with alcoholic eosin Y solution for 15 s. Following the dehydration 
steps from 95% ethanol to 100% ethanol, the stained tissues were observed with Zeiss 
microscopes. In addition, the diameter of blood vessels and the size of atherosclerotic lesions 
stained with the H&E staining were quantitatively assessed using Zeiss software.

Enzyme-linked immunosorbent assay (ELISA)
Plasma levels of C-reactive protein (CRP), soluble VCAM-1 (sVCAM-1), tumor necrosis 
factor-α (TNF-α), interferon-γ (IFN-γ) and MCP-1 were measured by using ELISA kits 
(R&D Systems, Minneapolis, MN, USA). All the procedures were followed according to the 
manufacturer’s instructions. After reacting plasma samples on microplate wells pre-coated 
with a biotin-conjugated antibody, avidin conjugated to HRP was added to plate wells. 
3,3,5,5-Tetramethylbenzidine (R&D systems) substrate was added to wells for detecting color 
change, and the enzyme-substrate reaction was terminated by the addition of 3 N sulfuric 
acid. The developed colors on plate wells were measured at λ = 450 nm.

Western blot analysis
After homogenizing and isolating proteins from the aorta tissues, proteins were loaded 
on sodium dodecyl sulphate-polyacrylamide gels (SDS-PAGE). Western blot analysis was 
conducted using whole aorta tissue extracts. Whole tissue extracts were prepared in a 
lysis buffer containing 1 M β-glycerophosphate, 10% SDS, 0.5 M NaF, 0.1 M Na3VO4 and 
protease inhibitor cocktail. Tissue extracts containing equal amounts of total proteins were 
electrophoresed on 6–12% SDS-PAGE and transferred onto a nitrocellulose membrane. 
Nonspecific binding was blocked by soaking the membrane in a Tris buffered saline-
Tween 20 (TBS-T) buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, and 0.1% Tween 20) 
supplemented 5% skim milk or 3% bovine serum albumin for 3 h. the membrane was 
incubated overnight at 4°C with polyclonal rabbit antibodies of VCAM-1, ICAM-1, P-selectin, 
NOS2, HO-1, TF, ABCA1, ABCG1 or SR-B1. After three washes with TBS-T, the membrane was 
incubated for 1 h with goat anti-rabbit IgG or rabbit anti-mouse IgG conjugated to HRP. The 
individual protein level was determined using immobilon Western chemiluminescent HRP 
substrate (Merck Millipore, Billerica, MA, USA) and Agfa X-ray film (Agfa-Gevaert, Mortsel, 
Belgium). Incubation with monoclonal mouse β-actin antibody was also performed for 
comparative controls.

Immunohistochemical staining
The OCT compound-embedded aorta tissues were cut at 5–6 um thickness, and were fixed 
in cold acetone (−20°C) for 10 min and rehydrated with phosphate-buffered saline for 5 min. 
To enhance antigen-antibody affinity, tissue slides were permeabilized with 0.1% Triton 
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X-100 for 10 min. To prevent non-specific antibody binding, the tissue slides were incubated 
in 10% FBS for 1 h at room temperature. A specific primary antibody against CD68, MCP-1, 
VCAM-1 and PECAM-1 was incubated overnight with the sectioned tissues. Subsequently, the 
tissue sections were incubated for 1 h with Cy3-conjugated anti-mouse IgG or fluorescein 
isothiocyanate (FITC)-conjugated anti-mouse IgG. For identification of nuclei, the 
fluorescent nucleic acid dye of 4′,6-diamidino-2-phenylindole (DAPI) was applied for 10 min. 
In addition, VCAM-1 were visualized with 3,3′-diaminobenzidine (DAB) to produce a brown 
staining, being counterstained with hematoxylin. Images of the stained tissues on slides 
were obtained with an optical microscope Axioimager system equipped for fluorescence 
illumination (Zeiss). In addition, the fluorescence intensity was quantified by using ImageJ 
software.

Statistical analysis
The data are presented as means ± standard error of the mean (SEM). Statistical analyses 
were conducted by employing Statistical Analysis Systems statistical software package (IBM 
SPSS Statistics Version 25.0; IBM Corp., Armonk, NY, USA). Significance was determined by 
one-way analysis of variance, Dunnett’s test or Duncan range test for multiple comparisons. 
Differences were considered significant at P < 0.05.

RESULTS

Inhibition of aorta plaque lesion formation by ellagic acid
This study examined whether ellagic acid inhibited formation of lipid-laden atherosclerotic 
plaque lesions, as evidenced by Sudan IV staining of mouse aortas. Compared to wild type 
mice, the en face lesion area in apoE-KO mice was highly enhanced, especially in the aorta 
arch (Fig. 2A). However, oral administration of 10 mg/kg ellagic acid reduced plaque lesion 
formation in the aorta trees. In addition, the increase in the aorta lipid deposition in Paigen 
diet-fed apoE-KO mice was markedly diminished by ellagic acid (Fig. 2B).

Histological examination of the aortas with H&E staining was performed and the size of the 
atherosclerotic lesions quantified with an image analysis system. The H&E staining of the 
aorta cross-sections showed that the apoE-KO mice had larger aorta lesion size, compared to 
wild type mice (Fig. 3A). However, there was a significant reduction in lesion size in ellagic 
acid-supplied apoE-KO mice (Fig. 3B). Accordingly, ellagic acid diminished aorta lesions 
increased by apoE deficiency.

Suppression of systemic inflammation by ellagic acid
The current study investigated that apoE deficiency induced vascular inflammation in 
cholesterol-fed mice, which was attenuated by oral administration of ellagic acid. Plasma 
levels of the inflammatory mediators of CRP, sVCAM-1, TNF-α, INF-γ and MCP-1 were 
measured with ELISA kits, following the indicated treatments. Plasma levels of inflammatory 
mediators other than stress-related CRP were significantly higher in apoE-KO mice than 
in wild type mice (Fig. 4). However, plasma levels of sVCAM-1 and INF-γ were strongly 
reduced in apoE-KO mice treated with 10 mg/kg ellagic acid for 10 weeks. Plasma levels of 
CRP, TNF-α, and MCP-1 tended to decline in ellagic acid-treated apoE-KO mice (Fig. 4). 
Accordingly, ellagic acid may alleviate systemic inflammation in apoE-KO mice.
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Modulation of aorta vessel inflammation by ellagic acid
Aorta sections were immunohistochemically stained with green FITC-conjugated CD68 
antibody and red Cy3-conjugated MCP-1 antibody against macrophages. Compared to that 
of wild type mice, the expression of the macrophage biomarkers of CD68 and MCP-1 in aorta 
vessels were greatly increased in apoE-KO mice that fed cholesterol (Fig. 5A). In contrast, the 
induction of fluorescent CD68 and MCP-1 was noticeably reduced in apoE-KO mice treated 
with ellagic acid. These results suggest that ellagic acid can inhibit inflammation-associated 
atherosclerosis in apoE-KO mice.

Other studies have reported that inducible NOS deficiency reduces atherosclerosis in 
apoE-KO mice [26,27]. Western blot analysis was performed to determine whether apoE 
deficiency promoted NOS2 induction in the aorta, and this effect was attenuated by treating 
apoE-KO mice exposed to a high cholesterol-Paigen diet with 10 mg/kg ellagic acid. Aorta 
level of NOS2 was significantly increased in apoE-KO mice, and was further enhanced by 
supplementation with ellagic acid (Fig. 5B). On the other hand, apoE deficiency highly 
induced aorta expression of HO-1 and TF in Paigen diet-fed apoE-KO mice (Fig. 5C and D). 
When 10 mg/kg ellagic acid was administered to these mice, the aorta HO-1 expression was 
significantly reduced. No significant reduction was observed in the TF expression of ellagic 
acid-treated apoE-KO mouse aorta (Fig. 5D).
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Fig. 2. Inhibition of lipid accumulation in aorta by ellagic acid. After apoE-deficient (apoE-KO) mice were orally 
treated with 10 mg/kg ellagic acid for 10 weeks, aortas were extracted. Aortas of wild type C57BL/6 mice and 
untreated apoE-KO mice were also obtained. Aorta was longitudinally opened from the aorta arch to the iliac 
bifurcation. Aorta was fixed with 4% buffered formalin overnight and dehydrated with 30% sucrose. (A) To 
determine whether lipid-enriched plaques were formed, Sudan IV staining was performed within whole aortas. 
For lipid accumulation in aorta, oil red O staining was done with aorta tissues cut in 5 μm thickness. (B) Counter-
staining was conducted with hematoxylin. Magnification: ×200 (n = 6, each of groups). Scale bar = 100 μm. 
apoE, apolipoprotein E; KO, knockout.



Inhibitory effects of ellagic acid on aorta induction of adhesion molecules
Vascular endothelial adhesion molecules including VCAM-1 and ICAM-1 are overexpressed in 
the initial stage of atherosclerosis, which may lead to upregulation of atherosclerotic lesions 
[28,29]. Western blot data showed that the cell adhesion molecules of VCAM-1 and ICAM-1 
were highly induced in apoE-KO mice (Fig. 6A-C). When apoE-KO mice fed a Paigen diet 
were treated with 10 mg/kg ellagic acid, levels of these adhesion molecules in aorta tissues 
were reduced (Fig. 6A and B). In contrast, the treatment of ellagic acid tended to further 
increase P-selectin level (Fig. 6C). On the other hand, an immunohistochemical staining was 
conducted to examine tissue levels of VCAM-1 and PECAM-1. As shown in Fig. 6D, apoE-KO 
mice have increased aorta expression of brown DAB-visualized VCAM-1 and red fluorescent 
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mice were orally treated with 10 mg/kg ellagic acid for 10 weeks, aortas were extracted. Aortas of wild type 
C57BL/6 mice and untreated apoE-KO mice were also obtained. Aorta was longitudinally opened from the aorta 
arch to the iliac bifurcation and was fixed with 4% buffered formalin overnight and dehydrated with 30% sucrose. 
(A) To examine atherosclerotic lesion formation on aorta wall, H&E staining was performed with aorta tissues 
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groups). (B) The extent of atherosclerotic areas was expressed as lesion diameter and size in the entire aortic 
surface area. Scale bar = 100 μm. 
apoE, apolipoprotein E; KO, knockout; H&E, hematoxylin and eosin. 
a-cValues in bar graphs not sharing a same lower case indicate significant different at P < 0.05.



Cy3-colored PECAM-1, whereas the levels of VCAM-1 and PECAM-1 decreased in the aortas of 
ellagic acid-treated apoE-KO mice.

Modulation of cholesterol handling by ellagic acid
One study revealed that in the presence of apoE, ABCA1 overexpression modulated high 
density lipoprotein and apoB-containing lipoprotein metabolism and reduced aorta 
atherosclerosis [30]. Compared to those of wild type mouse aortas, the levels of the 
cholesterol efflux-related transporters of ABCA1 and ABCG1 were markedly increased in 
apoE-KO mouse aortas (Fig. 7A and B). Oral administration of ellagic acid did not affect the 
levels of these transporters. On the other hand, the apoE deficiency elevated aorta level of 
SR-B1, a scavenging receptor of modified LDL, of cholesterol-fed mice (Fig. 7C). In contrast, 
oral administration of 10 mg/kg ellagic acid inhibited the SR-B1 induction in the aortas of 
apoE-KO mice (Fig. 7C).

DISCUSSION

This study was conducted to explore the effects of ellagic acid on vascular inflammation and 
atherosclerotic plaque formation in apoE-KO mice. Our major findings indicate that ellagic 
acid supplementation significantly reduces atherosclerotic plaque lesion formation and lipid 
deposition in the aorta, lowers levels of inflammatory mediators such as sVCAM-1 and IFN-γ, 
and modulates the expression of key proteins involved in inflammation, including CD68, 
MCP-1, VCAM-1, ICAM-1, and PECAM-1, as well as proteins associated with plaque stability, 
such as aortic NOS2 and HO-1. These results suggest that ellagic acid can attenuate apoE 
deficiency-induced vascular inflammation and atherosclerotic plaque formation.

It is known that apoE deficiency elevates plasma cholesterol due to impaired clearance of 
cholesterol-enriched lipoproteins [1,2]. Additionally, plasma accumulation of cholesterol-
rich lipoproteins results in the development of severe hypercholesterolemia and spontaneous 
atherosclerotic lesions in apoE-deficient mice, similar to what has been observed in humans 
[3,10]. Thus, the apoE-deficient mouse model is well established for the study of human 
atherosclerosis. This study revealed gross plaque lesions in cholesterol-fed apoE-KO mice, 
compared to cholesterol-fed wild type mice. Consistently, lipid deposition was clearly 
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observed in the aorta tree of apoE-KO mice, which is an atherosclerotic model. Accordingly, 
the current animal experimental design/timeline is thought to be well structured. 
Currently, the apoE-KO mouse model is used to develop new drugs against atherosclerosis 
to test compounds for the treatment of the risk factors related to hypercholesterolemia, 
hypertension, and inflammation [11,31]. Interestingly, ellagic acid reduced the plaque lesion 
area and lipid deposition in the aorta tree of apoE-KO mice.
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Atherosclerosis is a chronic inflammatory disease, that is initiated by hypercholesterolemia 
in most cases [7,8,16,31]. In addition, apoE protects against atherosclerosis through the 
direct regulation of chronic inflammatory responses and inhibition of T cell proliferation 
[32]. Atherosclerosis-prone animals such as apoE-deficient mice have many immune system 
components within atherosclerotic lesions [32,33]. This study showed that apoE deficiency 
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did not influence the plasma leukocyte profile, compared to that of cholesterol-fed wild type 
mice. However, apoE-KO mice exhibited increased plasma levels of the proinflammatory 
sVCAM-1, IFN-γ and TNF-α, which were derived from T cells and macrophages. IFN-γ primes 
macrophages to produce chemokines and cytotoxic molecules, induces the expression of the 
genes encoding adhesion molecules on endothelial cells, and regulates lipid uptake [34]. In 
addition, cholesterol-fed apoE-KO mice exhibited increased expression of the inflammatory 
cytokines of CD68 and MCP-1 in macrophages and monocytes and activation of the adhesion 
molecules of VCAM-1 and PECAM-1 in the aorta. Accordingly, vascular inflammation occurred 
in cholesterol-fed apoE-KO mice with gross plaque lesions. These inflammatory mediators 
have emerged as therapeutic targets for inflammation and immunity in atherosclerosis [17].

Numerous studies have shown that anti-inflammatory compounds inhibit the formation of 
atherosclerotic plaques [17,35,36]. However, the problem is that adverse immunosuppressive 
effects are associated with the systemic use of anti-inflammatory drugs. Natural anti-
inflammatory products and their polyphenols and have attracted much attention, mainly due 
to their safety and therapeutic potential in biomedical applications and their accessibility 
through daily food intake [19,20,37]. A previous study revealed that purple perilla frutescens 
extracts containing α-asarone inhibited inflammatory atheroma formation in dyslipidemic 
apoE-deficient mice [38]. Polyphenolic ellagic acid, which has anti-inflammatory properties, 
accelerates cholesterol efflux from lipid-laden foam cells [23]. In fact, our previous study 
showed that the spleen wet weight increased in ellagic acid-administered apoE-KO mice, 
indicating that ellagic acid may improve inflammatory responses [39]. The current study 
demonstrated that ellagic acid ameliorated atherosclerotic plaque lesions in cholesterol-
fed apoE-KO mice by possibly alleviating systemic inflammation derived from T cells, 
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macrophages and endothelial cells. In addition, ellagic acid strongly inhibited the activation 
of macrophages and endothelial cells in the aorta of cholesterol-defective mice. Accordingly, 
one can assume that the inhibition of vascular inflammation by ellagic acid was responsible 
for reducing atherosclerotic plaques in cholesterol-fed apoE-KO mice.

The dietary polyphenols of quercetin and theaflavin attenuate atherosclerosis in apoE gene-
KO mice by alleviating inflammation, increasing NO bioavailability, and inducing HO-1 [37]. 
The present study showed that ellagic acid greatly induced aorta NOS2 in apoE-KO mice, 
suggesting that this compound may improve NO bioavailability. Surprisingly, this study 
showed that apoE deficiency increased the aorta tissue levels of HO-1 and TF in cholesterol-fed 
mice, and ellagic acid highly reduced the HO-1 level without significant change in the TF level. 
HO-1, an inducible enzyme responsible for the breakdown of heme, is primarily considered 
an antioxidant and a target for treatment of chronic inflammatory diseases [40]. On the other 
hand, oxidative stress can induce HO-1 under pathological conditions [41,42]. Induction of 
cellular HO-1 is a signature of oxidative stress for its downstream effects under pro-oxidative 
states [42]. It is thought that oxidative stress may result in cholesterol-fed apoE-KO mice, 
leading to upregulation of aorta HO-1 level that was inhibited by treatment of ellagic acid.

Foam cell formation and lesion development are known to be caused by passage of LDL 
cholesterol into the artery wall and its engulfment by macrophages [43]. SR-B1 in endothelial 
cells mediates the delivery of LDL into arteries and promotes its accumulation by artery wall 
macrophages, thereby stimulating atherosclerosis [44]. In our previous study [23], ellagic 
acid diminished SR-B1 induction and elevated ABCA1 induction in lipid-laden macrophages, 
thereby improving cholesterol efflux and blocking foam cell formation. Similarly, oral 
administration of ellagic acid inhibited the SR-B1 induction in the aortas of apoE-KO mice 
and tended to further increase ABCA1 induction. Ellagic acid reduced the macrophage 
biomarkers of CD68 and MCP-1 in aorta vessels of cholesterol-fed apoE-KO mice, indicating 
its inhibition of accumulation of inflammatory macrophages carrying SR-B1 in the aorta wall. 
One study shows that the SR-B1 expression increases in atherosclerosis-prone regions of the 
mouse aorta before lesion formation, and in human atherosclerotic arteries [45]. Inhibition 
of the endothelial delivery of LDL into artery walls by SR-B1 may be a new therapeutic target 
in the battle against atherosclerosis.

In summary, the current report demonstrated that ellagic acid inhibited atherosclerotic 
plaque formation and lipid deposition in the aorta tree of cholesterol-rich Paigen diet-
fed apoE-KO mice (Fig. 8). In addition, ellagic acid diminished systemic inflammation in 
apoE-KO mice by reducing the plasma levels of sVCAM-1 and the T cell cytokines of TNF-α 
and IFN-γ. Oral administration of ellagic acid suppressed the induction of macrophage-
expressing MCP-1 and CD68 and endothelial cell-expressing adhesion molecules of VCAM-1 
and PECAM-1 in cholesterol-fed apoE-KO mice. In addition, ellagic acid attenuated vascular 
cholesterol uptake by inhibiting the aorta SR-B1, although there was no significant change 
in cholesterol efflux by ABCA1 or ABCG1. Therefore, ellagic acid may lessen inflammation-
associated atherosclerotic plaques by acting as an anti-inflammatory agent in atherosclerosis-
prone apoE-KO mice. These findings are of considerable significance, as they suggest a wide 
range of effects on endothelial function and atherosclerosis, as well as the anti-inflammatory 
properties of ellagic acid. Thus, ellagic acid may be an alternative to atheroprotective apoE 
during episodes of hypercholesterolemia. Although there is good evidence that ellagic acid 
exerts antiatherogenic and anti-inflammatory effects on animal models, the evidence in 
humans is limited.
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