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Abstract 

This study presents a targeted virtual drug screening approach for autism spectrum 

disorder (ASD), focusing on Cav1.2 calcium ion channels as potential therapeutic 

targets. ASD is a complex neurodevelopmental disorder characterized by impair-

ments in social communication and behavior, with genetic factors playing a significant 

role. Cav1.2 channels have been implicated in the pathophysiology of ASD due to 

their role in regulating neuronal excitability and synaptic transmission. We employed 

computational methods to virtually screen a large database of compounds for their 

potential to modulate Cav1.2 channel function. Molecular docking simulations were 

used to identify potential Cav1.2 inhibitors, followed by pharmacokinetic modeling to 

assess drug-like properties. Molecular dynamics (MD) simulations were performed to 

evaluate the interactions of the top candidates with Cav1.2, and Molecular Mechan-

ics/Poisson-Boltzmann Surface Area (MM/PBSA) analysis was employed to predict 

binding free energies. This approach identified several promising drug candidates, 

including ZINC000828320609, which exhibited strong binding affinity to Cav1.2, 

favorable pharmacokinetic properties, and no predicted toxicity. The virtual screening 

results provide a solid foundation for further experimental validation and potential 

drug development for ASD, offering a novel and efficient strategy to target Cav1.2 

channels in the treatment of this complex disorder.

Introduction

Autism spectrum disorder (ASD) [1–3] is a complex neurodevelopmental condition 
that encompasses a broad range of social, communication, and behavioral deficits. 
Despite extensive research efforts, the pathogenesis of ASD remains poorly under-
stood, and there is a lack of effective and targeted therapeutic options [4,5]. However, 
recent advances in genetics and neuroscience have begun to reveal potential molec-
ular targets for drug development in ASD [6,7]. Among these, Cav1.2 calcium ion 
channels have emerged as promising candidates due to their critical role in neuronal 
excitability and synaptic transmission, as well as their involvement in ASD-related 
pathologies [8,9].
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Cav1.2 channels, also known as L-type calcium channels, are voltage-gated 
calcium channels that regulate calcium influx into neurons [10–12]. They play a 
fundamental role in the control of neuronal excitability, neurotransmitter release, 
and gene expression [13,14]. Abnormalities in Cav1.2 channel function have been 
observed in ASD patients, suggesting that targeting these channels may provide a 
therapeutic avenue for treating ASD [15,16]. However, the complex nature of ASD 
and the lack of predictive animal models have hampered the drug discovery pro-
cess [17–19].

Virtual drug screening represents a powerful tool in the drug discovery pipeline, 
especially for complex diseases like ASD. This approach utilizes computational 
methods to identify potential drug candidates from large databases of compounds, 
significantly reducing the time and cost of traditional experimental screening methods 
[20–22]. Virtual screening has been successfully applied to various diseases, includ-
ing cancer, neurodegenerative disorders, and infectious disease [23–25]. However, 
its application to ASD has been limited due to the lack of well-validated targets and 
the heterogeneity of the disorder [26,27].

In this study, we aim to utilize targeted virtual drug screening to identify potential 
therapeutics for ASD based on Cav1.2 calcium ion channels. Our approach combines 
computational techniques such as molecular docking, pharmacokinetic modeling, MD 
and MM/PBSA to screen a large database of compounds for their potential to interact 
with Cav1.2 channels and modulate their function [28,29]. We hope to discover novel 
drug candidates that can restore normal Cav1.2 channel function and potentially 
provide therapeutic benefits in ASD.

The first step in our virtual screening process involves identifying potential Cav1.2 
channel inhibitors from a large database of compounds. This is achieved through 
molecular docking simulations, which predict the binding affinity and interaction 
modes of compounds with the Cav1.2 channel’s active site. We utilize high-resolution 
structures of Cav1.2 channels obtained from AlphaFold prediction to ensure accurate 
prediction. Compounds that exhibit high binding affinity and favorable interaction 
modes are selected as potential drug candidates.

Next, we perform pharmacokinetic modeling to assess the drug-like properties 
of the selected compounds. This includes predicting their absorption, distribution, 
metabolism, excretion (ADME), and toxicity profiles [30,31]. Compounds that exhibit 
favorable pharmacokinetic properties [32,33] and low toxicity are prioritized for further 
analysis.

Finally, we utilize MD to evaluate the interactional effects of the selected com-
pounds with the designated protein. After the simulation trajectory is analyzed, MM/
PBSA is used to predict the binding free energies from MD simulation trajectory. Via 
these techniques we can gain insights into the potential mechanisms of action of the 
selected compounds and their potential therapeutic benefits in ASD.

In summary, the targeted virtual drug screening approach presented in this study 
aims to identify novel therapeutics for ASD based on Cav1.2 calcium ion channels. 
By combining computational techniques such as molecular docking, pharmacokinetic 
modeling, MD and MM/PBSA, we hope to discover drug candidates that can restore 
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normal Cav1.2 channel function and provide therapeutic benefits in ASD. The successful application of this approach may 
pave the way for the development of effective and targeted therapeutics for this complex neurodevelopmental disorder. 
The specific structure of Cav1.2 calcium ion channel protein is shown in Fig 1.

Materials and methods

Dataset preparation

Drug library. For our screening studies, we utilized the ZINC15 drug library. The ZINC (ZINC Is Not Commercial) 
database is a freely accessible collection of commercially available compounds that are useful for virtual screening and 
other drug discovery applications. The ZINC15 library specifically includes a diverse set of small molecules with known or 
predicted biological activities. Moreover, it has potential to cover a wide range of biological targets and activities.

Biological functions. The compounds within the ZINC15 library are known to interact with a wide range of biological 
targets, including enzymes, receptors, ion channels, and other proteins involved in cellular signaling pathways. These 
interactions can lead to modulation of various biological processes such as cell proliferation, differentiation, apoptosis, 
inflammation, and neurotransmission, among others. The specific biological function of each compound in the context of 
our study was assessed based on its ability to inhibit Cav1.2 calcium ion channel protein.

By leveraging the ZINC15 library, we aimed to identify compounds with potential therapeutic relevance for ASD (Autism 
Spectrum Disorder). The library’s diversity and the known or predicted biological activities of its compounds make it a 
valuable resource for drug discovery and development.

Dataset acquisition. Around 180,000 intricate molecules, each boasting a unique 3D framework, were procured from 
the vast ZINC15 repository. The selection criteria were stringent, encompassing the following points:

• Polarity (logP) measurement: Compounds with a suitable logP value (typically around 2–3) were chosen to balance 
aqueous solubility and lipid bilayer diffusion.

• Charge: Neutral compounds were selected to ensure compatibility with the docking simulations.

Fig 1. Schematic representation of the Cav1.2 calcium ion channel protein. The Cav1.2 calcium ion channel protein structure is acquired from 
Unirpot database predicted by AlphaFold.

https://doi.org/10.1371/journal.pone.0324018.g001
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• pH compatibility: Compounds that were compatible with the physiological pH range were considered.

• Commercial accessibility: Only commercially available compounds were included to facilitate experimental validation.

Each of these molecules was a standard, readily available, and neutral lead-like drug candidates. After careful exam-
ination, the protonation status of these ligands was established, and crucial hydrogen atoms and charges were appended 
to ensure their readiness for further analysis.

Molecular docking

The 3D coordinate of the Cav1.2 calcium ion channel protein structure was downloaded from the Uniprot protein data 
bank predicted by AlphaFold. The protonation state of the protein was determined and hydrogen atoms were added 
before molecular docking. The non-polar hydrogen atoms were then added into the connected heavy atoms to agree with 
the Autodock algorithm. The small molecules were docked into the target protein with the Autodock Vina v1.2.0 program. 
The Gasteiger partial charge was employed for both the macromolecules and small molecules because it could replicate 
about 80% of the crystallized binding poses of the co-crystallized ligands together with the scoring function. The grid spac-
ing was hereby set to be centered in the active pocket, which is selected just exactly to cover the key amino acids. Each 
molecule was docked with 10 modes and the top docking pose with the lowest binding affinity was subjected to Molecular 
Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) rescoring calculations. For high performance computing, we 
employed MPI-Vina, a MPI based parallel implementation of Autodock Vina, for massive flexible docking tasks.

ADMET prediction

ADMET properties play a significant role in determining the pharmacokinetic and pharmacodynamic profiles of com-
pounds, and therefore, their potential as drug candidates. To predict ADMET properties, we utilized in silico tools and 
 algorithms that have been developed and validated for this purpose. These tools typically employ machine learning 
or statistical methods trained on large datasets of known compounds with experimental ADMET data. Hereby Swis-
sADME (www.swissadme.ch) server and ADMETLab (https://admetmesh.scbdd.com) were employed to evaluate 
ADME properties and toxicity of compounds from the docking results. SwissADME was chosen for its ability to pre-
dict a wide range of ADME properties, including logP, water solubility, and drug-likeness and ADMETLab 2.0 was 
employed for its comprehensive in silico toxicity testing, including drug-induced hERG toxicity, AMES toxicity, and 
carcinogenicity.

Pharmacokinetic (PK) parameters. LogPo/w (octanol-water partition coefficient): LogPo/w predicts lipophilicity, 
influencing membrane permeability and oral bioavailability. Compounds with LogPo/w ~ 2–3 typically balance aqueous 
solubility and lipid bilayer diffusion.

Molecular weight (MW): MW impacts absorption (small MW favors diffusion) and renal clearance (large MW avoids 
filtration). MW < 500 Da is often preferred to enhance central neural system (CNS) penetration.

Heavy atoms: Heavy atoms refer to all atoms in a compound except hydrogen (H). These include carbon (C), nitrogen 
(N), oxygen (O), sulfur (S), and metal atoms. The number of heavy atoms directly influences a molecule’s lipophilicity 
(LogP) and synthetic accessibility.

Arom. heavy atoms (aromatic heavy atoms): Arom. heavy atoms denote heavy atoms embedded within aromatic 
rings (e.g., benzene, pyridine).These atoms contribute to molecular stability, binding interactions and drug-likeness.

Rotatable bonds: Rotatable bonds are single bonds (e.g., C-C, C-O) that allow free rotation between rigid molecu-
lar fragments (e.g., aromatic rings, aliphatic chains). They impact conformational flexibility, oral bioavailability and target 
selectivity.

Hydrogen bond donors/acceptors: H-bonds stabilize drug-target interactions. For Cav1.2 inhibitors, optimizing 
H-bond patterns improves potency and selectivity.

www.swissadme.ch
https://admetmesh.scbdd.com
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Energy minimization

Energy minimization was employed to optimize the structural conformations of potential drug candidates and Cav1.2 
receptor models. This step is crucial for ensuring accurate docking simulations and reliable binding energy predictions. 
After initial structure preparation, the compounds and receptor models were subjected to energy minimization procedures 
using Gromacs. This process involves iterative adjustments of the atomic positions and bond angles to achieve a state of 
minimal potential energy, representing a stable conformational state.

During energy minimization, constraints were applied to preserve critical features of the molecular structures, such 
as the integrity of chemical bonds and the geometry of functional groups. The minimization was performed using 
 gradient-based algorithms that calculate the forces acting on each atom and iteratively adjust their positions to minimize 
the total potential energy. Usually steepest descent, conjugate gradients or L-BFGS (limited-memory Broyden- Fletcher-
Goldfarb-Shanno) are involved.

By performing energy minimization, we were able to obtain optimized conformations of the drug candidates and Cav1.2 
receptor models, which were then used in subsequent MD simulations. This approach helped to improve the accuracy and 
reliability of the screening process, enabling us to identify potential drug candidates with high affinity and specificity for the 
Cav1.2 calcium ion channels.

Equilibration

After energy minimization, the prepared Cav1.2 calcium ion channel receptor models and potential drug candidates 
underwent equilibration procedures. This step began prior to simulating the molecular dynamics of the systems to achieve 
thermodynamic equilibrium.

Equilibration was conducted using molecular dynamics software Gromacs, where the systems were subjected to peri-
odic boundary conditions and appropriate force fields. The simulations were run for sufficient time to allow the molecules 
to adapt to the solvent environment and relax into stable conformations.

During equilibration, various parameters such as temperature, pressure, and solvent composition were carefully con-
trolled to mimic physiological conditions. By simulating the dynamics of the systems and allowing them to reach equi-
librium, we were able to obtain stable conformations of the receptor-ligand complexes, which were further analyzed for 
potential drug-target interactions.

The first period is NVT equilibration which follows NVT ensemble, wherein 100-ps duration is employed. The second is 
NPT equilibration under NPT ensemble wherein 100-ps duration is also used.

MD simulation

The MD simulation was initiated with coordinates acquired from AlphaFold prediction in the Uniprot database. The sim-
ulation was implemented with the software Gromacs 2019.6 package with the AMBER99SB-ILDN force field and TIP3P 
for protein and water respectively. The AMBER99SB-ILDN force field was selected for its accuracy in describing protein- 
ligand interactions and the TIP3P water model was used to simulate the aqueous environment surrounding the protein- 
ligand complex. A 100-nanosecond MD simulation was chosen to capture the essential dynamics of the  protein-ligand 
interactions. Particle Mesh Ewald (PME) Method was implemented to handle long-range electrostatics with high 
accuracy.

The CHARMM-GUI web server was employed to add DPPC lipid bilayer membrane to the system and meanwhile 
proper number of sodium counter ions was added to neutralize this system. For molecular visualization VMD and 
XMGRACE were utilized.

RMSD (Root Mean Square Deviation) is a widely used metric in molecular dynamics simulations to quantitatively 
assess the deviation of a molecular structure from a reference structure. It measures the average distance between 
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corresponding atoms in two structures, typically the initial structure and the structure at a given time point during the simu-
lation. RMSD calculations are crucial in analyzing the stability and dynamics of biomolecules such as proteins and nucleic 
acids. A low RMSD value indicates that the molecular structure remains close to the reference, while a high RMSD value 
suggests significant structural changes have occurred. By plotting RMSD as a function of time, researchers can track the 
evolution of a molecular system and identify potential conformational transitions or regions of stability. RMSD is a valu-
able tool in structural biology, biochemistry, and drug discovery, enabling insights into the behavior of biomolecules at the 
atomic level.

 
RMSD =

√√√√
∑N

i=0

[
mi∗ (Xi – Yi)2

]

M  

RMSF (Root Mean Square Fluctuation), is a measure of the magnitude of atomic fluctuations within a molecular structure 
over a period of time, typically obtained from molecular dynamics simulations. It quantifies the average deviation of each 
atom from its mean position and provides an estimate of the dynamic flexibility and stability of different regions within 
the structure. RMSF is calculated by taking the square root of the mean of the squared differences between the instan-
taneous positions of an atom and its average position over the simulation time. By plotting RMSF values as a function of 
the atom’s position in the molecule, researchers can visualize regions that exhibit high or low mobility, such as flexible 
loops or rigid domains. RMSF is a valuable tool in the analysis of biomolecular dynamics, helping scientists understand 
the functional roles of different regions within proteins, nucleic acids, and other biomolecules. It can provide insights into 
mechanisms of protein function, allosteric effects, and drug-target interactions.

 

RMSF =

√√√√ 1

T

T∑
t=1

N∑
i=1

(xi(t) – xi)
2

 

The moment of inertia, also known as the rotational inertia or angular mass, is a measure of a body’s resistance to 
changes in its rotational motion about a given axis. It quantifies the distribution of mass with respect to an axis of rotation, 
with a higher moment of inertia indicating a greater resistance to rotational acceleration. The moment of inertia plays a 
crucial role in various physical phenomena, including rotational dynamics, torque, and angular momentum. It is repre-
sented by the radius of gyration, denoted by k, formulated as follows:

 
k =

√
I
m  

Molecular dynamics (MD) simulation parameters. Temperature: Temperature controls molecular motion and 
interactions during MD simulations. By mimicking physiological conditions, we assess the stability of drug-Cav1.2 
complexes under biologically relevant thermal fluctuations, critical for predicting in vivo binding stability.

Force field: Force fields mathematically describe atomic interactions (bonded/nonbonded). The choice of force 
field directly impacts the accuracy of protein-ligand complex geometry and dynamics, ensuring reliable free energy 
calculations.

Solvent model: Explicit solvent models (TIP3P) or implicit solvation (Poisson-Boltzmann) account for water- mediated 
effects on binding. Solvent influences ligand desolvation penalties and entropy changes, critical for binding affinity 
predictions.
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Per-residue energy decomposition using MM/PBSA

The MM/PBSA method was used to decompose the binding free energy into various components, including electrostatic 
energy, van der Waals energy, and nonpolar solvation energy. This allowed for a detailed understanding of the forces driv-
ing the protein-ligand interaction.

Per-residue energy decomposition using MM/PBSA is a computational method that provides a detailed breakdown of the 
energetic contributions to the binding affinity between two molecules, such as a protein and a ligand, at the level of individual 
residues. MM/PBSA, which stands for Molecular Mechanics/Poisson-Boltzmann Surface Area, combines molecular mechanics 
(MM) calculations of the internal energies of the molecules with continuum solvent models to estimate the solvation free energy.

In per-residue energy decomposition, the total binding free energy is partitioned into contributions from each residue 
in the protein. This allows researchers to identify key residues that contribute significantly to the binding affinity, providing 
insights into the mechanisms of molecular recognition and binding specificity. The per-residue energy decomposition can 
be used to guide drug design and optimization efforts, aiming to enhance the affinity and selectivity of small molecule 
ligands for their target proteins.

The free energy of binding (ΔG
binding

) represents the change in free energy that occurs when two molecules, such as a 
ligand and a receptor, bind to each other, forming a stable complex.

 ∆Gbinding = ∆H – T∆S 

The values for ΔH and ΔS are obtained through a set of methods. Hereby ΔG
binding

 follows the relationship:

 ∆Gbinding = (∆EMM + ∆GPB + ∆Gnon–polar) – T∆S 

where ΔE
MM

, ΔG
PB

 and ΔG
non-polar

 are the molecular mechanics energy, the Poisson-Boltzmann energy and the non-polar 
solvation energy, respectively. The latter two terms are usually referred to as ΔG

PBSA
. ΔE

MM
 comprises terms for internal, 

van der Waals and coulombic energies which are computed via Molecular Mechanics force field. The ligand, receptor and 
complex are exposed to MM/PBSA analysis in explicit solvent MD simulations.

MM/PBSA calculation is a computational method that combines molecular mechanics (MM) calculations of the internal 
energies of molecules with continuum solvent models, such as the Poisson-Boltzmann equation and surface area term, to 
estimate the solvation free energy and thereby predict the binding affinity between two molecules.

 ∆H = ∆EMM + ∆GPB + ∆Gnon–polar  

The non-polar solvation free energy was in linear relationship with the solvent-accessible surface area (SASA):

 ∆Gnon–polar = γSASA+ β  

This whole analysis was performed to identify key residues involved in ligand binding, providing insights into the mecha-
nisms of molecular recognition and binding specificity.

Binding energy calculation parameters (MM/PBSA). Enthalpy(ΔH): Enthalpy reflects the total energy change (heat 
transfer) during binding. Negative ΔH indicates favorable exothermic interactions (e.g., hydrogen bonds, hydrophobic 
contacts) while positive value infers endothermic interactions.

Entropy (ΔS): Entropy quantifies disorder changes. Ligand binding often restricts conformational freedom, leading to 
negative entropy contributions (ΔS < 0), which oppose binding despite favorable enthalpy.

Free energy of binding (ΔG): ΔG = ΔH – TΔS. A negative ΔG indicates spontaneous binding, with magnitude correlat-
ing to affinity. MM/PBSA decomposes ΔG into polar (electrostatic) and nonpolar (hydrophobic) components, aiding rational 
drug optimization.
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Results and discussion

Virtual screening

Amid the vast ZINC15 database, we navigated to approximately 180,000 potential drug candidates. Utilizing cutting-edge 
virtual screening techniques, we identified the most promising molecule to target the receptor among these, the cream of 
the crop emerged — 10 compounds, boasting binding affinities ranging from −9.7 to −10.2 kcal/mol. In Table 1, we show-
case the top 10 compounds. We now embark on a deeper analysis, scrutinizing their absorption, distribution, metabolism, 
excretion (ADME) properties, and toxicity to refine our selection.

ADMET prediction

In our study, we harnessed the power of the SwissADME server to explore the crucial ADME properties of our com-
pounds. Specifically, we delved into their lipophilicity — their ability to dissolve in fats, oils, and nonpolar solvents — as 
well as their water solubility and overall drug-likeness. These metrics, captured in Table 2, provide invaluable insights into 

Table 1. Docking results of MPI-Vina between protein and ligands.

ZINC ID Short name in this study Binding Affinity(kcal/mol)

ZINC000013923892 Lig1 −10.2

ZINC000252641347 Lig2 −9.9

ZINC000004697718 Lig3 −9.9

ZINC000002685589 Lig4 −9.8

ZINC000186886036 Lig5 −9.8

ZINC000003057249 Lig6 −9.8

ZINC000013759087 Lig7 −9.7

ZINC000000082103 Lig8 −9.7

ZINC000828320609 Lig9 −9.7

ZINC000000268095 Lig10 −9.7

https://doi.org/10.1371/journal.pone.0324018.t001

Table 2. List of ADME properties of top 10 ligands.

Properties Lig1 Lig2 Lig3 Lig4 Lig5 Lig6 Lig7 Lig8 Lig9 Lig10

Physicochem-
ical properties

MW(g/mol) 329.32 323.31 323.31 304.31 345.39 346.38 317.34 320.3 348.35 336.41

Heavy atoms 25 24 24 23 26 26 24 24 26 24

Arom. heavy 
atoms

19 17 17 19 12 10 15 16 12 16

Rotatable bonds 2 5 5 3 3 2 2 2 2 4

H-bond acceptors 5 6 6 5 3 4 3 5 4 3

H-bond donors 2 1 1 2 2 1 2 1 2 1

Lipophilicity Log Po/w 1.51 2.01 2.01 1.91 2.21 2.74 2.35 1.97 2.53 2.43

Water 
solubility

Log S (ESOL) Soluble Moderately 
soluble

Moderately 
soluble

Soluble Soluble Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Moderately 
soluble

Pharmacoki-
netics

GI absorption High High High High High High High High High High

Drug-likeness Lipinski Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Medi. 
Chemistry

Synth. 
Accessibility

3 3.06 3.06 3.05 2.99 4.05 2.98 3.41 3.62 2.83

https://doi.org/10.1371/journal.pone.0324018.t002

https://doi.org/10.1371/journal.pone.0324018.t001
https://doi.org/10.1371/journal.pone.0324018.t002
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the potential druggability of our top 10 ligands (denoted as Lig1 to Lig10 in accordance with Table 1). Our findings indicate 
that all these compounds exhibit promising properties for drug development.

However, drug discovery is a multifaceted journey, and we needed to ensure that our compounds did not harbor 
any undesirable side effects. To this end, we turned to ADMETLab 2.0, a web-based tool that specializes in in-silico 
toxicity testing. Here, we examined our top 10 compounds for drug-induced hERG toxicity, AMES toxicity, and car-
cinogenicity. As shown in Table 3, only ZINC000004305360 (Lig9) emerged unscathed, passing all the toxicity tests. 
This compound, therefore, became the focus of our subsequent analysis, promising to be a safe and effective drug 
candidate.

Energy minimization and equilibration

The simulation setup was carefully crafted, utilizing the AMBER99SB-ILDN force field for protein and the TIP3P model 
for water. A cubic water box surrounded and solvated the protein-water complex, initiating a series of refinement 
steps. Initially, a minimization process with about 8,000 steps ensured that the system energy was optimized, using a 
steep descent integrator and a fine 0.001 ps time step. As depicted in Fig 2A, the potential energy underwent a rapid 
descent, starting at 3.00 × 108 kJ/mol and stabilizing at −4.50 × 107 kJ/mol after approximately 80 steps, indicating a 
 well-converged system.

Following energy minimization, the system underwent a gradual heating process, depicted in Fig 2B. Utilizing the NVT 
ensemble, the temperature was smoothly increased to 300K over 100 ps, with initial velocities assigned according to a 
Maxwellian distribution. The temperature initially fluctuated significantly but eventually stabilized around 300K, demon-
strating thermal equilibration.

Moving to the next phase of equilibration, the system underwent pressure equilibration in the NPT ensemble, as shown 
in Fig 2C. The Parrinello-Rahman barostat effectively maintained pressure coupling, resulting in a mean pressure of 
1.0 ± 30.1 bar, with the reference set at 1 bar. The large root-mean-square fluctuation in pressure is typical during molecu-
lar dynamics simulations, making the small difference between the obtained average and the reference value statistically 
insignificant. The 10-ps running average highlights the trend of pressure variation over time.

Concurrently, the density of the system was monitored, as shown in Fig 2D. The experimental density of water is 
1000 kg/m3, while the theoretical density of the SPC/E water model is 1008 kg/m3. Our simulated average density over 
the entire simulation was 1021 ± 1 kg/m3, closely aligning with both experimental and theoretical values. This close agree-
ment validates the accuracy and success of the simulation process.

Table 3. List of the drug-induced hERG inhibition, AMES toxicity, carcinogens of top 10 ligands.

ZINC ID hERG inhibition AMES Carcinogens

ZINC000013923892 No No Yes

ZINC000252641347 No Yes Yes

ZINC000004697718 No Yes Yes

ZINC000002685589 No Yes Yes

ZINC000186886036 No No Yes

ZINC000003057249 No Yes Yes

ZINC000013759087 No Yes No

ZINC000000082103 No No Yes

ZINC000828320609 No No No

ZINC000000268095 No No Yes

https://doi.org/10.1371/journal.pone.0324018.t003

https://doi.org/10.1371/journal.pone.0324018.t003
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After the system has achieved thermal and pressure equilibrium, the position restraints are poised to be liberated, 
heralding the commencement of the momentous molecular dynamics (MD) simulation. Prepared for data collection, the 
MD simulation will span an impressive 100 nanoseconds, a testament to the rigor and precision of our computational 
methods.

Fig 2. The energy minimization and equilibration step before MD simulation. (A) The variation of potential energy with energy minimization step. 
(B) The variation of temperature within 100 ps. (C) The variation of pressure within 100 ps. (D) The variation of density within 100 ps.

https://doi.org/10.1371/journal.pone.0324018.g002

https://doi.org/10.1371/journal.pone.0324018.g002
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To accurately handle the long-range electrostatics within the system, we have implemented the Particle Mesh Ewald 
(PME) method, setting the PME order to 4. This ensures that electrostatic interactions are computed with utmost accu-
racy, capturing even the finest details of the system’s dynamics.

As the simulation progresses, the program will exercise its intelligence to determine the optimal number of processors 
required for the PME computations. This ensures that the computational load is evenly distributed, maximizing efficiency 
and minimizing resource utilization.

To further accelerate the computations, we have harnessed the power of GPU accelerators on a state-of-the-art super-
computer. These high-performance processors work in tandem with our PME algorithm, enabling us to traverse the vast 
simulation timeline with unprecedented speed and accuracy.

In summary, the release of position restraints, the execution of a 100-nanosecond MD simulation, the implementation 
of PME with optimized processor allocation, and the utilization of GPU accelerators all contribute to a robust and efficient 
computational pipeline, ensuring that we capture the essence of the system’s dynamics with unparalleled precision.

Unrestrained MD simulations

RMSD measures the deviation of the protein structure from its initial conformation over the course of the simulation. The 
RMSD values for Lig9 exhibited a notably lower deviation compared to other candidates, indicating that Lig9 maintains 
a stable structure when bound to Cav1.2. This stability is crucial for effective inhibition of the channel. Most importantly, 
Fig 3 demonstrates Lig9 possesses slightly stable structure compared to the one present in the minimized, equilibrated 
system due to its slight lower RMSD.

Additionally, our analysis of the radius of gyration of Cav1.2 revealed a gradual decrease from 4.97 nm to 4.75 nm with 
a certain oscillation during the simulation period, as shown in Fig 4. The radius of gyration measures the compactness 
of the protein structure. During the simulation, the radius of gyration of Cav1.2 showed a gradual decrease with some 
oscillation, indicating that the protein structure became more compact when Lig9 was bound. This compactness suggests 
a more stable protein-ligand complex.

RMSF measures the average atomic fluctuations within the protein structure, providing information about its flexibility. 
To further delve into the dynamics of the Cav1.2 protein, we calculated the root mean square fluctuation (RMSF) of its 

Fig 3. The RMSD values extracted from the complex structure within 100 ns MD simulation time.

https://doi.org/10.1371/journal.pone.0324018.g003

https://doi.org/10.1371/journal.pone.0324018.g003
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constituent atoms based on the simulated trajectories. As depicted in Fig 5, Lig9 binding results in significantly reduced 
RMSF values for most atoms, particularly those with the three highest fluctuations. This indicates that Lig9 promotes a 
more rigid and stable conformation of Cav1.2, potentially enhancing its inhibitory effects.

Fig 5. The RMSF values extracted from the complex structure within 100 ns MD simulation time.

https://doi.org/10.1371/journal.pone.0324018.g005

Fig 4. The radius of gyration values extracted from the complex structure within 100 ns MD simulation time.

https://doi.org/10.1371/journal.pone.0324018.g004

https://doi.org/10.1371/journal.pone.0324018.g005
https://doi.org/10.1371/journal.pone.0324018.g004
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MM/PBSA free energy calculation

MM/PBSA analysis was employed to predict the binding free energy (ΔG
binding

) of the protein-ligand complex and to decom-
pose this energy into individual energetic components. Utilizing the MM/PBSA method, we were able to assess the free 
energies involved in the interactions between our protein models. This approach, implemented through the gmx_MMPBSA 
program, offers a semi-quantitative lens into the stability of these systems (Poli et al., 2020). As indicated in Table 4, vari-
ous energy components contribute to the overall binding free energy, with the van der Waals energy (VDWAALS) standing 
out as the primary favorable contributor. The electrostatic energy (EEL) also plays a significant role, while the nonpolar 
solvation energy (ENPOLAR) contributes slightly but favorably. Specifically, the 1–4 interactions of the electrostatic and 
van der Waals energies further emphasize the importance of these forces. The Poisson-Boltzmann energy (EPB) and dis-
persion energy (EDISPER) also factor into the overall picture.The gas phase Gibbs free energy G

gas
 contributes favorably 

to the total energy while the liquid phase G
solv

 behaves opposite.
The preeminence of electrostatic energy in our results underscores the critical role it plays in stabilizing the complex 

between Cav1.2 and Lig9. This electrostatic force is pivotal in favoring the formation and maintenance of the homo- 
hexameric structure. Visualizing these energies, as presented in Fig 6A, provides a compelling confirmation of our 
findings.

To gain deeper insights into the intricacies of these protein-ligand interactions, we further performed MM/PBSA decom-
position analyses. As Fig 6A demonstrates, the relative gas phase Gibbs free energy (ΔGgas) emerges as the dominant 
component, while the nonpolar solvation energy (ENPOLAR) occupies the least significant position. These insights not 
only validate our previous conclusions but also provide a more nuanced understanding of the forces that govern these 
vital interactions. In summary, our results convincingly demonstrate that Lig9 can effectively bind to the protein Cav1.2, 
highlighting the importance of electrostatic and van der Waals forces in this process.

In Fig 6B, we delve deeper into the intricate energetic landscape of the Cav1.2 protein, courtesy of the MM/PBSA 
per-residue decomposition. This analysis reveals that certain residues stand out as the true guardians of the protein’s 
function, namely GLY422, VAL426, and LEU427. These titans contribute significantly to the overall energetic stability of 
the protein, their importance underscored by their conservation across the Cav1.2 protein.

Notably, these residues are not just passive participants; they actively engage in ligand binding. This suggests that 
these residues form a key interface for the protein to interact with and regulate its environment.

Table 4. List of energy components(kcal/mol).

Energy component Average σ SEM

BOND 0.00 0.00 0.00

ANGLE 0.00 0.00 0.00

DIHED 0.00 0.00 0.00

VDWAALS −41.00 3.18 0.77

EEL −38.12 7.91 1.92

1-4 VDW 0.00 0.00 0.00

1-4 EEL 0.00 0.00 0.00

EPB 56.00 3.96 0.96

ENPOLAR −4.10 0.10 0.02

EDISPER 0.00 0.00 0.00

ΔG
gas

−79.13 8.06 1.95

ΔG
solv

51.90 4.01 0.97

ΔG
total

−27.23 5.48 1.33

https://doi.org/10.1371/journal.pone.0324018.t004

https://doi.org/10.1371/journal.pone.0324018.t004
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Fig 6. The energy decomposition details. (A) The illustration of energy difference for the receptor-ligand complex. (B) Per-residue decomposition 
energies for the Cav1.2 protein using MM/PBSA. VDWAALS denotes the van der Waals energy, EEL denotes the electrostatic energy, ENPOLAR 
denotes the nonpolar solvation energy and EPB denotes the Poisson-Boltzmann energy.

https://doi.org/10.1371/journal.pone.0324018.g006

https://doi.org/10.1371/journal.pone.0324018.g006
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Conclusion

In this meticulous study, researchers harnessed the power of bioinformatics to identify potential regulators of the Cav1.2 
protein. Cav1.2 stands as a gatekeeper of cations, facilitating their exit from cells in times of distress, such as cellular 
swelling. This is pivotal in maintaining cellular equilibrium against osmotic fluctuations. This equilibrium is essential for 
cells to function optimally. The protein structure is obtained from AlphaFold prediction with an accuracy of over 80% rather 
than an experimental result. The benefit comes from its possibility for drug screening without experimental structure. How-
ever, there lies in potential limitations and uncertainties in this study due to this not-fully-accurate predicted structure.

Using virtual screening, the researchers sifted through a vast library of over 180,000 compounds, seeking those with 
the highest affinity for Cav1.2. After rigorous evaluation, ZINC000828320609 emerged as the champion, surpassing all 
others based on toxicity predictions. Its binding pose and interactions with the protein were thoroughly scrutinized.

To gain deeper understanding of how ZINC000828320609 interacts with Cav1.2, researchers employed molecular 
dynamics (MD) simulations. The simulations revealed insights into factors like RMSD, radius of gyration, RMSF. These 
comprehensive analyses revealed that ZINC000828320609 possesses superior inhibitory properties.

This breakthrough finding suggests that ZINC000828320609 holds immense promise as a potential drug candidate for 
treating autism. Its potential to effectively target Cav1.2 makes it a compelling contender in the drug development arena. 
This research not only offers valuable insights into the inhibitory mechanisms of ZINC000828320609 but also lays the 
foundation for developing novel therapeutics for autism and potentially other diseases.

The study employs computational methods to virtually screen a large database of compounds for their potential to mod-
ulate Cav1.2 channel function based on a AlphaFold-predicted structure. It provides a foundation for further experimental 
validation and potential drug development for ASD, offering a novel and efficient strategy to target Cav1.2 channels in the 
treatment of this complex disorder.

For CNS drugs, it is particularly important to evaluate toxicity parameters that can impact brain function and safety. 
Here, we provide additional toxicity predictions using ADMETLab:

1. hERG Inhibition

• The human ether-à-go-go-related gene (hERG) encodes a potassium channel that is crucial for cardiac repolarization. 
Inhibition of hERG can lead to prolonged QT interval and potentially fatal arrhythmias. None of the top 10 compounds 
exhibited predicted hERG inhibition.

2. AMES Toxicity

• AMES test is used to detect mutagenicity, which can be a concern for long-term drug safety. Some of the compounds 
showed positive AMES toxicity, indicating potential mutagenicity. However, ZINC000828320609 (Lig9) passed this test.

3. Carcinogenicity

• Carcinogenicity assessment is critical for drugs intended for chronic use. Several compounds showed predicted carcino-
genicity, highlighting the importance of further toxicological evaluation. Again, ZINC000828320609 (Lig9) was negative 
for carcinogenicity.

4. CNS penetration

• CNS penetration is a key pharmacokinetic parameter for CNS drugs. While not directly predicted by ADMETLab, we 
can infer that compounds with favorable LogPo/w and MW values are more likely to penetrate the blood-brain barrier 
(BBB).
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5. Neurotoxicity

• Neurotoxicity can manifest as adverse effects on brain function, behavior, or development. While direct neuro-
toxicity prediction is challenging, we can evaluate potential neurotoxic liabilities based on structural alerts and 
known toxicities of similar compounds. None of the top 10 compounds exhibited obvious structural alerts for 
neurotoxicity.

To alleviate off-target effects due to the structural similarities, experimental strategies such as Subtype-Selective 
Tools, including employment of subtype-specific inhibitors (e.g., ω-agatoxin for P/Q-type, SNX-482 for R-type) to isolate 
target channel contributions in electrophysiological recordings and genetic models (e.g., Cav2.2 knockout mice for N-type 
channel studies), Binding Specificity Assays, including in silico docking studies across Cav1.2 vs. Cav3.1 and Surface 
Plasmon Resonance (SPR) to quantify ligand-channel interactions, and Functional Readouts (Concentration-response 
curves in heterologous expression systems (HEK293T cells)) can be employed in the future work.
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