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Abstract: Obesity is associated with several health complications and can lead to the development
of metabolic syndrome. Some of its deleterious consequences are related to insulin resistance,
which adversely affects blood glucose regulation. At present, there is a growing concern regarding
healthy food consumption, owing to awareness about obesity. Seaweeds are well-known for their
nutritional benefits. The brown alga Ishige okamurae (IO) has been studied as a dietary supplement
and exhibits various biological activities in vitro and in vivo. The bioactive compounds isolated
from IO extract are known to possess anti-obesity and anti-diabetic properties, elicited via the
regulation of lipid metabolism and glucose homeostasis. This review focuses on IO extract and its
bioactive compounds that exhibit therapeutic effects through several cellular mechanisms in obesity
and diabetes. The information discussed in the present review may provide evidence to develop
nutraceuticals from IO.
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1. Introduction

Over the past 50 years, obesity has become a global public health issue that negatively affects
quality of life and increases the risk of various illnesses and healthcare costs worldwide [1–3]. Obesity is
considered a risk factor for coronary artery diseases, cerebrovascular accidents, type-2 diabetes
mellitus, systemic hypertension, various cancers, fatty liver disease, osteoarthritis, and gynecological
disorders [4]. An understanding of the molecular basis of obesity-associated diseases is required
to approach its prevention. The properties of adipose tissue and adipocytes in obesity have been
studied [5], and Higdon and Frei [6] also emphasized that obesity is a chronic oxidative stress condition
due to an imbalance among tissue active oxygen, reactive oxygen species (ROS) and antioxidants.

Oxidative stress also plays a key role in the pathogenesis of many other progressive diseases
including diabetes, atherosclerosis and cancer [7–9]. In addition, lipid accumulation has been
correlated with various markers of systemic oxidative stress [10]. Furukawa et al. [11] reported
that oxidative stress mediates the obesity-associated development of metabolic syndrome via two
mechanisms: (1) increased oxidative stress due to lipid accumulation leads to dysregulated production
of adipocytokines, and (2) selective increase in ROS production due to lipid accumulation leads to
elevation in systemic oxidative stress. Oxidative stress can activate a series of stress pathways involving
a family of serine/threonine kinases, resulting in a negative effect on insulin signaling [12], and an
increase in the production of free radicals or impaired antioxidant defenses. Diabetes is characterized
by hyperglycemia and insufficiency in the secretion or action of endogenous insulin [13]. An increase
in oxidative stress can lead to hyperglycemia in both type-1 and type-2 diabetes [14,15]. Tan et al. [16]
showed that hydrogen peroxide (H2O2) stimulated the inhibition of insulin-induced glucose uptake
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in vitro. In that study, oxidative stress directly causes insulin resistance via overactivation of
extracellular signal-related kinase (ERK).

Current available therapies for obesity and diabetes have either limited efficacy or cause side
effects. Therefore, many studies have suggested that natural sources can be used as complementary
treatments and preventive materials with less toxic and fewer side effects [17]. Marine algae have been
identified as rich sources of structurally diverse bioactive compounds including pigments, fucoidans,
phycocolloids, and phlorotannis, with nutraceutical and biomedical potential [18,19]. Ishige okamurae
(IO) is an edible brown seaweed found in temperate coastal areas, such as the Korean peninsula [20].
It is abundant along the coast of Jeju Island and is a potential functional food. In this review, we
discuss the anti-obesity and anti-diabetic effects of IO extract and its cellular mechanisms of action.
We also suggest its use as a potential nutraceutical source.

2. Anti-Obesity and Anti-Diabetic Properties of IO Extract

Ishige is a genus of brown algae with two species—Ishige foliacea and IO. Studies on the extracts
of Ishige, including Ishige foliacea and IO, have reported various in vitro and in vivo activities, such
as antioxidant, anti-diabetic, and anti-obesogenic effects [21–23]. Owing to these bioactivities, these
extracts have been gaining increased attention in recent years for potential nutraceutical application in
metabolic syndrome.

Metabolic syndrome is characterized by an increase in ROS levels, which cannot be counteracted
by endogenous antioxidant systems [24]. The increase in ROS levels plays a key role in the
development of metabolic diseases, which could lead to changes in glucose uptake, exacerbating
diabetes mellitus, obesity, cardiovascular diseases, or cancer [24,25]. The antioxidant properties of
Ishige foliacea and IO methanol extracts have been investigated in terms of their free-radical which
includes 1,1-diphenyl-2-picryl hydrazyl (DPPH); 2,2-azobis(3-ethylbenzothiazoline-6-sulfonate (ABTS)
and nitrite scavenging activity [21]. Furthermore, Heo and Jeon [26] reported that IO enzymatically
extracted with different carbohydrases and proteases exhibits antioxidative effects. In particular,
Ultraflo extract, which is a carbohydrase-based enzymatic extract, can scavenge free radicals, and
Kojizyme extract, which is a protease-based extract, can reduce the DNA damage caused by hydrogen
peroxide (H2O2). Thus, the antioxidant efficacy of IO extracts indicates that it is a potential functional
food, which can be used as a supplement for patients with metabolic syndrome.

Diabetes and obesity are common, closely interrelated disorders and are caused by poor metabolic
conditions. Obesity, a characteristic feature of metabolic syndrome, involves the accumulation of
abnormal or excessive fat that may interfere with the maintenance of an optimal state of health [27].
It is also associated with a systemic increase in oxidative stress, resulting in adipokine imbalance [28].
Previous in vitro and in vivo studies have suggested that oxidative stress can cause obesity through
increased proliferation of pre-adipocytes and increased size of differentiated adipocytes [29,30].

Cha and Cheon [31] showed that IO extract can inhibit lipid accumulation induced during
adipogenesis of 3T3-L1 preadipocytes. The concerted regulation of gene expression by various
adipogenic factors is required for the differentiation of preadipocytes to adipocytes. Furthermore,
research on the mechanism underlying preadipocyte mitogenesis and differentiation into adipocytes
may help understand the initiation and progression of obesity and its associated diseases. Peroxisome
proliferator-activated receptors (PPARγ) has been studied for its involvement in the regulation of
nutrient sensing and glucose and lipid metabolism [32]. Expression level of PPARγ is highest in adipose
tissue [33] when it regulates the transcriptional cascade involved in adipocyte differentiation [34].
The hormone nuclear receptor PPARγ plays an important role in the regulation of downstream
adipogenic genes [33]. Expression levels of PPARγ mRNA were significantly decreased by the IO
extract during 10 days of induction [31]. Thus, the antioxidant effect of IO extract can inhibit the
accumulation of lipids and modulate PPARγ expression. Although IO extract can decrease the levels
of PPARγ, previous studies showed the effect of IO extract against obesity through other adipogenic
transcription factors. The IO extract can suppress the increase in lipid droplet size by reducing the
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expression of adipogenic transcription factors in white adipose tissue (WAT), which is larger in a
high-fat diet (HFD)-fed mice than in mice on a normal diet [35,36]. Therefore, IO extract can reduce
body weight gain by preventing an increase in WAT mass and ameliorating HFD-induced obesity.

Adipose tissue helps maintain glucose and lipid homeostasis through the secretion of various
factors and through neural networks [37–39]. Diabetes in obese people occurs mostly due to insulin
resistance and subsequent hyperinsulinemia through adipogenesis and the insulin signaling pathway.
In addition, oxidative stress has been linked with disruption of insulin secretion by pancreatic
β-cells [40], glucose transport in muscle [8], and adipocytokines [41].

A widely used preclinical model of diabetes is db/db mice, characterized by hyperglycemia,
hyperinsulinemia, hyperleptinemia, and obesity, similar to type-2 diabetes [42]. C57BL/KsJ-db/db
mice were fed a standard semi-synthetic diet (AIN-93G) with IO extract (0.5%, w/w; IO extract
supplementation), resulting in downregulated fasting blood glucose levels. IO extract supplementation
controlled blood glucose levels during the intraperitoneal glucose tolerance test (IPGTT) [22].
Homeostatic model assessment (HOMA) is a method for assessing insulin resistance (IR) and is
a useful index of insulin sensitivity [43]. It has been shown that HOMA-IR is lowered following
IO extract supplementation [22]. Previous studies have suggested that therapeutic agents may be
required to prevent hyperglycemic conditions in patients with early-stage type-2 diabetes. IO extract
supplementation significantly lowered glycated hemoglobin (HbA1c) levels [22], which is useful for
monitoring glycemic control in diabetic patients [44]. Taken together, IO extract supplementation can
control blood glucose levels and improve insulin resistance in db/db mice. We suggest that IO extract
can be used as an antidiabetic supplement.

3. Composition of IO

Many brown algae species are used as food ingredients and supplements and possess a
variety of biological activities. These biological activities are related to the presence of polyphenols,
polysaccharides and pigments. Among polyphenols, one of the most common classes of secondary
metabolites derived from polymerized phloroglucinol units are phlorotannins [45]. Phlorotannins are
tannin derivatives composed of several phloroglucinol units isolated from brown algae [19]. It has
been reported that brown algae are richer in phlorotannins than other marine algae. Polyphenols can
react with oxidants in one-electron reactions, pairing with the free electron of the oxidant to become
chemically inactive. Therefore, polyphenols act as antioxidants that inhibit the formation of free
radicals in biological systems [46]. In addition, previous studies have examined various biological
activities associated with polyphenols from brown algae, including antioxidant, anti-coagulant,
anti-bacterial, anti-inflammatory, and anti-cancer effects [18,47,48]. Thus, phlorotannins isolated
from brown seaweeds represent the most widely studied class of secondary metabolites in marine
organisms, with potential use in the nutraceutical and functional food industry.

Yoon et al. [49] studied the secondary metabolites of IO extract with antioxidant effects, including
phloroglucinol, 6,6′-bieckol, and diphlorethohydroxycarmalol (DPHC). Octaphlorethol A (OPA)
was also isolated and purified from IO extract [50]. Recently, a novel polyphenol-compound,
ishophloroglucin A (IPA) with α-glucosidase inhibitory activity was isolated from IO extract [51].
Zou et al. [52] evaluated the antioxidant effects of 6,6′-bieckol and DPHC by using the electron spin
resonance (ESR) technique. The two phlorotannins displayed potent radical scavenging activities
against DPPH as well as hydroxyl, alkyl, and superoxide radicals. Moreover, effective concentration
(EC50) values of phlorotannins, defined as the concentration at which the radicals were scavenged by
50%, are summarized in Table 1. Heo and Jeon [53] reported the cytoprotective effect of DPHC in Vero
cells against oxidative stress induced by hydrogen peroxide (H2O2).
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Table 1. EC50 values of phlorotannins from Ishige okamurae.

EC50 (µM ± SD)

DPPH Hydroxyl Alkyl Superoxide

6,6′-bieckol 9.1 ± 0.4 23.7 ± 1.1 17.3 ± 1.0 15.4 ± 0.9
Diphlorethohydroxycarmalol (DPHC) 10.5 ± 0.5 27.1 ± 0.9 18.8 ± 1.2 16.7 ± 0.6

Phloroglucinol Not determined 408.5 ± 3.7 103.5 ± 1.9 124.7 ± 2.4

Several studies have reported that among the pigments of brown algae, fucoxanthin can reduce
oxidative stress and symptoms of metabolic syndrome via its anti-diabetic and anti-obesogenic
effects [54–57]. In addition, Kang et al. [58] reported that fucoxanthin isolated from IO can reduce high
glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) and in zebrafish
models. Taken together, the antioxidative effects of IO may be effective as supplementary treatment of
metabolic syndrome, including obesity and diabetes.

3.1. Anti-Obesity Effect of IO

When caloric expenditure is lower than caloric intake, adipocytes play a critical role by storing
triacylglycerol and regulating metabolism in obesity. In fat tissue, adipocyte differentiation and
lipid accumulation occur through adipocyte-specific proteins including enhancer binding protein
(C/EBP), sterol-regulatory element-binding protein 1c (SREBP-1c), peroxisome proliferator activated
receptor-γ (PPARγ), adiponectin, perilipin, fatty acid synthase (FAS), fatty acid binding protein
(FABP4), and leptin [59]. According to Cha and Cheon [31], IO extract is known to inhibit lipid
accumulation, which is induced during adipogenesis from 3T3-L1 preadipocytes. Previous studies
have focused on the inhibition of lipid accumulation in 3T3-L1 cells through decreased expression
levels of adipogenic-specific factors by polyphenols such as dieckol [60], epigallocatechin-3-gallate [61],
and resveratrol [62]. Several studies have found that IO extract inhibited fat accumulation in 3T3-L1
cells through a molecular mechanism involving adipocyte-specific proteins.

DPHC from IO extract has potential antiadipogenic effects elicited via the inhibition of adipocyte
differentiation and adipogenesis. Kang et al. [63] reported that levels of the adipogenesis-specific
proteins including C/EBPα, SREBP-1c, PPARγ, and adiponectin were decreased to activate molecular
mechanisms involved in 3T3-L1 adipocyte differentiation. These transcription factors are highly
expressed in adipocytes and are involved in the mediation of lipid synthesis, lipolysis, and glucose
uptake in adipocytes. DPHC can disrupt fatty acid synthesis by downregulating adipocyte-specific
proteins including perilipin, FAS, FABP4, and leptin. Furthermore, DPHC can activate adenosine
monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), resulting in the
inhibition of lipogenesis, adipocyte differentiation, and fatty acid synthesis in adipocytes. Besides the
increase in AMPK and ACC, preadipocyte apoptosis also has an anti-obesity effect. Park et al. [64]
reported that DPHC induced apoptosis in 3T3-L1 preadipocytes through the intrinsic pathway by
regulating the protein levels of Fas, Bax, Bcl-2, caspase-9, caspase-3, and PARP. Taken together, DPHC
can be used as a potential therapeutic agent against obesity.

3.2. Anti-Diabetic Activity of IO

Diabetes, a serious chronic metabolic disease, may develop with obesity and ageing in the
general population. In addition, rapidly increasing blood glucose levels are a result of the
hydrolysis of starch by pancreatic α-amylase and glucose uptake by intestinal α-glucosidases.
These enzymes play a crucial role in the effective regulation of glucose absorption [65]. Therefore, an
important strategy for suppressing postprandial hyperglycemia is the inhibition of α-amylase and
α-glucosidase activities [66,67]. A previous study with C57BL/KsJ-db/db mice showed that IO extract
supplementation prevented insulin resistance and regulated blood glucose levels in hyperglycemia [22].
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Lee and Jeon [19] focused on developing potential anti-diabetic nutraceutical and functional foods
from phlorotannins.

Furthermore, several studies found that IO extract showed anti-diabetic activity by inhibiting
α-amylase and α-glucosidases. Phlorotannins isolated from IO extract have excellent anti-diabetic
properties. DPHC (IC50 = 0.53 ± 0.08 and 0.16 ± 0.01 mM) showed effective inhibitory effects against
α-amylase and α-glucosidase compared to acarbose (IC50 = 1.10 ± 0.07 and 1.05 ± 0.03 mM), which
was used as the positive control [68]. DPHC significantly suppressed the increase in postprandial
blood glucose levels in both streptozotocin-induced diabetic and normal mice after the consumption
of starch [68]. Moreover, Lee et al. [69] described that DPHC treatment protected high glucose-induced
damage in RINm5F pancreatic β-cells. The dysfunction of pancreatic β-cells has a central role in
the pathogenesis of type-2 diabetes [70]. Therefore, DPHC can delay the absorption of dietary
carbohydrates and improve secretory responsiveness of insulin following stimulation with glucose.

Recently, IPA, a novel polyphenol-compound derived from IO extract showed a solid
α-glucosidase inhibitory activity [51]. The study showed the application of IPA in standardizing
the inhibition of α-glucosidase activity of IO extract and proposed IPA potential in the application of
marine-derived nutraceuticals.

4. Potential Nutraceutical Use of IO

The role of food is to provide enough nutrients to meet metabolic requirements, which is relevant
to well-being, good health, and disease management [71]. Recently, consumer awareness of bioactive
compounds as functional ingredients has increased, and knowledge about their various health benefits
is increasing. Seaweeds are rich sources of structurally diverse bioactive compounds with valuable
nutraceutical, pharmaceutical and cosmeceutical potentials [72]. Antioxidant properties of seaweeds
enable their use as nutraceuticals and functional food ingredients [73]. A considerable number of
bioactive compounds has been isolated from seaweeds and evaluated for their potential as functional
food ingredients to assist in the treatment of metabolic diseases such as cancer, hypertension and
diabetes [73].

IO is an edible brown seaweed that grows on rocks in the upper and middle intertidal zones
in the northwest Pacific Ocean (Korea, Japan, and China), where it forms continuous bands [20].
As shown in Table 2, previous studies have discussed the usefulness of bioactive compounds from IO
as functional ingredients [49,58,74]. Additionally, the antioxidant properties of the methanol extract
and enzymatic extract from IO were evaluated to develop potential functional food materials against
oxidative stress [21,26]. IO extract is rich in secondary metabolites such as phlorotannins, carotenoids,
and polysaccharides with various bioactive properties.

Table 2. Bioactivities of functional ingredients from Ishige okamurae.

Functional Ingredient Bioactivities References

Methanolic extract Antioxidant, anti-MMP, and anti-diabetic [21,22,74]
Ethanolic extract Anti-inflammatory [75]

Enzymatic extract Antioxidant [26]
Fermented extract Radioprotective and antioxidant [76]

6,6′-Bieckol Cholinesterase inhibition [49]
Diphlorethohydroxycarmalol

(DPHC)
Antioxidant, anti-cancer, anti-HIV,

anti-obesity, and anti-diabetic [52,53,64,68,69,77–79]

Fucoxanthin Antioxidant, anti-inflammatory [58,80]
Ishigoside Antioxidant [20]

Ishophloroglucin A (IPA) α-glucosidases inhibition [51]
Phloroglucinol Cholinesterase inhibition [49]

6,6′-bieckol is another phlorotannin from IO which possesses in vitro and in vivo neuroprotective
effects. 6,6′-bieckol suppresses acetylcholinesterase (AChE) activity with an IC50 value of
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46.42 ± 1.19 µM [49]. AChE plays a key role in the regulation of several physiological reactions
by hydrolyzing the neurotransmitter acetylcholine in the cholinergic synapses [81,82]. In addition,
Alzheimer’s disease (AD) is related to a deficit in cholinergic functions in the brain [83]. Thus, the
application of 6,6′-bieckol as an alternative for AChE inhibitors suggests a therapeutic potential in
AD. Fucoxanthin, an accessory pigment in chloroplasts, is a well-known brown seaweed carotenoid
with numerous important bioactive properties [84]. It is also one of the major constituents of IO.
Kim et al. [80] showed that fucoxanthin from IO reduced the production of nitric oxide (NO) and
inflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2), and inhibited nuclear factor (NF)-κB activation and mitogen-activated protein kinases
(MAPKs; JNK, ERK and p38) signal pathways in LPS-stimulated RAW264.7. In LPS-treated
macrophages, pro-inflammatory cytokines and gene expression were upregulated through NF-κB
activation and MAPK signaling pathways [85,86]. Cancer is characterized by uncontrolled cell growth
and spread [87]. Fucoxanthin has the potential to inhibit the proliferation of melanoma cell lines
(B16F10 cells) through cell cycle arrest during the G0/G1 phase and the apoptotic pathway [64].
Fucoxanthin also decreases Bcl-xL expression level, which is a critical regulator of the apoptotic
pathway. Moreover, it has been shown that fucoxanthin suppressed in vivo growth of B16F10
melanoma in Balb/c mice. Therefore, researchers have been interested in identifying new anti-cancer
drugs from marine sources, which supposedly have fewer adverse side effects unlike synthetic
drugs [88].

5. Conclusions

Obesity is associated with lipid accumulation together with oxidative stress, which increases
insulin resistance and eventually results in diabetes. In this review, we have discussed the antioxidant
properties of IO extract and the mechanisms of action underpinning its anti-obesity and anti-diabetic
effects (Figure 1).
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