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Fluorescence imaging has been widely used as a powerful tool for in situ

and real-time visualization of important analytes and biological events in live

samples with remarkably high selectivity, sensitivity, and spatial resolution. Compared

with one-photon fluorescence imaging, two-photon fluorescence imaging exhibits

predominant advantages of minimal photodamage to samples, deep tissue penetration,

and outstanding resolution. Recently, the aggregation-induced emission (AIE) materials

have become a preferred choice in two-photon fluorescence biological imaging because

of its unique bright fluorescence in solid and aggregate states and strong resistance

to photobleaching. In this review, we will exclusively summarize the applications of

AIE-active materials in two-photon fluorescence imaging with some representative

examples from four aspects: fluorescence detection, in vitro cell imaging, ex vivo

tissue imaging, and in vivo vascular imaging. In addition, the current challenges and

future development directions of AIE-active materials for two-photon bioimaging are

briefly discussed.

Keywords: two-photon, aggregation-induced emission, fluorescent material, fluorescent detection, fluorescence

imaging

INTRODUCTION

In recent years, fluorescence imaging has been widely used as a powerful tool for in situ and
real-time visualization of important analytes and biological events in live samples with remarkably
high selectivity, sensitivity, and spatial resolution (Ding et al., 2018; Zheng et al., 2019; Zhou
et al., 2019; Liu et al., 2020; Lv Z. et al., 2020). Most of the structures and components in
live samples do not emit fluorescence. Only when the fluorescent material specifically binds to
the target, can the target be observed by the fluorescence microscope. Then the imaging and
observation of ions, small biological molecules such as amino acids, sugars and cholesterol,
biological macromolecules, various organelles, and the intracellular microenvironment at the
cellular level are realized. Therefore, the development of fluorescence imaging depends not only
on the microscopic technology, but also on the fluorescent materials.

Two-photon fluorescence bioimaging has incomparable advantages over one-photon
(Scheme 1): first, it uses near-infrared (NIR) photon as the excitation source and causes mild
photondamage to live samples (Looney et al., 2011); second, due to low excitation light scattering
and NIR excitation, it can be used for deep penetrating imaging of tissues (Tadayon et al., 2019).
Moreover, it emits light only when it is in the focus position in bioimaging, resulting in ultrahigh
resolution (Song et al., 2020). Therefore, compared with one-photon fluorescence imaging, it is of
great significance to perform two-photon fluorescence imaging to visualize important substances
and biological processes in biological systems and reveal the mysteries of life systems (Gao Y.T. et
al., 2020; Li Y. et al., 2020; Li Y.Y. et al., 2020; Zheng et al., 2020).
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SCHEME 1 | Principle of two-photon excited fluorescence for bioimaging.

However, the laser energy used in two-photon fluorescence
imaging is relatively strong, and the photobleaching resistance
of most traditional organic fluorescent materials is limited.
One method to enhance their anti-photobleaching ability is
increasing the concentration of traditional organic fluorescent
materials, but they are prone to aggregation at high concentration
in biological systems, which causes fluorescence quenching
due to strong π-π stacking (Figure 1A). Another effective
method is designing organic fluorescent materials with a large
two-photon absorption cross section by introduction of strong
electron donor and acceptor groups as well as extending
the length of π-conjugation. As these strategies cause high
hydrophobicity, the same problem of fluorescence quenching still
exists. Thus, it is of great significance to develop new fluorescent
materials to surmount the quenching problem of traditional
hydrophobic fluorescent materials at a high concentration in a
biological environment.

A new class of fluorescent materials (Figure 1B) with
aggregation-induced emission (AIE) discovered by Tang’s group
and others have received considerable attention due to their
unique photophysical properties (Luo et al., 2001; An et al., 2002,
2012; Shimizu et al., 2009; Shustova et al., 2013; Yan et al., 2015;
Sasaki et al., 2016; Li and Li, 2017; Tsujimoto et al., 2017; Zhang
et al., 2017; Ren et al., 2019; Guo et al., 2020; Hu et al., 2020;
Kong et al., 2020; Mao et al., 2020; Qin et al., 2020). The widely
accepted working mechanism of AIE-active fluorescent materials
is restriction of intramolecular motions (Mei et al., 2015; Chen
et al., 2019; Tu et al., 2020), thus the AIE materials generally
show strong emission in aggregate and solid states and strong
photobleaching resistance (Hong et al., 2011; Chen Y. et al.,
2018; Cao et al., 2019; Li et al., 2019; Chen et al., 2020; Feng
H. et al., 2020; He et al., 2020b; Huang et al., 2020; Li Q. et al.,
2020; Ni et al., 2020; Wei et al., 2020; Xu Y. et al., 2020; Yin
et al., 2020). On the other hand, AIE materials mostly exist in
the form of nanoaggregates in biological systems, which are not
easily discharged by the biological system through metabolism,

enabling long-term dynamic tracking (Xie et al., 2019; Niu et al.,
2020).

In a word, AIE materials are an ideal choice for two-photon
fluorescence imaging. Recently, many AIE materials have been
rationally designed and developed for two-photon fluorescence
bioimaging (Gao et al., 2015; Wang et al., 2015, 2019a; Xiang
et al., 2015; Zhu et al., 2015; Jiang et al., 2017; Yang et al.,
2017; Chen M. et al., 2018; Yan et al., 2018; Gao Y. et al., 2020;
Zhang R. et al., 2020). However, reviews on the application
of AIE-active fluorescent materials for two-photon fluorescent
bioimaging are rarely reported, except one review article about
two-photon organic AIE dots (Lou et al., 2016). Considering
some reviews have summarized the applications of AIE materials
for cancer therapy (Gao and Tang, 2017; Hu et al., 2018;
Zhang et al., 2018; Dai et al., 2020; He et al., 2020a; Wu
and Li, 2020), in this review, we will focus on the AIE-active
materials for two-photon bioimaging. This review summarizes
the latest literatures in the past 6 years and discusses the two-
photon bioimaging applications of AIE-active materials from
four aspects: fluorescence detection, in vitro cell imaging, ex vivo
tissue imaging, and in vivo vascular imaging. At the end of this
review, the future directions and developments of AIE-active
materials for two-photon bioimaging will be discussed.

BIOIMAGING APPLICATIONS

Fluorescent Detection
As a signal gas transmitter, H2S plays a vital role in regulating
the different functions of life systems (Hong et al., 2018; Lv
L. et al., 2020; Wang J. et al., 2020; Zhang D. et al., 2020).
Yoon’s group developed a two-photon AIE probe 1 based on
the mechanism of excited-state intramolecular proton transfer
(ESIPT) for fluorescent turn-on detection of H2S (Figure 2A)
(Chen et al., 2017). The probe 1 showed almost no fluorescence
due to free motion and inhibited ESIPT effect. After reaction
with H2S, the six-membered pyran ring of probe 1 opened and
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FIGURE 1 | Fluorescent photographs of (A) perylene and (B) hexaphenylsilole

(HPS) in THF/H2O mixture containing different water fractions under 365 nm

UV irradiation (reproduced with permission from Mei et al., 2015; Copyright

2015 American Chemical Society).

the H atom in the phenolic hydroxyl group was bonded with
the N atom in the adjacent benzothiazole to form compound
2, which showed dramatically enhanced fluorescence (about 80-
fold) because of ESIPT and AIE characteristics. The detection
limit was calculated to be 41 nM. The probe 1 showed high
selectivity and sensitivity toward H2S. The authors further
applied the probe 1 for two-photon fluorescence imaging of H2S
in HeLa cells, rendering its high potential in investigating the
biological and pathological roles of H2S in the life system.

The changes of pH and viscosity in cells will affect the
reaction rate and material and energy transfer rates of cells,
which have important biological value for the analysis of various
physiological activities of cells (Han et al., 2020; Kim et al., 2020;
Ma et al., 2020; Zhang J. et al., 2020; Zhi et al., 2020). A novel
AIE-active probe 3 based on a styrylquinoline derivative with
excellent two-photon performance was designed and synthesized
(Figure 2B) (Dou et al., 2019). Due to the AIE effect, the probe
emitted yellow emission of 550 nm in solution. Based on the
response principle of N atom in quinoline to H+ (compound
4), the probe 3 exhibited good sensitivity toward pH with blue
emission of 470 nm and a pKa value of 3.21. It also showed a
good linearity with pH in the range 3.0–1.25. In addition, due to
its free motion feature, the AIE probe displayed enhanced yellow
emission at 550 nm at high viscous solution (compound 3’). The
two-photon absorption cross section was very high (up to 612
GM at 640 nm). Further two-photon bioimaging of viscosity and
pH in live HeLa cells was successfully carried out.

As one of the important reactive oxygen species, hypochlorite
(ClO−) plays a very key role in modulating a set of biological
processes in the life systems, such as signal transduction,
inflammation, carcinogenesis and neurological diseases. Proper
concentration can be highly effective for antibacterial, anti-
inflammatory and pro-inflammatory properties (Hong et al.,
2019; Feng A. et al., 2020; Li L. et al., 2020; Zhong et al., 2020).
However, the abnormal concentration of ClO− can react with
various components, leading to cell damage, tissue destruction,

and eventually many diseases. Ding et al. reported a two-photon
AIE probe 5 for ClO− visualization (Figure 2C) (Zhang et al.,
2019). The probe 5 emitted almost no fluorescence, due to strong
intramolecular motion. After reaction with ClO−, the ethylene
bonded to indole quaternary salt was destructed to result in
compound 6 with significant blue-shift emission of 514 nm. The
probe showed fast response and a low detection limit of 13.2 nM
toward ClO−. The two-photon absorption cross section of probe
5 after reaction with ClO− was 15.3 GM at 730 nm. Additionally,
the probe showed a good two-photon imaging performance for
turn-on detection of ClO− in HeLa cells.

Alkaline phosphatase (ALP) is considered to be a key
biomarker related to signal transduction and tumor metabolism.
The overexpression of ALP is closely related to the occurrence,
development and deterioration of tumor and can be used as
one of the important clinical indexes (He et al., 2020c; Khatun
et al., 2020; Xu J. et al., 2020). Yoon and Peng et al. developed
a new two-photon probe 7 based on typical AIE building block
quinoline-malonitrile (QM) for ALP monitoring and surgical
tumor excision (Figure 2D) (Li H. et al., 2020). The amphiphilic
water-soluble probe 7 self-assembled to form nanoaggregate in
aqueous solution. Upon addition with ALP, the fluorescence
of self-assembled compound 8 was boosted, and the detection
limit was calculated to be 0.15 mU/mL. The nanoprobe 7 could
selectively light-up HeLa cells with overexpression of ALP, and
was applied to monitor the down-regulation and up-regulation
of ALP activity. Long-term high-fidelity cell imaging of up
to 13 h was achieved. The authors used this probe for two-
photon imaging of HeLa multicellular tumor spheroids with high
penetration depth. In addition, the probe was also successfully
used to distinguish tumor tissues from normal tissues in BABL/c
mice bearing HepG-2 and HeLa xenografts and further to guide
tumor resection.

In vitro Cell Imaging
Cells are one of the basic components of organisms. Each cell is
composed of various organelles such as plasma membrane,
mitochondria, lysosome, golgi apparatus, endoplasmic
reticulum, nucleus, centrosome, microtubule, andmicrofilament.
These structures are very important to the precise operation
of cells and even the whole body, and diverse biochemical
processes and physiological pathways that occur in life have
more profound significance. Thus, the development of organelle-
specific biological probes makes it possible to study specific
target organelles, which can reveal the location and morphology
of organelles andmonitor the changes of important physiological
activities or organelle dysfunction for researchers.

As an important organelle in cells, endoplasmic reticulum
plays a key role in cell metabolism, protein synthesis and
transmission of intermediates and signal molecules (Zhang M.-
M. et al., 2020; Zhao et al., 2020). Tang’s group reported an
AIE material 9 based on cyanostillbene skeleton by simple
functionalization (Figure 3A) (Alam et al., 2020). Interestingly,
the zwitterionic donor-receptor-type AIE material 9 with
positive-charged pyridinium and negative-charged sulfonic
group can specifically target the endoplasmic reticulum in live
cells. This AIEmaterial 9 showedmaximum emission wavelength
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FIGURE 2 | (A) Working principle of AIE probe 1 for fluorescent two-photon detection of H2S. (B) Working principle of AIE probe 3 for fluorescent two-photon

detection of pH and viscosity. (C) Working principle of AIE probe 5 for fluorescent two-photon detection of ClO−. (D) Working principle of AIE probe 7 for fluorescent

two-photon detection of ALP and (E) two-photon imaging of HeLa multicellular tumor spheroids (reproduced with permission from Li H. et al., 2020; Copyright 2020

Wiley-VCH.).

under 620 nm, two-photon absorption cross section of about 120
GM, and solid-state quantum efficiency of as high as 39.3%. The
imaging pattern of AIE material 9 was well overlapped with that
of ER-Tracker Red with a high Pearson’s correlation value of 0.85.
Further two-photon bioimaging of endoplasmic reticulum under
820 nm excitation was achieved.

Mitochondria are the “power factories” in cells, and their
defects are closely related to aging, cancer and neurodegenerative
diseases, including Alzheimer’s disease, Huntington’s disease and
Parkinson’s disease (Baines, 2010). Generally, positively charged
fluorescent dyes can selectively locate in mitochondria via
electrostatic interaction (Zhang et al., 2015; Jean et al., 2016; Liu
et al., 2016). The photostable AIE material 10 was also confirmed
to stain mitochondria in live HeLa cells (Figure 3B) (Qian et al.,
2015). To expand its further application, Qian et al. applied these
materials for two-photon imaging in primary neurons andmouse
brain microglia. Because of high photostability of compound 10

in an aggregate state, they achieved long-term neuroimaging.
Besides traditional fluorescence imaging, fluorescence lifetime
imaging was also performed for mitochondria visualization.
Chen et al. used the AIE material 11 for two-photon lifetime
imaging of dual organelles: mitochondria and lipid droplets
(Figure 3C) (Chen et al., 2015). The imaging data revealed
that mitochondria incubated with compound 11 show longer
lifetimes than lipid droplets. The authors further mapped the
subcellular viscosity.

Photoactivatable fluorescent probes are preferable tools
for organelle study with remarkably increased spatiotemporal

resolution (Fay et al., 2020; Zou et al., 2020). Tang and Gao
et al. developed two photoactivated AIE probes 12-1 and 12-2

for specific organelle imaging (Figure 3D) (Li et al., 2018). These
AIE probes were in situ generated from easily available disulfide
and thiol substrates through tandem S–S bond reduction and
intramolecular cyclization reaction. Their subcellular organelle
targeting ability could be regulated by the functionalized groups
on the skeleton core. The probes 12-1 and 12-2 could selectively
stain lipid droplets and lysosomes, respectively, and high-
resolution photoactivated imaging under one-photon and two-
photon irradiation were also achieved. It should be noted that the
fluorescence of the probes 12-1 and 12-2 can be activated faster
under two-photon excitation than one-photon excitation.

Ex vivo Tissue Imaging
In situ and direct imaging of organelles in intact tissue can
provide more intrinsic and accurate information than cells in
vitro. On the one hand, the biological environments of the two
are different. The cells in the live tissues are in the extracellular
matrix, while the cells in vitro are in the artificial culture medium.
On the other hand, the cells in vitro are generally immortalized
cells that can be infinitely added, and their original differentiation
function has been destroyed. In a word, the process of ex vivo
tissue imaging is more complex and difficult than that of in vitro
cell imaging, and the requirements of probes are more stringent.

Recent studies showed that hydrophobic dyes with high logP
(n-octanol/water partition coefficient) value are inclined to locate
in lipid droplets (Zhao et al., 2019; Wang L. et al., 2020; Ye
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FIGURE 3 | (A) Chemical structure of AIE material 9 and two-photon endoplasmic reticulum imaging in live cells (reproduced with permission from Alam et al., 2020;

Copyright 2020 Wiley-VCH). (B) Chemical structure of AIE material 10 and two-photon mitochondria imaging in live cells (reproduced with permission from Qian et al.,

2015; This figure is extracted from an open access journal with thanks; Copyright 2015 The Optical Society). (C) Chemical structure of AIE material 11 and

two-photon mitochondria and lipid droplet lifetime imaging in live cells (reproduced with permission from Chen et al., 2015; Copyright 2015 Wiley-VCH). (D) Chemical

structures of AIE material 12-1 and 12-2 and two-photon photoactivated imaging of lipid droplets and lysosomes, respectively, in live cells (reproduced with

permission from Li et al., 2018; This figure is extracted from an open access journal with thanks; Copyright 2018 The Royal Society of Chemistry).

et al., 2020; Zhang F. et al., 2020; Zhang X. et al., 2020). A
few fluorescent dyes have been applied for two-photon lipid
droplet imaging in live cells and fixed tissues (Collot et al., 2018;
Fam et al., 2018). However, fluorescent probes for two-photon
imaging of lipid droplets in live tissues are rarely reported. Tang
and Yu et al. synthesized a group of two-photon AIE fluorescence
probes capable of selective staining lipid droplets in live cells
and live tissues (Niu et al., 2018). These AIE probes exhibited
excellent photophysical properties: large Stokes shift (>100 nm),
high solid-state fluorescence quantum yield (30%), good two-
photon absorption cross section (45–100 GM at 860 nm), high
biocompatibility and excellent photostability. Rapid and specific
staining lipid droplets in live cells at an ultralow concentration
(50 nM) was achieved. Such concentration is the lowest value for
lipid droplet staining in live cells reported so far. The authors
used probe 13 (Figure 4A) as an example to successfully achieve
two-photon specific imaging of lipid droplets in live mouse liver
tissues at a depth of about 70µm (Figure 4B).

Later, Tang’s team developed a family of far-red and NIR AIE
materials based on a carbazole-bridged push–pull framework
(Zheng et al., 2018). Among these AIE materials, the compound
DCMa could two-photon image lipid droplets at the depth of
129µm in live mouse liver tissues, and the compound DCPy
showed two-photon deep-tissue imaging of mitochondria in
live mouse muscle tissues (77µm). Subsequently, the positively
charged AIE material 14 (Figure 4A) was also reported in their
group (Niu et al., 2019a). The compound 14 showed large
Stokes shift (>180 nm), high fluorescence quantum yield (12.8–
13.7%), and excellent photostability under both one- and two-
photon continuous irradiation. Moreover, the probe achieved
the ex vivo two-photon depth tissue imaging of rat skeletal

muscle mitochondria at the penetration depth of up to 100µm
(Figure 4C).

Besides small AIE dyes, AIE nanomaterials by a simple
nanoprecipitation method were also fabricated for ex vivo two-
photon tissue imaging (Liu et al., 2019). Recently, Tang’s group
prepared red emissive AIE dots based on an efficient solid-
state red-emissive AIE compound 15 (Figure 4A) with a high
fluorescence quantum yield of 34.1% (Qin et al., 2018). The AIE
dots exhibited a large two-photon absorption cross section value
of 310 GM at 900 nm. The deep-tissue imaging performance
of the AIE dots in mouse liver excited by a two-photon pulse
laser (>200µm) was obviously better than that of one-photon
imaging (<100µm) (Figure 4D). They also demonstrated their
two-photon deep-tissue imaging of the blood vessels in mouse
ears and brain. Later, they unexpectedly developed a red-emissive
organic AIE material 16 (Figure 4A) with excellent fluorescence
quantum yield (37.6%), large two-photon absorption cross
section (508 GM) and high biocompatibility (Niu et al., 2019b).
The fabricated AIE nanoparticles (NPs) based on compound 16

could specifically stain lysosomes in live cells. In addition, high-
resolution two-photon deep tissue imaging of this AIE NPs in
tumor tissue under 880 nm excitation was obtained, and the
two-photon imaging performance was better than one-photon
excitation (Figure 4E). Further use of this NPs for long-term
imaging of tumors inmice was achieved. The AIENPs show great
potential in two-photon deep tissue bioimaging and long-term
dynamic tracking of tumor metastasis.

In vivo Vasculatures Imaging
Blood vessels play an essential role in the growth and metastasis
of solid tumors, and can transport nutrients and oxygen in
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FIGURE 4 | (A) Chemical structures of AIE materials 13-16 for two-photon tissue imaging. (B) Reconstructed 3D two-photon fluorescence imaging of lipid droplets in

live mouse liver tissues incubated with AIE material 13 (reproduced with permission from Niu et al., 2018; Copyright 2018 American Chemical Society). (C)

Reconstructed 3D two-photon fluorescence imaging of live mice muscle tissues incubated with AIE material 14 (reproduced with permission from Niu et al., 2019a;

Copyright 2019 Elsevier). (D) One-photon and two-photon fluorescent images of mouse liver by intravenous injection with compound 15 based AIE dots (reproduced

with permission from Qin et al., 2018; This figure is extracted from an open access journal with thanks; Copyright 2018 The Royal Society of Chemistry). (E)

Reconstructed 3D One-photon and two-photon fluorescent images of mouse tumor by intratumor injection with compound 16 based AIE NPs (reproduced with

permission from Niu et al., 2019b; Copyright 2019 American Chemical Society).

the tumor microenvironment (Dewhirst and Secomb, 2017; Li
et al., 2021). Tumor blood vessels are usually characterized
by structural and functional abnormalities, vascular leakage,
dilatation, bending of blood vessels, increasing non-uniformity of
tumor blood flow, and so on (Tozer et al., 2005). Cerebrovascular
abnormalities are related to cerebrovascular diseases such
as stroke, vascular malformations, aneurysms, and transient
ischemic attacks (Chen C.-J. et al., 2018; Lin et al., 2018).
Therefore, the utilization of an in vivo two-photon fluorescence
microscope with cell resolution and promising sensitivity can
not only effectively identify and monitor the vascular structure,
morphology, and normalization process of cerebrovascular
systems and tumors, but also provide valuable information

for the diagnosis and treatment of the disease. Moreover,
this method reduces the light absorption and scattering of
biological tissue, and achieves better light transmittance and
deeper imaging depth.

Liu and co-authors developed efficient near-infrared AIE dots
based on the compound 17 (Figure 5A) (Wang et al., 2019b). The
fabricated AIE dots showed excellent properties: high quantum
yield (19 ± 1%) and ultralarge two-photon absorption cross
section (7.63 × 104 GM at 1,200 nm). Under the two-photon
NIR-II excitation (1,200 nm), the mouse brain vasculatures
labeled by the AIE dots could be clearly imaged at an ultradeep
depth of 924µm (Figure 5A). They successfully used AIE dots to
distinguish the tumor vessels from normal vessels, and realized
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FIGURE 5 | (A) Chemical structures of AIE material 17 and 3D two-photon intravital imaging of mouse brain vasculature network at different penetration depths

(reproduced with permission from Wang et al., 2019b; Copyright 2019 Wiley-VCH). (B) Chemical structures of AIE material 18 and 3D two-photon imaging of mouse

brain blood vessels at different penetration depths (reproduced with permission from Qi et al., 2018; Copyright 2018 American Chemical Society).

the non-invasive real-time imaging of the deep tumor vascular
network with large penetration depth (670µm) and high signal-
to-background ratio (about 120) under the two-photon NIR-II
excitation. This work opens up a new avenue for effective near-
infrared materials excited by two-photon NIR-II light in vivo
tumor imaging.

Tang and Qian et al. fabricated other AIE dots based on
red-shifted NIR emissive AIE compound 18 with a maximum
emission wavelength of 810 nm for ultradeep intravital two-
photon fluorescence bioimaging (Figure 5B) (Qi et al., 2018).
The water-soluble AIE dots exhibited superior large two-photon
absorption cross section (1.22 × 103 GM at 1,300 nm). Under
two-photon 1,300 nm NIR-II light irradiation, 3D blood vessels
outside white matter (>840µm) and even in the hippocampus
(>960µm) were successfully constructed at ultrahigh spatial
resolution (<3.5µm), and 5µm vessels in the mouse brain
were clearly visible at the depth of 1,065µm (Figure 5B), which
was one of the deepest penetration depths and the best spatial
resolution reported so far.

CONCLUSION AND OUTLOOK

AIE materials have become a preferential choice for two-photon
fluorescence bioimaging because of their strong fluorescence
and excellent photostability in high concentration or aggregation
states. This review mainly summarizes the recent advances
of AIE-active materials for two-photon bioimaging with some
representative examples in four areas: fluorescence detection, in

vitro cell imaging, ex vivo tissue imaging, and in vivo vasculature
imaging. Though some interesting progress has been achieved,
there are some unsolved problems and challenges which still need
to be overcome.

New recognition units need to be rationally incorporated
into the skeleton of AIE-active two-photon materials to extend
the analyte detection ranges, such as DNA, protein, enzyme,
chiral molecules, and so on. However, for AIE probes, the
detection limit is a critical parameter to be carefully considered.
In addition, subcellular organelle targeted AIE-active two-
photon materials should be switched to some other important
organelles like golgi apparatus, nucleus, and nucleolus, which
could be possibly achieved by conjugation with specific organelle-
targeting peptides. It should be noted that the specificity
of these organelle targeted AIE-active materials could be
altered a lot in neuron cells. In some point, the development
of such materials for specific organelle targeting in neuron
cells is challenging. The majority of AIE materials exhibit
small to moderate two-photon absorption cross section, so
enhancing the two-photon absorption cross section is still
an important issue. Generally, extending the π-conjugation
length of AIE skeletons and introducing strong electron
donor and acceptor groups to enhance the intramolecular
charge transfer effects are two widely adopted strategies to
improve the two-photon absorption as well as to enable
the red shift of absorption and emission. However, these
strategies can result in high hydrophobicity of AIE materials.
The balance between hydrophobicity and penetrability to live
samples needs careful consideration. On the other hand, the
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twisted intramolecular charge transfer (TICT) effect should
be also considered, as the TICT effect is detrimental for
AIE materials especially NIR emissive ones. It should be also
added that the fabrication of composite two-photon AIE-active
materials with other materials like inorganic quantum dots is
an effective method to render the composite materials with
multifunctionalities, such as multimode imaging and activity-
based cancer diagnosis. Furthermore, traditional chemotherapy
and modern phototherapy (photodynamic and photothermal
therapy) based on drugs and photosensitizers, respectively,
have been demonstrated to show satisfying therapeutic effects.
Combined with two-photon fluorescence imaging of AIE-active
materials, such imaging-guided therapy could emerge as an
effective modality for precise spatiotemporal control of cancer
therapy. Therefore, there is still much room to improve and
develop many fascinating AIE-active materials for diverse two-
photon biomedical imaging. We hope this review can shed
new light on future two-photon bioimaging application of
AIE-active materials.
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