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Abstract
Background: Electrical impedance tomography (EIT) is a nonionizing imaging
technique for real-time imaging of ventilation of patients with respiratory dis-
tress. Cross-sectional dynamic images are formed by reconstructing the con-
ductivity distribution from measured voltage data arising from applied alternat-
ing currents on electrodes placed circumferentially around the chest. Since the
conductivity of lung tissue depends on air content, blood flow, and the presence
of pathology, the dynamic images provide regional information about ventila-
tion, pulsatile perfusion, and abnormalities. However, due to the ill-posedness
of the inverse conductivity problem, EIT images have a coarse spatial resolu-
tion. One method of improving the resolution is to include prior information in
the reconstruction.
Purpose: In this work, we propose a technique in which a statistical prior built
from an anatomical atlas is used to postprocess EIT reconstructions of human
chest data. The effectiveness of the method is demonstrated on data from two
patients with cystic fibrosis.
Methods: A direct reconstruction algorithm known as the D-bar method was
used to compute a two-dimensional reconstruction of the conductivity distribu-
tion in the plane of the electrodes.Reconstructions using one step in an iterative
(regularized) Newton’s method were also computed for comparison.An anatom-
ical atlas consisting of 1589 synthetic EIT images computed from X-ray com-
puted tomography (CT) scans of 74 adult male subjects was computed for use
as a statistical prior. The resolution of the D-bar images was then improved by
maximizing the conditional probability density function of an image that is con-
sistent with the a priori information and the statistical model. A new method to
evaluate the accuracy of the EIT images using CT scans of the imaged patient
as ground truth is presented. The novel approach is tested on data from two
patients with cystic fibrosis.
Results and Conclusions: The D-bar images resulted in better structural simi-
larity index measures (SSIM) and multiscale (MS) SSIM measures for both sub-
jects using the mask or amplitude evaluation approach than the one-step (regu-
larized) Newton’s method. Further improvement was achieved using the Schur
complement (SC) approach, with MS-SSIM values of 0.718 and 0.682 using
SC evaluated with the mask and amplitude approach, respectively, for Patient
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1, and MS-SSIM values of 0.726 and 0.692 using SC evaluated with the mask
and amplitude approach, respectively, for Patient 2.The results from applying an
anatomical atlas and statistical prior to EIT data from two patients with cystic
fibrosis suggest that the spatial resolution of the EIT image can be improved to
reveal pathology that may be difficult to discern in the original EIT image. The
novel metric of evaluation is consistent with the appearance of improved spatial
resolution and provides a new way to evaluate the accuracy of EIT reconstruc-
tions when a CT scan is available.
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electrical impedance tomography, inverse problems

1 INTRODUCTION

Electrical impedance tomography (EIT) is a nonioniz-
ing imaging technique in which electrodes are placed
around the circumference of a patient’s chest and
a low-frequency, low-amplitude alternating current is
applied to the electrodes, inducing a voltage distribu-
tion on these same electrodes that is dependent on
the conductivity distribution in the interior of the body.
From this measured voltage data, an inverse prob-
lem can be solved to compute the conductivity in the
plane of the electrodes and form a two-dimensional
(2D) cross-sectional image of the chest by plotting
the reconstructed conductivity. Since tissues vary in
conductivity as the presence of air and fluids changes,
dynamic images can be formed. This property has led
to the development of real-time EIT pulmonary imag-
ing systems for bedside use, such as the commercial
systems by Dräger,1 Timpel,2 Maltron,3 and SwissTom4.
Treatment of mechanically ventilated patients with
acute respiratory distress syndrome (ARDS) is partic-
ularly timely due to the novel coronavirus COVID-19.
The appropriate setting for positive end-expiratory
pressure (PEEP) on the ventilator for ARDS patients
is an active area of clinical research. Recent clinical
studies have demonstrated the potential of EIT to guide
PEEP titration maneuvers in patients with ARDS,.5–14

Other applications of EIT for ARDS patients include
detection and monitoring of pneumothorax,15 detection
of patient–ventilator asynchrony,16 and lung perfusion
assessment.17,18

EIT may also benefit patients with obstructive lung
disease, who often require longitudinal monitoring
of their disease. Standard tools include pulmonary
function tests (PFTs), chest x-rays, and computed
tomography (CT) scans. Cystic fibrosis patients experi-
ence pulmonary exacerbations, air trapping, and mucus
plugging, and therefore require pulmonary monitoring
from a very young age. However, their care comes with
the challenges that very young children are unable to
perform PFTs and CT scans result in ionizing radiation
delivered to a vulnerable group of patients. EIT has
the potential to serve as an as-needed nonionizing

monitoring device for these patients due to its ability to
assess regional lung function. There are several recent
studies19–25 exploring the use of EIT for cystic fibrosis
patients.

While EIT has the advantage of being able to provide
real-time functional images at a low cost with EIT sys-
tems costing under $100 000,compared to over 1 million
dollars for a CT scanner or MRI system, the spatial res-
olution is on the order of centimeters for EIT compared
to millimeters resolution for CT and MRI images. From
a physics point of view, the low spatial resolution is due
to the long wavelength and high attenuation of the elec-
tromagnetic waves used to probe the region. Typically
applied currents for EIT are between 10 and 150 kHz
with an amplitude between 0.2 and 3.5 mA,which corre-
sponds to wavelengths between 3 km and 30 km. Math-
ematically, this manifests itself in an ill-posed inverse
problem for determining the conductivity. The data are
the current-to-voltage mapping, and the conductiv-
ity does not have continuous dependence on the data,
which is a condition of ill-posedness.26 As a result of the
discontinuous dependence on the data, large changes
in the conductivity distribution in the interior of the body
can correspond to very small changes in the mea-
sured voltages. For example, in simulations, a 0.35 S/m
change in conductivity over one half of a simulated lung
resulted in a 49-mV change in the measured voltages in
the first (most sensitive) current pattern and a maximum
magnitude change in the current-to-voltage matrix of
10−4. This poses challenges for EIT hardware design,27

and the need for a highly accurate voltmeter in the mea-
surement system. For the reconstruction algorithm, the
ill-posedness manifests itself in ill-conditioned matrices
or blowup of functions computed in the reconstruction
algorithm. Regularization is a technique for stabilizing
the ill-posed inverse problem and can be implemented
through a penalty term for iterative methods or modi-
fication of the scattering transform for D-bar methods,
which are direct (noniterative) solvers. Anatomical pri-
ors in the regularization term reduce the ill-posedness
and give the opportunity to provide the reconstruction
algorithm with known information about the conductivity
distribution.This approach has been followed in iterative
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reconstruction methods with success.28–37 Since direct
methods, such as the D-bar method26 or Calderón’s
method,38 do not have a penalty term in which anatom-
ical information can be provided, spatial priors have
been included in the scattering transform for D-bar39–43

and the Fourier transform for Calderón’s method.44

Shape reconstruction methods45–48 directly incor-
porate geometry and prior information and preserve
sharp edges, reducing the computational burden
of the full reconstruction problem. Postprocessing
approaches to improve resolution include machine
learning methods49,50 and the total variation (TV)-
enhanced D-bar method.51

Previously, a method was proposed to introduce
statistical prior information into the D-bar method
based on Schur complement properties.52 The method
presents an improvement of the image obtained by
the D-bar method by maximizing the conditional prob-
ability density function of an image that is consis-
tent with a priori information and the model, given
a D-bar image computed from the voltage measure-
ments. Positive results were demonstrated on exper-
imental phantoms using a set of 15 890 simulated
samples to generate the joint probability model and
covariance matrix.

In the present work,we make use of an archival set of
74 CT scans of adult patients to generate an anatom-
ical atlas of human chest data. The method is then
applied to archived data from two cystic fibrosis patients
with different levels of disease progression and pathol-
ogy. To perform the method, an image quality evaluation
based on CT scans and the structural similarity index53

is proposed.The results demonstrate an improvement in
resolution, verified through the image quality evaluation
method and with CT scans from the two patients at the
time of data collection. While the purpose of this paper
is to introduce the proposed approach and demonstrate
its feasibility, the improved resolution suggests its poten-
tial to impact several important clinical applications. For
example,detection of regions of air trapping as small as
5 mL and monitoring for their clearance could improve
the care of cystic fibrosis patients since clearing mucus
plugging,which is evidenced by air trapping, is key to the
prevention of lung infection in these patients.54–57 Like-
wise, patients with advanced neuromuscular disorders
such as spinal muscular atrophy type 1 and Duchenne
muscular dystrophy lose the ability to clear mucus from
their lungs and require cough assist systems to aid in
their clearance.58–60 In the intensive care unit, detection
of pneumothoraces as small as 5 mL could lead to timely
intervention at the bedside.61,62

We will refer to the D-bar method postprocessed with
the statistical prior introduced using the Schur com-
plement property as the Schur complement method
throughout the text, especially in the figures.

2 MATERIALS AND METHODS

In this section,we review the mathematical model for the
inverse conductivity problem, the D-bar method, and the
Schur complement property.

2.1 Governing equations for EIT

Let Ω be a bounded domain in ℝ2 representing a cross-
sectional slice of the chest, 𝜎(x, y) ∈ ℝ the conductivity,
and u(x, y) the electric potential. Then the inverse
problem of EIT is modeled by the generalized Laplace
equation:

∇ ⋅ (𝜎(x, y)∇u(x, y)) = 0, (x, y) in Ω, (1)

with the Dirichlet boundary condition

u(x, y) = f (x, y), (x, y) ∈ 𝜕Ω, (2)

where f (x, y) is the measured voltage on the bound-
ary 𝜕Ω of the region Ω, and the Neumann boundary
condition

𝜎
𝜕u
𝜕𝜈

= J(x, y), (x, y) ∈ 𝜕Ω (3)

modeling the application of a current density J on the
boundary. The map from the current density on the
boundary to the voltage that arises on 𝜕Ω is known as
the Neumann-to-Dirichlet (ND) map, and it is the dis-
crete version of this mapping that serves as our data.
Traditionally in the mathematical literature, the problem
is posed with its inverse, the Dirichlet-to-Neumann (DN)
map,as the data.We briefly describe the construction of
the discrete DN map from the measured data. Assume
the applied current patterns comprise an orthonormal
set consisting of L − 1 linearly independent vectors jk

𝓁

with elements jk
𝓁
, where 𝓁 = 1,… , L, k = 1,… , L − 1, and

L is the number of electrodes. Note that the currents
must sum to zero over the electrodes in accordance
with Kirchhoff’s law. Let vk

l denote the voltage on the lth
electrode corresponding to the kth current pattern jk .
Note that for a unique solution (choice of ground), we
require

∑L
l=1 Vk

l = 0, k = 1,… , L − 1.
Denote the discrete inner product between vectors u

and w by

(u(⋅), w(⋅))L =

L∑
l=1

u(𝜃l)w(𝜃l). (4)

The entries of the (electrode) model approximation ND
map Rœ are given by
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Rœ(m, n) =

(
jml
A𝓁

, vn
l

)
L

, (5)

where A𝓁 is the area of the 𝓁th electrode. The discrete
DN map Lœ = Rœ

−1.

2.2 The D-bar method and its
implementation

D-bar methods are a class of direct reconstruction meth-
ods based on inverse scattering theory and complex
geometrical optics (CGO) solutions to related partial dif-
ferential equations (PDEs). The reader is referred to
Refs. [26] and [63] for details and a survey of D-bar
methods.Here we employ the D-bar method for 2D con-
ductivity reconstruction.64–66 This method has a real-
time implementation67 and has been used to image the
lungs of patients with cystic fibrosis.24,25 Below we sum-
marize the key equations in the method and their numer-
ical solution and refer the reader to the references above
for further details.

The CGO solutions in this work are special solutions
to the Schrödinger equation that is obtained from the
conductivity equation (1) through the change of vari-
ables ũ =

√
𝜎(x, y)u, q(x, y) = Δ

√
𝜎(x, y)∕

√
𝜎(x, y):

−Δũ + q(x, y)ũ = 0, for (x, y) in Ω. (6)

To define the CGO solutions, let z be the spatial point
(x, y) identified with a point in the complex plane z = x +
iy and k ∈ ℂ be a nonphysical complex frequency that
is introduced as an auxiliary parameter.

Since q is zero outside Ω, Equation (6) can be
extended to the plane ℝ2. It is shown in Ref. [64]
that there exists a unique solution 𝜓(z, k) to the
equation

−Δ𝜓(z, k) + q(z)𝜓(z, k) = 0, for z in ℂ, (7)

e−ikz𝜓(z, k) − 1 ∈ W1,p(ℂ), p > 2, (8)

where Equation (8) imposes the asymptotic condition
𝜓 ∼ eikz for large |z| or large |k|, and W1,p(ℂ) is a
Sobolev space.68 The related CGO solution 𝝁(z, k) is
then defined by

𝝁 ≡ e−ikz𝜓(z, k), (9)

It can be readily seen from (7) and (9) that 𝜎(z) can be
directly computed from 𝝁 by

𝜎(z) = 𝝁2(z, 0), (10)

which makes the computation of 𝝁 from the measured
data the key procedure to the method.

The function 𝜓(z, k) (and hence 𝝁(z, k)) is related
to the measured data through the nonlinear Fourier
transform of q, known as the scattering transform t(k).
The scattering transform can be computed from the
integral64

t(k) = ∫
𝜕Ω

eikz̄(Λ𝜎 − Λ1)𝜓(z, k)ds, (11)

where Λ1 denotes the DN map corresponding to 𝜎 ≡ 1
in Ω. Note that Equation (11) requires knowledge of
𝜓(z, k) on the boundary of Ω. While Refs. [64–66] pro-
vide equations and numerical methods for the compu-
tation of 𝜓 on 𝜕Ω from the data, in this work we take
the exp-approximation in which 𝜓 is approximated by
its asymptotic behavior eikz on 𝜕Ω and Equation (11)
becomes

texp(k) := ∫
𝜕Ω

eikz̄(Λ𝜎 − Λ1)eikzds. (12)

In this work, we compute images that represent
a change from a reference conductivity distribution.
Denoting the DN map for this reference conductivity dis-
tribution by Λref , the difference scattering transform is
defined in Refs. [67, 69] and [67] by

texp
dif

(k) := ∫
𝜕Ω

eikz̄(Λ𝜎 − Λref )eikzds. (13)

A numerical approximation to texp can be computed
as follows. Let z𝓁 denote the center of the 𝓁th electrode
and write the expansion

eikz𝓁 − 1 =
N∑

n=1

bn(k)jn
𝓁
. (14)

Then since 𝛿Λ := Λ𝜎 − Λref annihilates the constant
function 1, discretizing equation (13) results in

texp
dif

(k) ≈
L∑
𝓁=1

∫e𝓁

eik̄z̄
N∑

n=1

bn(k)𝛿Λjn(z)ds (15)

≈

L∑
𝓁=1

A𝓁

N∑
n=1

eik̄z̄𝓁bn(k)(Φ𝛿L)(𝓁, n), (16)

where Φ is the matrix of current patterns with entries
Φ(𝓁, n) = jn

𝓁
and 𝛿L is the discretized 𝛿Λ.70

The second step in the exp-form of the D-bar method
is to compute 𝝁 from texp

dif
at each point of the region

of interest (ROI) in Ω, so that 𝜎 can be computed from
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𝝁2(z, 0). For this, we must solve the D-bar equation for 𝝁
numerically. The function 𝝁 satisfies the following D-bar
equation64:

𝜕

𝜕k̄
𝝁(z, k) =

1
4𝜋k̄

t(k)e−i(kz+k̄z̄)𝝁(z, k), k ≠ 0. (17)

This equation can also be written in the integral form
using the generalized Cauchy integral formula, as fol-
lows, and simultaneously we replace t(k) by the approx-
imation texp

dif
and denote the corresponding function 𝝁

by 𝝁exp
dif

:

𝝁
exp
dif

(z, k)

= 1 +
1

(2𝜋)2 ∫
ℝ2

texp
dif

(k′)

k′(k − k′)
e−i(kz+k̄z̄)𝝁

exp
dif

(z, k′)dk′.

(18)

The integral in (18) is also tantamount to a convo-
lution of the right-hand side of (17) with the Green’s
function for the �̄� operator, G(k) = 1

𝜋k
. Defining T(z, k) ≡

1

4𝜋k̄
texp
dif

(z, k)e−i(kz+k̄z̄),Equation (17) can be written as

𝝁
exp
dif

(z, k) = 1 +G(k) ⋆ (T(z, k)𝝁exp
dif

(z, k)), (19)

where ⋆ denotes the convolution.
The inverse problem of determining 𝜎 is ill-posed due

to the discontinuous dependence of the conductivity on
the measured data. This can be seen, for example, in
the classic example by Alessandrini.71 In this example,
it is shown that a homogeneous conductivity distribu-
tion in a disk compared to one containing a concen-
tric disk of radius r0 with constant conductivity of con-
trast A yields DN data that differs in the operator norm
of the DN map with an upper bound that can be con-
trolled by r0, while the amplitude of the conductivity dif-
ference can be made as large as desired by increas-
ing A. This ill-posedness manifests itself in the compu-
tation of texp

dif
, which will blow up for large values of |k|,

and the blowup radius in the k-plane decreases as the
noise level increases. The signal-to-noise ratio (SNR)
for the active complex electrode 1 (ACE1) system was
measured in the lab and found to range from 32 to 90
dB, per electrode, with the highest SNR on the injection
electrode and the lowest SNR on electrodes distant from
the injection electrodes.72 For the clinical situation under
investigation,namely monitoring lung function and struc-
ture of patients with cystic fibrosis, imaging takes place
in a private clinic room, which did not add a measurable
amount of additional environmental noise to the signals
compared to the laboratory setting.

To handle the noise, the domain of computation
of texp

dif
is truncated in the k-plane. For simplicity, we

truncate to a disk of radius R and will refer to R as
the truncation radius, setting texp

dif
(k) = 0 for |k| > R,

and including the subscript R as a reminder of the
truncation, texp

dif, R
. Theoretical bounds for the truncation

radius R based on the noise level are presented in
Ref. [66]. Here, a truncation radius of R = 4 was used,
chosen by inspection. Equation (19) can then be solved
numerically at each point in the ROI, using a grid in
the k-plane with equal spacing h. The convolution is
performed using 2D discrete Fourier transforms:

𝝁
exp
dif,R

= I + h2−1( (G)⊙  (T𝝁exp
dif,R

)), (20)

where G and T𝝁 are matrices formed by evaluating the
functions on the k-grid,⊙ is the Hadamard product, and
 represents the 2D discrete Fourier transform. The
resulting matrix equation is then solved using GMRES.
(See Ref. [73] for details.) The overall reconstruction
procedure is illustrated with a flowchart in Figure 1.

2.3 Schur complement property

In this section, we review a relevant property of the
Schur complement for computing the conditional prob-
ability density between two Gaussian random vectors,
particularly when the elements of the two vectors have
significant cross-covariance.74

Let Γ ∈ ℝn×n be a symmetric positive definite matrix
in a block form

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
, (21)

where Γ11 ∈ ℝ
k×k , Γ22 ∈ ℝ

(n−k)×(n−k), Γ21 = Γ12
T and

k < n. The Schur complements of Γ are defined by

Γ̃22 = Γ11 − Γ12Γ22
−1
Γ21 and

Γ̃11 = Γ22 − Γ21Γ11
−1
Γ12 .

(22)

If the matrices Γ11 and Γ22 are invertible, the inverse of
Γ is given by

Γ−1 =

⎡⎢⎢⎣
Γ̃−1

22 −Γ̃−1
22 Γ12Γ22

−1

−Γ̃−1
22 Γ12Γ22

−1
Γ̃−1

11

⎤⎥⎥⎦. (23)

Let 𝜇x and 𝜇y be the expected values of the
Gaussian multivariate random variables X and Y , Γxx
and Γyy its covariance matrices, and Γxy and Γyx its
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F IGURE 1 Block diagram of the human data reconstruction using the D-bar method with the texp
dif, R

approximation

cross-covariance matrices. If the random variable Y = y
is known (it has been measured), the best estimate for
the random variable X (in the mean square sense) is
the conditional expectation which we denote by 𝜇x|y .
The conditional covariance is denoted by Γx|y and their
computation reduces to linear algebra.74 We state the
related theorem below for reference.

Theorem 2.1 (Theorem 3.5 [74, Sec. 3.4]). Assume the
joint probability density function 𝜋(x, y) : ℝn × ℝk → ℝ+
of the Gaussian multivariate random variables X and Y
is of the form

𝜋(x, y) ∝ e

⎛⎜⎜⎜⎝−
1
2

⎡⎢⎢⎣
x − 𝜇x

y − 𝜇y

⎤⎥⎥⎦
T ⎡⎢⎢⎣
Γxx Γxy

Γyx Γyy

⎤⎥⎥⎦
−1⎡⎢⎢⎣

x − 𝜇x

y − 𝜇y

⎤⎥⎥⎦
⎞⎟⎟⎟⎠.
(24)

Then the conditional probability density function 𝜋(x|y) :
ℝn → ℝ+ is of the form

x ↦ 𝜋(x|y) ∝ e
(
−

1
2

(x−x̄)T Γ̃−1
yy (x−x̄)

)
, (25)

where

x̄ = 𝜇x + ΓxyΓyy
−1(y − 𝜇y). (26)

In such case, we use the notation

𝜋(x|y) ∝ (𝜇x|y,Γx|y), (27)

where

𝔼(x|y) = 𝜇x|y = 𝜇x + ΓxyΓyy
−1(y − 𝜇y) and

Γx|y = Γxx − ΓxyΓyy
−1
Γyx .

(28)

In the context of this paper, X corresponds to the actual
conductivity and Y to the D-bar reconstruction.

2.4 Postprocessing of D-bar
reconstructions

In this section, we consider the use of the anatomical
atlas and Schur complement property to postprocess
the D-bar reconstructions. The anatomical atlas is used
to model the marginal distribution 𝜋(x).The construction
of the model for joint distribution 𝜋(x, y) is then carried
out via first drawing from 𝜋(x) and computing the D-bar
reconstructions and then computing the second-order
sample statistics as described in more detail below.

Approximate joint normal model based on
conductivity samples and its D-bar
reconstructions

Let 𝜋(𝜎3D) be a prior model of the conductivity distri-
bution based on a three-dimensional thorax, where the
mean and covariance are computed from a set of sam-
ples of the conductivity distribution. Let 𝜎3D

i refer to the
ith sample of this set of samples.Let 𝜎2D

i be the conduc-
tivity in the 2D section of 𝜎3D

i in the plane of the elec-
trodes, and let 𝜎i be the vectorization of the discretized
𝜎2D

i .Let the vector �̂�i represent the vectorized EIT recon-
struction of 𝜎2D

i .
To compute the vector �̂�i , first a finite element mesh

that represents the sample 𝜎3D
i is built. Then, the finite

element method is applied to solve the forward problem
to compute simulated voltages V(𝜎3D

i ). Additional noise
representing the measurement noise of the ACE1 EIT
system72 was then added to the voltages, and an EIT
reconstruction algorithm is used to obtain an image from
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F IGURE 2 Block diagram of the computation of zi from 𝜎3D
i

samples

F IGURE 3 Block diagram of the Schur complement matrices
computation

the voltages. In this work, the D-bar method is used to
compute the conductivity distribution �̂�rec,i , and �̂�i repre-
sents the vectorization of this D-bar image.

Define the vector zi to be the stacked vector of 𝜎i and
�̂�i , zi = [𝜎i �̂�i ]T . The diagram in Figure 2 shows how to
compute the vector zi for each 𝜎3D

i sample.
Following the diagram in Figure 3, the second-order

sample statistics of the random variable Z are then com-
puted.The joint sample mean 𝜇z and covariance Γzz are
computed by taking into account all computed samples
of vector zi .

As seen from the form of the conditional mean, Equa-
tion (28), the estimate (in the context of this paper)
𝔼(𝜎|�̂�) is an affine map. By using the same EIT recon-
struction algorithm applied to compute the images �̂�rec,i ,
the conductivity distribution 𝜎3D

true may be estimated
through the measured data V(𝜎3D

true).The postprocessed
estimate �̄� of the actual 𝜎 given the �̂� = �̂�rec may be
computed by

𝔼(𝜎|�̂�) ≈ �̄� = 𝜇𝜎 + Γ𝜎�̂�Γ�̂��̂�
−1(�̂� − 𝜇�̂�) (29)

The approximate conditional covariance Γ𝜎|�̂� can be
computed by

Γ𝜎|�̂� ≈ Γ̄ = Γ𝜎𝜎 − Γ𝜎�̂�Γ−1
�̂��̂�
Γ�̂�𝜎. (30)

Due to the small number of thorax samples, the
marginal sample covariances (diagonal blocks of
Γ(𝜎, �̂�)) are typically not strictly positive definite and thus
not invertible.Therefore,we use a diagonal ridge regres-
sion type stabilization (𝜅I) as follows:

𝔼(𝜎|�̂�) ≈ �̄� = 𝜇𝜎 + Γ𝜎�̂�(Γ�̂��̂� + 𝜅I)−1(�̂� − 𝜇�̂�) and (31)

Γ𝜎|�̂� ≈ Γ̄ = Γ𝜎𝜎 − Γ𝜎�̂�(Γ�̂��̂� + 𝜅I)−1
Γ�̂�𝜎. (32)

Then, the matrix A𝜅 and the vector b𝜅 are computed by

�̄� = 𝜇𝜎 + Γ𝜎�̂�(Γ�̂��̂� + 𝜅I)−1(�̂� − 𝜇�̂�)

= Γ𝜎�̂�(Γ�̂��̂� + 𝜅I)−1�̂� + (𝜇𝜎 + Γ𝜎�̂�(Γ�̂��̂� + 𝜅I)−1𝜇�̂�)

= A𝜅 �̂� + b𝜅.

(33)

2.5 Human data

EIT data collected in previous experiments as part
of a larger study conducted in accordance with the
amended Declaration of Helsinki–Ethical Principles for
Medical Research Involving Human Subjects were used.
These data were collected at Children’s Hospital Col-
orado, Aurora, Colorado, under the approval of the Col-
orado Multiple Institutional Review Board (COMIRB)
(approval number COMIRB 14-0652) with informed writ-
ten parental consent and children’s informed assent.EIT
data were collected using the ACE1 EIT System72 dur-
ing pulmonary function tests (spirometry maneuvers) at
the patient’s regular clinic visit.

Patient 1 was a 17-year-old male in stable condition at
the time of data collection, with no air trapping, consoli-
dation,or bronchiectasis noted in the radiologist’s report.
Inspiratory CT scans in the axial and coronal planes are
shown in Figure 4a and 4b,respectively.Patient 2 was an
18-year-old male. The radiology report indicated that air
trapping was suggested through the majority of the right
lung as well as the presence of peripheral mucous plug-
ging most prominent within the right lobe,and cylindrical
bronchiectasis throughout the chest bilaterally greater
on the right. Inspiratory CT scans in the axial and coro-
nal planes for Patient 2 are shown in Figure 4c, and
4d, respectively.

2.6 Anatomical atlas

This prior model considers anatomical information,
through the use of segmented images of thoraces,
and physiological information, by taking into account
the conductivity distribution of the segmented tissues.
The computation of sample-based densities obtained
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F IGURE 4 CT scans of Patients 1 and 2. Axial plane scans are
one slice in the plane of the EIT electrodes. The images are shown in
digital imaging and communications in medicine (DICOM)
orientation, with the subject’s right at the viewer’s left

via other imaging modalities and surgical experiments
are sometimes called anatomical atlases. [74,Sec.3.3.5]
To build the sample-based prior, CT scans of 74 adult
male subjects were segmented in bones, lungs, heart,
and muscles. The CT scans were collected for a previ-
ous study approved by the Research Ethics Committee
of the University of São Paulo Medical School (CAAE
52619216.2.0000.0068). The choice of patient charac-
teristics can limit the quality of the prior model since
the atlas is intended to be representative of the patients
under consideration,such as of the same age group and
gender, yet rich enough to include examples of patholo-
gies that may be encountered. Thus, increasing the
number of samples without making the set too diverse
(for instance, including very different age groups) would
be expected to improve the performance of the pro-
posed approach.

Each CT slice had 512 × 512 pixels, and the CT
slice thickness was between 0.5 and 5 mm, depend-
ing on the set. The CT images were downsampled to
169 × 169 pixels in the axial plane (X–Y plane) using a
nearest-neighbor interpolation, and 10 slices were used
to describe a total of 200 mm in the cranial-caudal direc-
tion (Z-axis) centered at the T7 thoracic vertebra.To take
into account the variability of the electrode belt position,
all possible sets of 10 equidistant slices in a range of
200 mm were considered,resulting in 1589 datasets.For
example, a CT scan set 220 mm tall with a slice thick-
ness of 5 mm (44 slices total) provided 4 datasets with
10 slices distant 20 mm from each other.

The images were rotated by using the center of the T7
thoracic vertebra and the center of the sternum as ref-
erence. Also, the images were scaled so that all images
have the same rib cage dimension in the T7 thoracic ver-
tebra height, using an affine transformation.

TABLE 1 Normal distribution parameters of the segmented
tissues

Mean (S/m) Std. (S/m)

In vivo Lungs 0.272 0.240

Heart 0.460 0.192

Muscle 0.447 0.140

In vitro Bone 0.052 0.011

After this transformation, the average contour was
computed as the pixels from the body that appear in
at least 50% of all three-dimensional images. Then, the
muscle tissue from all images was expanded or cropped
to fit this average contour.

Table 1 shows the conductivity distribution of the tis-
sues used to compute the anatomical atlas. The con-
ductivity distribution of the lungs, heart, and muscle was
obtained from in vivo experiments on an animal model.75

Since the conductivity distribution of the bones was
not available from in vivo experiments, statistics of the
bone conductivity distribution were obtained from in vitro
experiments.76

2.7 Computation of the approximate
joint normal model

To obtain the 𝜎3D
i samples, 10 samples with different

tissue conductivities were built from each of the 1589
three-dimensional images described in Section 2.6.
For each sample, the conductivity values of the seg-
mented tissues (bones, lungs, heart, and muscles)
were randomly sampled according to their conductivity
distribution from Table 1. When the sample value of the
bones was smaller than 0.01 S/m, and when the sam-
ples values of lungs, heart, and muscles were smaller
than 0.067 S/m, the values were disregarded and new
values were sampled. To take into account variation in
conductivity between the lungs such as when one or
both lungs have a pathology, the conductivity of the left
and right lungs were sampled independently in 50% of
the samples.

A finite element mesh was built using the aver-
age contour of the anatomical atlas, and two sets of
voltages were computed for each of the 15 890 conduc-
tivity datasets. One set of voltages was computed with
the conductivity distribution of all segmented tissues
(bones, lungs, heart, and muscles), and other set of
voltages (reference voltage) was computed with heart
and lungs segmented tissues replaced by the conduc-
tivity of the muscle. The voltages were computed with
the same current patterns and number of electrodes
used in the human data collection.To simulate the noise
measurement, Gaussian noise with the same mean
and standard deviation of the ACE1 EIT system72 was
added to the voltages.
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F IGURE 5 Mean and standard deviation of the conductivity
variation distribution for the anatomical atlas. The images are shown
in DICOM orientation, with the subject’s right at the viewer’s left

F IGURE 6 Standard deviation (square root of the diagonal) of
the conditional covariance matrix for the anatomical atlas of two
different values of 𝜅. The images are shown in DICOM orientation,
with the subject’s right at the viewer’s left

For each set of electrical potentials V(𝜎3D
i ), the D-bar

method presented in Section 2.1 was applied, and the
images �̂�rec,i were obtained. The reference voltage of
the dataset was used to compute the DN map Λref , and
the image represents the D-bar method reconstruction
of the variation of heart and lungs tissues in the domain,
using as reference the set described above in which the
heart and lungs are replaced with the conductivity of
muscle. The D-bar method settings were the same as
those used to reconstruct the human data.

To compute 𝜎i , a Gaussian interpolation was applied
to each of the 15 890 conductivity datasets and 2D
images were computed. For difference images, 𝜎i is
defined to be the difference between the conductivity
dataset with all segmented tissues and the reference
image where heart and lungs segmented tissues are
replaced by the conductivity of the muscle. The ref-
erence dataset simulates a homogeneous conductivity
distribution with the conductivity of muscle, and so each
reconstructed image �̂�i represents the difference of the
sample 𝜎i from a background reference of muscle. The
reference is used for the computation of the DN map
Λref and scattering transform texp

dif
.67,69

Figure 5 shows 2D images that represent the sta-
tistical distribution of the conductivity variation for the
anatomical atlas. Figure 6 shows the diagonal of the
conditional covariance matrix Γ𝜎|�̂� for the anatomical
atlas for two different values of 𝜅.

2.8 One-step Newton’s method

To compare the results obtained by the D-bar method
and the proposed method, reconstructions using the
one step of a (regularized) Newton’s Method (OSNM)
were computed. This method is based on the NOSER
code,77 and a simplified description is presented below.
The rationale for the choice of a one-step Newton’s
method algorithm for comparison is that it is the most
commonly used method with a real-time implementation
for EIT reconstruction, and the work78 uses this method
for reconstruction in its comparison of functional EIT
lung images with CT scans.

Let V(𝜎) be the vector of voltages that represents the
solution of the forward problem of the conductivity dis-
tribution 𝜎, and 𝜎0 is the linearization point where New-
ton’s method is applied. By truncating the Taylor series
expansion of V(𝜎), we have

V(𝜎) = V(𝜎0) + J(𝜎0)(𝜎 − 𝜎0), (34)

where V(𝜎0) denotes the computed voltages of the con-
ductivity distribution 𝜎0 and J(𝜎0) represents the Jaco-
bian matrix that maps the conductivity distribution to
the computed voltages at the conductivity distribution 𝜎0
(linearization point). The computation of the Jacobian
matrix is described in the literature [79, Sec. 4.1].

From Equation (34), the difference image Δ𝜎 = 𝜎 − 𝜎0
can be computed by

𝜎 − 𝜎0 = (J(𝜎0)TJ(𝜎0))−1J(𝜎0)T (V(𝜎) − V(𝜎0)).

Δ𝜎 = (J(𝜎0)TJ(𝜎0))−1J(𝜎0)T (V(𝜎) − V(𝜎0)). (35)

The term J(𝜎0)TJ(𝜎0) is not invertible, and the general-
ized Tikhonov regularization is applied,

Δ𝜎 = (J(𝜎0)TJ(𝜎0) + 𝛼QTQ)−1J(𝜎0)T (V(𝜎) − V(𝜎0)),

(36)

where Q is the Tikhonov matrix and 𝛼 is the regulariza-
tion parameter that adjusts the weight of the term QTQ.

For the human thorax data, the V(𝜎0) is the data
averaged over the 100 first frames, J(𝜎0) is computed
using the finite element method and a high-pass Gaus-
sian filter is applied to regularize the one-step Newton’s
method. The difference image Δ𝜎 represents the con-
ductivity distribution variation due to the difference
between a measured voltage frame and the average
voltage represented by V(𝜎0).

For a proper comparison, the finite element mesh
used to estimate the difference image may have the
same contour of the domain and position of the elec-
trodes used to compute the D-bar reconstructions.
The contact impedance of the electrodes is mod-
eled using the complete electrode model80 with a
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prismatic element with a triangular base to represent
the electrode face.

2.9 Image quality evaluation

The CT scans were prepared for use as ground truth
for comparison with structural similarity index measures
(SSIM) using the following steps. First, from the seg-
mented CT scans, the intersection of the two outer con-
tours and the union of the lung regions were selected
to form a mask of the body and lungs. The extracted
lung region was then assigned a Hounsfield unit of −1.
This is the lung mask that is used as ground truth com-
parison for the “mask” approach for image evaluation.
To take relative conductivity values into account, the
aligned inspiratory and expiratory CT scans were sub-
tracted inspiratory minus expiratory, and the lung mask
was applied to extract the lung region. The Hounsfield
units of the subtracted image were then normalized to
lie between 0 and−1.These images are used as ground
truth comparison for the “amplitude”approach for image
evaluation.

The SSIM53 and multiscale structural similarity (MS-
SSIM)81 are methods used to quantify the quality of
digital images when a reference image is known. The
SSIM is defined as follows. Given an image x and a ref-
erence image y, consider three comparison measures:
luminance 𝓁, contrast c, and structure s defined by

𝓁(x, y) =
2𝜇x𝜇y + c1

𝜇2
x + 𝜇

2
y + c1

, (37)

c(x, y) =
2𝜎x𝜎y + c2

𝜎2
x + 𝜎

2
y + c2

, (38)

s(x, y) =
𝜎xy + c3

𝜎x𝜎y + c3
, (39)

where 𝜇x and 𝜇y are the mean values of x and y, respec-
tively, 𝜎x and 𝜎y are the variances of x and y, respec-
tively,𝜎xy is the covariance of x and y,c1 = (0.01L)2,c2 =

(0.03L)2, and c3 = c2∕2. Here L is the dynamic range of
the image x. Then the SSIM is defined by

SSIM(x, y) = 𝓁(x, y) ⋅ c(x, y) ⋅ s(x, y). (40)

More, generally, weights can be applied to each of the
factors in (40).

The MS-SSIM provides a convenient way to incorpo-
rate image details at different resolutions.The main idea
of the MS-SSIM is the following.81 A low-pass filter is
iteratively applied to the input image x, and the filtered
image is then downsampled by a factor of 2. The origi-
nal image is indexed as Scale 1,and M − 1 iterations are
applied to obtain the final Mth image (Scale M). At the

jth scale, the contrast comparison (38) and the structure
comparison 39 are calculated and denoted by cj(x, y)
and sj(x, y),respectively.The luminance comparison (37)
is computed only at Scale M and is denoted as 𝓁M(x, y).
Then the MS-SSIM is defined by

MS-SSIM(x, y) = 𝓁M(x, y)𝛼MΠM
j=1cj(x, y)𝛽j sj(x, y)𝛾j .

(41)
Here the exponents in (41) are all set to 1.

The SSIM method has been used as a metric to eval-
uate EIT algorithms improvements.49,52 82,83 By using
simulated and experimental phantoms, EIT images are
estimated and the results are compared to images that
represent these phantoms. However, the way that the
SSIM metric is used may not be appropriate for human
data since the reference image that describes the con-
ductivity (or resistivity) distribution of an in vivo human
thorax are not feasible to be obtained.

To quantify the improvement of the EIT images of
ventilation human data,an image quality evaluation pro-
cess based on CT scans and the SSIM is proposed.This
procedure aims to use the SSIM metric by considering
aspects of the SSIM analysis as luminance, contrast,
and structure even when the electrical property of the
reference is unknown.

To compute the reference image for the ventilation
human data, CT scans of the patient at the end of
the inhalation and expiration are required. For each CT
scan, the slice representing the plane of the electrodes
is selected, and four reference points are determined.
Then, the slices are registered based on these set of
reference points, and the contour of the body and the
lungs regions are identified in each slice.

To determine the reference points the center of the
vertebral column and the center of the sternum are iden-
tified. The first point (P1) is placed in the center of the
vertebral column and the second point (P2) in the cen-
ter of the sternum, the other two points are determined
by drawing a perpendicular line that crosses the middle
distance between P1 and P2 and ends at the edge of
the lung and the rib cage in both directions. The last two
points (P3 and P4) are set at the end of the drawn line,
P3 is placed in the edge of the left lung,and P4 is placed
in the edge of the right lung.

Later two new images are generated by thresholding
the CT scans to identify the contours and lungs regions.
The first image (Ref. Image 1) is composed of the inter-
section of the contours and the union of the inspiratory
and expiratory lungs regions. This reference image
represents the area where the ventilation may occur
during the respiratory cycle. The second reference
image (Ref. Image 2) is composed of the intersection of
the contours and the normalized difference between the
inhalation and expiration slices in the region where the
lungs are identified. This reference image represents
the area where the ventilation may occur and at the
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F IGURE 7 Reference points and the geometric transformation for Patient 1

F IGURE 8 Reference images, Patient 1

F IGURE 9 Normalized mean of the raw D-bar images for
Patients 1 and 2

same time underestimates the area where the heart
movements occur during the ventilation.

As an example, Figure 7 shows the steps of the pro-
cess to register the images for CT scans of Patient 1.
Figure 7a,b shows the reference points of the inspira-
tory and expiratory slices. Figure 7c shows the regis-
tered images overlaid, and the white marks in the image
show the four reference points. The reference points in
the inspiratory slice are rotated to make points P1 and
P2 vertically aligned, and they are used as reference to
register the two slices by applying a 2D projective geo-
metric transformation to the images.

Figure 8a shows the contour and lungs regions over-
laid. Then the regions are shifted to vertically centralize

the contours in the image, and Figure 8b is created by
computing the intersection of the contours and union of
the lungs regions. The contour and background are set
to 0.0, and the lungs region is set to −1.0.

To compute Figure 8c, an image representing the
Hounsfield unit value only in the lungs regions of the
inspiratory slice is subtracted by an image representing
the Hounsfield unit value only in the lungs regions of the
expiratory slice, the values smaller than zero are set to
0.0, the result is normalized and all values are shifted by
−1.0 resulting in the image that represents Ref. Image 2.

To perform the SSIM and MS-SSIM, an EIT image
formed by the subtraction of the reconstruction of the
full inspiration from the reconstruction of full expiration
is computed.Then all positive values are set to zero,and
the image is registered by applying a 2D projective geo-
metric transformation to adjust the contour of the EIT
image and the contour of the reference images. Com-
parisons to Ref. Image 1 are referred to as “mask” eval-
uations, and comparisons to Ref. Image 2 are referred
to as “amplitude” evaluation.

3 RESULTS

In this section,we show the results of the Schur comple-
ment method applied to the two patient datasets. Also
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F IGURE 10 Reconstructions for Patient 1. First row: Reconstructions using one-step Newton’s method. Second row: Reconstructions using
the D-bar method. Third row: Postprocessed D-bar images with the Schur complement method using 𝜅 = 10−5. Fourth row: Postprocessed
D-bar images with the Schur complement method using 𝜅 = 10−12. The first column contains images of full inspiration. The second column
contains images of full expiration. The third column is the difference between full inspiration and full expiration, formed by subtracting the image
in Column 2 from the image in Column 1. The images are shown in DICOM orientation, with the subject’s right at the viewer’s left

shown are reconstructions from one step of a (regular-
ized) Newton’s method and the D-bar reconstructions
prior to postprocessing with the Schur complement.
Difference images and SSIM measures using the
“mask” and “amplitude” image evaluation approaches
are provided.

3.1 Difference images

Difference images for Patients 1 and 2 were computed
using the D-bar method as described in Section 2.2.The
reference voltages for the reconstructions were com-
puted from data averaged over the 100 first frames. The
normalized mean of the raw D-bar images for Patients 1
and 2 are shown in Figure 9. To compute this parameter,
the mean of all pixels in each raw D-bar image is com-
puted and normalized taking into account the average
of the first 100 raw D-bar images. After the computation
of the mean of the images, the curve is normalized by
subtracting the mean of the first 100 values and dividing
the result by the maximum range of the first 100 values.
In the spirometry maneuver performed by each subject,
several normal breaths are taken, followed by a deep

inhale prior to a forceful, rapid exhale with the goal of
expelling all air from the lungs. Following the long, force-
ful exhale, a deep breath is taken. Movies of the recon-
structions are shown in Ref. [84].

Figures 10 and 11 show reconstructions at maximum
inhalation (first column), maximum expiration (second
column), and the difference between these, which was
computed by subtracting the image in column 2 from
the image in column 1. The frame number (time) cor-
responding to maximum inhalation is indicated with
the first marker (marker symbol +) in Figure 9a,b. The
second marker (marker symbol x) corresponds roughly
to the point at which as much air as possible had been
expelled from the lungs, which is the frame number
used for the expiratory images in Figures 10 and 11.

3.2 SSIM measures

The reference points and geometric transformations of
the CT scan preparatory to creating a reference image
for the SSIM measures are depicted in Figure 12 for
Patient 1 and Figure 13 for Patient 2. The segmented
scans for each patient with the contour and lungs
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F IGURE 11 Reconstructions for Patient 2. First row: Reconstructions using one-step Newton’s method. Second row: Reconstructions using
the D-bar method. Third row: Postprocessed D-bar images with the Schur complement method using 𝜅 = 10−5. Fourth row: Postprocessed
D-bar images with the Schur complement method using 𝜅 = 10−12. The first column contains images at full inspiration. The second column
contains images at full expiration. The third column is the difference between full inspiration and full expiration, formed by subtracting the image
in column 2 from the image in column 1. The images are shown in DICOM orientation, with the subject’s right at the viewer’s left

F IGURE 12 Reference points and geometric transformation for Patient 1

regions overlaid are shown in Figure 14. Since the rela-
tionship between the Hounsfield units in the CT scan
and conductivity values in the EIT difference images
are unknown, the values of each were normalized to a
dynamic range of −1 to 0 before computing the SSIM
and MS-SSIM measures of comparison. The adjusted
contours and reference images for the “mask” and
“amplitude” measures for Patients 1 and 2 are given

in Figures 15 and 16, respectively. The segmented
lung regions from the reconstructions representing the
difference between inspiration and expiration by the
one-step Newton’s method, D-bar method, and Schur
complement method with 𝜅 = 10−5 and 𝜅 = 10−12 were
also normalized to have a dynamic range between 0
and −1 and are plotted in Figure 17 for Patient 1 and
Figure 18 for Patient 2. SSIM and MS-SSIM measures
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F IGURE 13 Reference points and geometric transformation for Patient 2

F IGURE 14 Contour and lungs regions overlaid

using the “mask” and “amplitude” approach of image
evaluation are given in Tables 2 and 3 for Patients 1
and 2, respectively.

3.3 Discussion

Application of the proposed algorithm to a specific
clinical patient consists of the following steps. First, an
anatomical atlas is required. In practice, this would be
on file and previously computed from a collection of CT
scans of a representative group of patients. The atlas

consists of previously computed D-bar reconstructions
of each conductivity distribution in the atlas as well
as the mean, variance, and standard deviation of the
set of images. From the EIT data, a preliminary D-bar
reconstruction is computed for each frame. The D-bar
algorithm can be implemented in real time67, and so
this step can be running during the EIT data collection.
To postprocess the images, the Schur complement
matrices are computed as in Figure 3 and applied to
each image frame.

The normalized mean of the raw D-bar images in
Figure 9 clearly shows a relative volume of air in the lung
as the patient performs the spirometric maneuver. While
the raw D-bar images in Figures 10 and 11 clearly show
conductivity differences in the lungs between inspira-
tion and expiration, the Patient 2 right lung ventilation
deficiency is not easily interpreted. The one-step
Newton’s method reconstructions have some fun-
damental differences from the D-bar images. While
neither method achieves good lung separation, New-
ton’s method reconstructions have more connected
lung regions near the heart than the D-bar reconstruc-
tions, which can be seen in the segmented images in
Figures 17 and 18. The D-bar reconstructions have
some artifacts near the underarms which compress
the lung region toward the center of the images. When

F IGURE 15 Contour and Reference images, Patient 1
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F IGURE 16 Contour and Reference images, Patient 2

F IGURE 17 Segmented lung region from EIT reconstructions, inspiration minus expiration, Patient 1

F IGURE 18 Segmented lung region from EIT reconstructions, inspiration minus expiration, Patient 2

compared with the SSIM measures, the D-bar recon-
structions have a closer agreement with the CT scan-
derived reference image using the mask or amplitude
evaluation and SSIM or MS-SSIM for both patients.

The postprocessed images yield an improvement in
the spatial resolution,which can be seen qualitatively by
comparing the postprocessed EIT images to the axial
CT scans in Figure 4. It can be seen from the axial CT
scan for Patient 2 that the right lung can accommodate
less air than the left, and the presence of air trapping,
as noted by the radiologist, reduces the difference
between inspiration and expiration in the right lung. This
is clearly evident in the postprocessed reconstructions
for Patient 2. For Patient 1, the SSIM measures indicate

improved agreement with the CT scan-derived refer-
ence image using the Schur complement method with
𝜅 = 10−5 using both the mask and amplitude evaluation
measures. However, for 𝜅 = 10−12, an improvement in
the SSIM measures over D-bar only holds for the mask
evaluation method. For Patient 2, the use of the Schur
complement method results in an improvement of SSIM
measures for both evaluation methods and both values
of 𝜅.

Related work includes Ref. [78] in which functional
EIT images were compared to thoracic CT scans
in pigs. In this work, normalized time difference EIT
images of conductivity change were reconstructed
using a one-step Newton’s method with the mean
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TABLE 2 SSIM measures, Patient 1

Evaluation method OSNM D-bar Schur 10−5 Schur 10−12

SSIM Mask 0.60825 0.72216 0.73790 0.72772

Amplitude 0.49720 0.63623 0.64382 0.63105

MS-SSIM Mask 0.61776 0.68823 0.71813 0.71173

Amplitude 0.57669 0.66269 0.68189 0.67509

Abbreviations: MS-SSIM, multiscale structural similarity index measures; OSNM, one-step Newton’s method; SSIM, structural similarity index measures.

TABLE 3 SSIM measures, Patient 2

Evaluation method OSNM D-bar Schur 10−5 Schur 10−12

SSIM Mask 0.60475 0.68119 0.72349 0.74175

Amplitude 0.54916 0.64633 0.66403 0.68327

MS-SSIM Mask 0.67426 0.67503 0.71159 0.72594

Amplitude 0.64429 0.64889 0.67682 0.69155

Abbreviations: MS-SSIM, multiscale structural similarity index measures; OSNM, one-step Newton’s method; SSIM, structural similarity index measures.

over the dataset serving as reference. Heart and lung
regions were identified using an unsupervised learning
method and used to extract the corresponding signals.
It was found that the EIT pixels with the strongest
heart and lung signals were located inside the anatom-
ical boundaries of their respective organs in the CT
scans. In Ref. [50], D-bar images were postprocessed
using a convolutional-neural network. Results on data
collected on saline-filled tanks with two different EIT sys-
tems demonstrated improved resolution measured by
SSIM.

4 CONCLUSION

The use of a statistical prior built from an anatomical
atlas to postprocess 2D cross-sectional EIT images of
the human chest computed by the D-bar method may be
a practical approach to improve the resolution of real-
time images. This may help in the real-time detection
of pathology in the bedside imaging of patients with
ARDS and chronic lung disease since EIT is a nonion-
izing imaging modality that can be performed continu-
ously at the bedside or as needed in a clinical setting.
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