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Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical

BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic

foci in clinical situations, and such electrodes were low-density and large. Increasing

the number and density of recording channels could enable the collection of richer

motor/sensory information, and may enhance the precision of decoding and increase

opportunities for controlling external devices. Several reports have aimed to increase

the number and density of channels. However, few studies have discussed the actual

validity of high-density ECoG arrays. In this study, we developed novel high-density

flexible ECoG arrays and conducted decoding analyses with monkey somatosensory

evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene

electrode arrays with an inter-electrode distance of 700 µm and recording site area

of 350 µm2. The arrays were mainly placed onto the finger representation area in the

somatosensory cortex of the macaque, and partially inserted into the central sulcus.

With electrical finger stimulation, we successfully recorded and visualized finger SEPs

with a high spatiotemporal resolution. We conducted offline analyses in which the

stimulated fingers and intensity were predicted from recorded SEPs using a support

vector machine. We obtained the following results: (1) Very high accuracy (∼98%)

was achieved with just a short segment of data (∼15 ms from stimulus onset). (2)

High accuracy (∼96%) was achieved even when only a single channel was used. This

result indicated placement optimality for decoding. (3) Higher channel counts generally

improved prediction accuracy, but the efficacy was small for predictions with feature

vectors that included time-series information. These results suggest that ECoG signals

with high spatiotemporal resolution could enable greater decoding precision or external

device control.

Keywords: µECoG, somatosensory evoked potential, finger somatotopy, brain-machine interface, machine

learning, sensory decoding
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INTRODUCTION

The electrocorticogram (ECoG) has been proposed as a well-
balanced source signal thatmay be especially applicable to clinical
brain machine interfaces (BMI) because it is less invasive and
has high signal fidelity compared with other techniques(Schalk
and Leuthardt, 2011). Until recently, ECoG electrodes were
generally used to identify epileptogenic foci in clinical situations,
using large electrodes that typically had a diameter of ∼4 mm
and an inter-electrode distance of ∼10 mm. However, a large
number of recent studies have employed methods with higher
electrode density, higher channel counts, and smaller electrodes
(Rubehn et al., 2009; Ledochowitsch et al., 2011; Matsuo et al.,
2011; Toda et al., 2011; Viventi et al., 2011; Escabí et al., 2014;
Castagnola et al., 2015; Kellis et al., 2015; Khodagholy et al.,
2015; Hotson et al., 2016). While high-density ECoG recording
seems to improve BMI performance, for instance, by enhancing
naturalistic control of prosthetic arms, few studies have directly
demonstrated the efficacy of this technique. Recently, Wang and
colleagues compared the efficacy of high-density ECoG arrays
to that of conventional clinical arrays, based on the accuracy
of finger movement classification (Wang et al., 2016). To our
knowledge, their study produced some of the first practical
evidence for the efficacy of high-density ECoG. However, the
authors used high-density arrays with a comparatively large
electrode, i.e., 64 channels, a diameter of 2 mm, and an inter-
electrode distance of 4mm.

Several reports have discussed the sizes and inter-electrode
distances of ECoG electrodes (Freeman et al., 2000; Slutzky et al.,
2010; Wodlinger et al., 2011; Muller et al., 2016). If the area
covered by an electrode array is constant, then an increase in
electrode density will enable the collection of brain activity at
a higher spatial resolution, which could result in a larger and
more comprehensive data set. Indeed, whether higher density
electrodes are advantageous in all situations is not clear.

ECoG signals are both spatial and temporal, necessitating
the use of a sampling theorem with a spatial domain. If the
acquisition of signals with a maximum spatial frequency f is
desired, it will be necessary to locate each sensor with a density
greater than 2f after eliminating frequency components >f via
filtering (in practice, pre-filtering is difficult in ECoG sampling).
Otherwise, aliasing will occur and the signal will be distorted
(Wolpaw and Wolpaw, 2012). According to this principle,
increasing the spatial resolution of sampling will simply require
an increase in sensor density.

However, in designing an actual electrode array, simply
increasing the electrode density may not be beneficial. First, if the
channels are located more closely to one another, the correlation
and coherence of the signals will increase and the signals may
become indistinguishable. This effect is more pronounced in
lower frequency bands (Muller et al., 2016). Additionally, signal

Abbreviations: SEP, Sensory evoked potential; ECoG, Electrocorticogram; MEMS,

Micro electro mechanical systems; COG, Center-of-gravity; BMI, Brain-machine

interface; Ch, Channel; D1, Thumb; D2, Index finger; D3, Middle finger; D4,

Ring finger; D5, Little finger; IPS, Intra-parietal sulcus; CS, Central sulcus, ERP;

Event-related potential.

power decreases when the spatial frequency of a signal increases,
and there may exist a threshold beyond which it becomes difficult
to distinguish the signal from white noise in the spatial domain
(Freeman et al., 2000). This limit (corner frequency) is thought
to depend on electrode impedance, size, amplifier performance,
and related factors. In addition, higher density electrode arrays
will unavoidably have smaller individual electrode contacts,
resulting in a higher electrode impedance and lower signal-to-
noise ratio (SNR). For the reliable use of ECoG arrays in daily
BMI applications, signals must be resistant to ambient noise,
such as motion artifacts or electromagnetic interference. Another
problem suggested by a modeling study is that smaller electrode
contacts can sense only shallower neurons (Wodlinger et al.,
2011). Fabrication cost and wiring challenges also exist. These
factors must be considered when designing a high-density ECoG
array to meet overall BMI system design objectives.

Previous studies have produced some theoretical indications
regarding optimal inter-electrode intervals. Using spatial spectral
analysis of ECoG signals, Freeman et al. reported that >1.25
mm was an optimal inter-electrode interval (Freeman et al.,
2000). Slutzky et al also demonstrated the optimality of electrode
contacts spaced in intervals ranging from 1.7 to 1.8mm for
human and 0.6mm for rat brains. They used a finite element
method that assumed a single dipole and subdural electrode
placement. This difference between humans and rats can be
largely accounted for by the distance between the electrodes and
current source in the two different species (cortical thickness)
(Slutzky et al., 2010).

The above-mentioned values are intrinsically dependent on
the targeted cortical regions and frequency bands of interest.
Nevertheless, these estimations are based on electrode arrays with
a higher density than those used in the above-mentioned report
by Wang. When assessing these theoretical investigations, we
considered it valuable to investigate the efficacy of arrays with a
much higher density, i.e., those with sub-millimeter intervals or
actual areas of contact.

The organization of this paper is as follows: First, we introduce
our new high-density flexible electrode array (inter-electrode
distance: 700 µm, recording site: 350 µm square) and describe
the successful recording and visualization of macaque finger
SEPs with a high spatiotemporal resolution. Second, we evaluate
the efficacy of high-density electrode arrays using machine
learning analyses in which stimulated fingers and intensities were
predicted from recorded SEP waveforms. Finally, we show that
higher channel counts could improve prediction accuracy via
channel subsampling and channel averaging analysis.

MATERIALS AND METHODS

Electrophysiology
Electrode Fabrication
We designed and fabricated a Parylene-C[poly(chloro-para-
xylylene)]-based 96-channel (32 channels × 3 patches) flexible
high-density electrode array (Figure 1A). The size of the array
was set such that it would sufficiently cover the cortical
representation of a hand. The inter-electrode distance was 700
µm, and the recording area of each channel was 350 µm square
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FIGURE 1 | Electrode fabrication and experimental paradigm. (A) A schematic drawing and photograph of the electrode. Note that the tip of the electrode was

separated like a comb. In the picture, the connecter portion is held by a pair of tweezers. (B) Schematic drawing of fabrication process. (C) A coil electrode for finger

stimulation (white arrow). The coil electrode had a loop structure that was retained by a short silicone tube. The loop was wound around the monkey’s finger.

(0.12 mm2). Electrode fabrication was carried out using the
same process described previously (Toda et al., 2011). Briefly, a
Parylene layer (10µm), patterned gold layer, and second Parylene
layer (10 µm) were deposited one by one on a silicon substrate.
The Parylene covering the gold contacts was eliminated via
oxygen plasma etching (Figure 1B). A gold reference wire (ϕ0.76
mm, insulated without tip,) was attached externally. The mean
electrode impedance was 11± 7.5 kOhm (mean± S.D., at 1 kHz).
Supplementary Figure 1 shows the frequency response curve for
an electrode with the same design as those used in the current
study.

Animal Surgery
We used one female macaque monkey (7 y.o., 4.7 kg). Surgery
was mainly performed by neurosurgeons. After durotomy, the
surgeon referenced the anterolateral ending of the intraparietal
sulcus to anatomically identify the finger representation area
in the right postcentral gyrus. The central sulcus was opened
according to a similar procedure described in a previous report
(Matsuo et al., 2011). Following the removal of the arachnoid,
the neighboring portion of the central sulcus (CS) was opened
to the largest possible degree. The opened area had a depth of
∼3 mm and length of 1 cm along the CS. Each electrode patch
was placed onto the brain surface such that a portion of each
patch rested inside the central sulcus (Supplementary Figure 2).

A piece of saline-dipped gauze was placed onto the electrodes
to stabilize the contact between the arrays and the cortical
surface. A ground electrode was connected to anchor screws
inserted into the cranial bone. A reference electrode was placed
in subdural space. We conducted an acute recording session
and, after data collection, removed the electrodes. Following data
collection, an additional electrode implantation was performed
as part of another study and the craniotomy was closed. All
experimental protocols were in accordance with the Animal
Research guidelines of Osaka University Graduate School of
Frontier Biosciences. This study was approved by the animal
experiment committee at Osaka University Graduate School of
Frontier Biosciences.

Data Collection
SEPs were recorded after administration of propofol, fentanyl,
and isoflurane. Unfortunately, the detailed anesthesia records
were lost. The approximate dosage of each drug was 4.25–
8.5 mg·kg−1·h−1, 10.6 µg·kg−1·h−1, and 0–2%, respectively.
Spontaneous breathing was maintained during the recording
session. We observed no evidence of abnormal waveforms or
suppression in the background ECoG activity. We used the
electrical stimulator NS-101 (Unique Medical, Tokyo, Japan) for
stimulation of fingers. A coiled stimulating electrode covered
with conductive paste was placed between the proximal and
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distal interphalangeal joints of the left hand (Figure 1C). As
a return electrode, another coil electrode was wound around
the left forearm of the monkey. We used a single cathodal
monophasic pulse (width 0.2 ms) and fingers were stimulated at
two different intensities (1 and 4 mA). The stimulation interval
was set at 305 ms. The stimuli in each condition (finger type
and intensity) were continuously presented for a total of ∼200
trials. The timing information for the stimulation triggers and
neural signals was recorded using a neural signal amplifier RZ2
Bioamp (Tucker-Davis Technologies, Alachua Fl., USA). Data
acquisition was performed at a sampling frequency of 6,103.52
Hz. See Supplementary Material for details about the stimuli
presentation in each condition and examples of recordings that
were excluded from analysis (Supplementary Table 1). In one
condition (D2, 4 mA), the time data for the stimulation trigger
and stimulus artifact were inconsistent. In this condition, trigger
timing was adjusted manually by referencing the timing of
stimulation artifacts.

Data Analysis
Data processing was carried out usingMATLAB 2015b and 2016a
(Mathworks, Natick MA, USA).

Common Preprocessing
The raw signal for each condition was expressed as a 2-
dimensional (2-D) matrix with 96 (channels) × N (data
points). The stimulation trigger timing (ttrig , Figure 2A) for
each condition was also saved as a vector with 1 × N (data
points). Two channels out of 96 showed noisy waveforms
instead of an evoked potential, indicating a technical problem.
These two broken channels were eliminated from analysis
unless otherwise stated. The raw signal was re-referenced using
common average referencing. Baselines were corrected for each
sample by subtracting the mean voltage during a 98 ms period
prior to ttrig . Next, the data were formatted for SEP analysis and
prediction analysis. The onset of tstim (Figure 2A) was delayed by
about 2.6 ms from ttrig . This ttrig-tstim relationship was consistent
in all conditions.

SEP Analysis
Extracted and formatted waveforms were averaged to obtain
averaged SEP waveforms (Figures 3A,B). Because the recording
sessions were manually orchestrated, the recording periods were
slightly different among each recording condition (finger type
and intensity). As a result, the number used for averaging varied
among the recording conditions. Actual counts are shown in
Table 1.

Wavelet analysis (Figure 3C) was carried out using the cwtft
function in MATLAB with the Morlet wavelet. The results
were normalized with respect to the pre-stimulus period. A
surface map of evoked responses (Figure 4) was made from the
averaged SEP waveforms by converting the voltage values into
pseudo color. A surface map of high-gamma power distribution
was made by calculating the mean power during the 33 ms
period following tinit (Figure 2) using the bandpower function
in MATLAB. The supplemental videos were made by collecting
all of the surface maps (evoked response map, 98 ms period after

FIGURE 2 | Data preparation for predictive analysis. (A) Time-point

definitions of prediction samples. ttrig: The time at which the stimulus trigger

was generated by the recording equipment. tstim: The time at which the

stimulus artifact was observed. The actual stimulus was considered to be

delivered at this time. tinit: The time at which 50 data points had elapsed from

ttrig. In predictive analysis, the data were acquired after this time point to

prevent contamination by stimulus artifact. tstart: The start time of the data

segment that was included in a feature vector. tend : The end time of the data

segment that was included in a feature vector. Note that tstart and tend were

variable. tfull : The time point at which 250 data points had elapsed from ttrig.

We defined this (ttrig−tfull ) length as “full length” in the prediction analysis. (B)

Decoder training and prediction. All 1,000 samples were shuffled and split into

10 datasets. Accuracy was calculated using 10-fold cross validation. Each

dataset (containing 100 samples) was used for prediction by a decoder, which

was trained by the other 9 datasets (containing a total of 900 samples).

ttrig , 600 frames) with a frame rate of 30 frames/s. Supplementary
Videos 1 (1 mA), 2 (4 mA) show the responses obtained in the
different stimulation conditions.

Center-of-mass trajectory of peak response
Trajectories of peak responses (Figure 5B) were calculated as
follows: As the electrode patches were not regularly aligned,
spatial interpolation was conducted first. By referencing the
patches to an intraoperative picture, each patch was re-located
on an 800× 513 2-Dmatrix. Although the actual electrodes were
curved along the brain surface and one edge was positioned in
the sulcus, the curved areas were visually manually positioned
to approximate the position in the planar 2-D matrix area.
Next, for each time t, the voltage value of each channel was
assigned to the corresponding position on the 2-D matrix. As a
result, voltage values for each channel were sparsely re-located
on the 2-D matrix. The 2-D matrices were interpolated using the
scatteredInterpolant function in MATLAB (parameters: natural,
no extrapolation was conducted). Two broken channels and one
overlaying channel were excluded from the interpolation.

Using this interpolated voltage map, we calculated the center-
of-gravity (COG) of the peak response at each time t. Calculations
were done using the equation below (modified from Reimer
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FIGURE 3 | Averaged SEP waveforms. (A) Each row shows the different stimulation intensities and each column shows the stimulated finger type. Each single trace

represents the time series data for one channel. A sharp biphasic wave appearing at the leading position (∼3 ms) in each trace shows the direct artifact of electrical

stimulation (red arrow). A slow positive/negative wave appearing around 20 ms after the stimulation trigger represents the short-latency somatosensory evoked

potential. (B) Overlay plots of single stimulation responses, shown as gray traces. The red traces indicate the mean. These data were obtained from the representative

channel (Ch 40). (C) Wavelet analysis of evoked response (representative data, 4 mA, D3). The area shaded in blue corresponds to the shaded area in (B).

et al., 2011). Note that calculations were done only for areas with
voltages above+150 µV.

COG(t)x =

∑
j xj · iECoG(t)j
∑

j iECoG(t)j
,

COG(t)y =

∑
j yj · iECoG(t)j

∑
j iECoG(t)j

,

j = { j | iECoG(t)j ≥ 150(µV)}.

Here, an averaged ECoG voltage, which is interpolated at time t
and position j, is shown as iECoG(t)j. A coordinate of position j is

shown as (xj, yj). The trajectory map is obtained by sequentially
calculating (COG(t)x, COG(t)y).

We investigated threshold levels to produce comparable
trajectory lengths for each finger. We adopted a threshold of
150 µV. The differences in inter-channel signal noise levels were
small (see Results) such that the constant threshold was deemed
to be sufficient.

Noise level evaluation
For noise level evaluation, we calculated the root mean square
value of the rest-state (inter-stimulus) ECoG voltage using a 98-
ms segment starting 100 ms before stimulation onset (tstim). This
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TABLE 1 | Average sample counts in each stimulation condition.

Condition D1 1mA D2 1mA D3 1mA D4 1mA D5 1mA D1 4mA D2 4mA D3 4mA D4 4mA D5 4mA

Averaging counts 212 221 188 221 221 238 218 211 229 217

FIGURE 4 | Spatial patterns of responses evoked by finger stimulation.

(A) Operative view of electrode placement. The three areas surrounded by the

white line represent each electrode patch. Patches A and B were partially

overlapped. Each patch was flexible and curved along the brain surface. A

section of each patch was inserted into the central sulcus. Landmarks and

orientations: CS, central sulcus; IPS, intraparietal sulcus; A, anterior; P,

posterior; M, medial; L, lateral. (B) Averaged surface potential distribution

(1 mA, D1) at 18 ms after tstim. Characters assigned to each patch

correspond to characters in (A). The two channels with asterisks were broken.

The pink dotted line indicates the approximate position of the central sulcus.

The CS position in patch C was unknown. (C) Surface distributions of evoked

responses.

segment had no apparent evoked response. Before calculation,
the mean of each extracted segment was set to zero.

Finger and Intensity Prediction Analysis
We performed multi-class classification analyses (5 finger
types × 2 intensities = 10 conditions). We used SEP waveforms
(time series of voltage values, non-spectral data) as feature
vectors. Waveform extraction was conducted using the same
method described in the common preprocessing section. We
defined this extracted waveform as a “full-length sample.” A full-
length sample had a length of 200 data points (tinit–tfull; about
33 ms, Figure 2A). In some of the analyses described below,

we used segments of these full-length samples for the purpose
of manipulating the length of time-series information in feature
vectors. We defined the start position of cutting as tstart and the
end position as tend (Figure 2A), such that a segment that was
included as a feature vector was defined from tstart–tend. If an
entire full-length sample was used in a prediction, tstart was set
to tinit , and tend was set to tfull.

In all prediction analyses, we used only 100 samples from
each condition (samples recorded from the 1st to the 100th
stimulation) to match the number of different class samples.
Hence, we collected a total of 1,000 samples (10 conditions ×
100 stimuli). Each sample was converted to a z-score using the
all-sample mean and standard deviation.

We adopted a linear-kernel support vector machine as a
machine learning algorithm, which was fast and easily tunable.
Before calculating predictions, it was necessary to establish a
hyperparameter, termed C (penalty parameter). We plotted and
investigated the relationships between C and accuracy for each
analysis. A parameter space ranging from 10−10 to 102 was
divided into 20 points in logarithmic space. In each analysis,
a single globally effective parameter was visually located and
adopted in the prediction. As a result, in the analysis of
spatial resampling without time-series data (Figure 8B), C =

10−1 was used according to prior investigations (Supplementary
Figure 3). In all other analyses, C= 100 was used (Supplementary
Figures 4–6).

The prediction results were verified with 10-fold cross
validation (Figure 2B): A test data set was split into 10 subsets.
Prediction was performed for each subset (including 100 samples,
10% of all samples) using a decoder trained with the other
9 subsets. Accuracy was defined by (the number of correct
predictions)/(the number of all predictions). Decoder training
and the prediction algorithmwere implemented with Python and
the Scikit-learn machine learning library.

Temporal truncation analysis
To investigate the importance of temporal information for
prediction, we limited the temporal information input of the
data. We set tstart = tinit . As an initial sample, we obtained a
single data point × 94 channel length vector (tstart–tend had a
length of one data point: about 0.16 ms). Hereafter, input samples
were stepwise elongated by one data point and each sample was
evaluated with 10-fold cross validation.

Spatial subsampling analysis
To investigate the importance of spatial information, we used the
prediction method and limited the spatial input of the data.

In time-series data prediction (Figure 8A), we set tstart = tinit .
N channels were randomly selected from all 94 channels and
a sample with a length of T data points was obtained for each
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FIGURE 5 | Time course of surface potential distribution. (A) Sequential images show the time course of surface potential evolution. Representative data are

shown (D3, 4 mA). The timing at which stimulation artifact appeared (tstim) was set to t = 0 and images are displayed from 10 ms after tstim. Electrode arrays are

shown in re-aligned form (From left, patch A, B, and C). Arrays actually have inter-spacing, as shown in Figure 4A. The displayed time was rounded off to the nearest

integer. The pink dotted line labeled CS in the first frame represents the approximate central sulcus line. (B) Center-of-gravity (COG) trajectory of peak response area.

Calculated COGs at each time point are indicated by cross marks. As shown by the arrow, COGs tended to move from the anterior to posterior direction. The data

shown was obtained in the 4 mA condition. The CS line shows the approximate position of the CS. D1, Thumb; D2, Index; D3, Middle; D4, Ring; D5, Little.

channel. We prepared feature vectors with size N (channels)× T
(data points) as one training/test sample. The number of channels
N was varied from 1 to 91 with a step size of 5. For each N, the
data point length T was varied from 1 to 196 with a step size of 5.
For each combination of N and T, we calculated and plotted the
mean prediction accuracy, evaluated by 10-fold cross validation.

For non-time-series data prediction (Figure 8B), a single time
point in the ECoG signal (voltage) was used so that tstart–tend had
a length of one data point (about 0.16 ms). tstart was initially set to
tinit and varied until tfull with a step size of 5 data points. Feature
vectors with size N (channels) × 1 (data point) were prepared as
one training/test sample.

Merged channel analysis
We used limited time-series information in this analysis because
we were not able to see the channel-count effects when using full-
length samples. To ensure that we used waveform segments with
predictive value, we set tstart to a point 20 ms from tstim (86 data
points from tstim) according to the results shown in Figure 8B.
The time-series length (tstart–tend) was set to 10 data points, i.e.,
about 1.6 ms.

Channel groups are indicated by red rectangles in Figure 9A.
For each channel group, the signals from all channels included in
the group were averaged and made into one signal. These signals
could be thought of as having been recorded from “virtual large

channels” comprising all of the channels in each group. Using
these reconstructed signals, we conducted prediction analysis.
The two broken channels were eliminated from this analysis.

RESULTS

Spatiotemporal Dynamics of Finger SEP
We successfully recorded SEPs from our electrode arrays
during electrical finger stimulation (Figure 3A). Large-amplitude
positive waves were observed about 20ms after stimulation onset.
In some channels, we could see not only positive waves but
also shallow negative waves or shallow positive/negative wave
complexes.

In a monkey SEP study, McCarthy and colleagues reported
the presence of “P10–N20” on the anterior surface of the central
sulcus (CS), “N10–P20” on the posterior surface of the CS,
and “P12–N25” in the vicinity of the CS. These waveforms are
thought to be equivalent to the human “P20–N30”, “N20–P30,”
and “P25–N35” (McCarthy et al., 1991). In this finger-stimulating
SEP study, we found waveforms corresponding to the monkey
“P12–N25” or “N10–P20” in some channels, which confirmed
the successful recording of short latency somatosensory evoked
potentials.

Qualitative investigation of wavelet analyses suggested that
the observed SEPs consisted of three main components: First,
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a slow component with a main frequency around 40–50Hz,
second, a fast component, which ranged from 80 to 200 Hz (high-
gamma), and third, a very fast component, which ranged from
300 to 800Hz (Figure 3C). The first slow and the second fast
components had almost the same spatiotemporal properties and
emerged∼20 ms from stimulation onset in trials where the main
SEP waves were observed.

For the purpose of visualization, we made surface potential
distribution maps; color maps in which voltages at 18 ms
after stimulation onset (tstim) were assigned pseudo colors
(Figure 4C). We observed a progression in the peak position of
SEPs from lateral to medial as the stimulated finger advanced
from D1 (thumb) to D5 (little finger). This relationship between
stimulated fingers and the spatial specificity of peak timing
corresponded to known somatosensory somatotopy (Nelson
et al., 1980; Pons et al., 1987). In addition, the area for which the
high-gamma band exhibited the highest power was similar to the
area where the raw potentials showed the highest amplitude.

Because we used a high-density electrode array with a high
number of channels, we were able to visualize the detailed
spatiotemporal dynamics of evoked potentials. We made a
figure (Figure 5A) and movies (Supplementary Videos 1, 2)
demonstrating the temporal evolution of activity. We observed
that channels with well-defined peaks moved along the anterior-
posterior axis. This movement was confirmed by a COG analysis
of the peak response area (Figure 5B).

We calculated voltage fluctuations in the rest state to check
the signal quality. For non-averaged data, the root-mean-square
(r.m.s.) of the rest ECoG voltage was 18± 6.0 µV (inter-channel
mean ± S.D.). For the averaged data, the r.m.s. was 1.9 ± 0.53
µV. As seen in Figure 3, recorded evoked responses were several
hundred microvolts in size. Thus, high SNR was achieved and
channel impedances were considered to be nearly equal.

We checked the array placements for any drifting, and
found no evidence of movement. Specifically, we compared the
pre-recording (D3, 4 mA) data acquired before recording the
analyzed dataset with the last recording of the experiment (D3,
4 mA), and found no differences in the locations of channels with
peaks (data not shown).

Prediction of Stimulated Fingers and
Intensity Using Machine Learning
Prediction Results
Stimulated fingers and intensity were successfully predicted by
ECoG signals acquired from a single stimulation event (non-
averaged SEP waveforms). Using all 94 channels, we conducted
10-condition classification (5 finger types × 2 stimulation
intensity) with an accuracy of 0.98 ± 0.008 (mean ± S.D.,
Figure 6A). To compare this performance against chance levels,
we also made a prediction using a dataset where the condition
labels had been randomly shuffled, and obtained an accuracy of
0.098± 0.026.

We also performed predictions using a single channel; the
accuracy is shown in Figure 6B. Channels with a higher accuracy
were often observed in the medial area, in which large amplitude
SEPs were recorded. The channel with the strongest predictive

power, located in the most medial section of the arrays, had an
accuracy of 0.97± 0.017 (Figure 6B, indicated by the star).

Temporal Truncation Analysis
As shown in Figure 5, responses evoked by stimuli were not
constant, but exhibited spatial-temporal dynamics. Presumably,
these dynamics could affect the prediction results. We were
interested in determining what signal duration during stimulus
presentation would be necessary for accurate prediction, as the
latency between stimulus and prediction is an important factor
in BMI applications, particularly perceptive BMI. We performed
step-wise elongation of the time-series data and plotted a time
course of accuracy (Figure 7A). Accuracy immediately reached
a maximal value ∼15 ms after stimulation onset and remained
constant at this maximal value afterwards. We found that we
could achieve accurate prediction using a relatively early and
short signal duration from the dataset.

During time intervals without any evoked responses (from
“Stim” to 9 ms, Figure 7B), prediction accuracy was maintained
within chance levels (Accuracy = 0.1). This suggests that the
contribution of stimulation artifact was sufficiently eliminated.
This also ensured that the evoked response waveform itself had
contributed to the prediction.

Channel Counts and Prediction Accuracy: Spatial

Subsampling Analysis
By randomly selecting channels to be included in the feature
vectors (spatial subsampling), we investigated the effects of
changing the density and the number of channels on prediction
accuracy (Figure 8).

Generally, higher channel counts led to higher prediction
accuracy. When time-series information was included in the
feature vectors (Figure 8A), only a small number of channels
were needed to achieve high accuracy, up to the point where
increasing the number of channels further had a limited effect.
Without time-series information (Figure 8B, voltage values at
a single time point were used in feature vectors), accuracy
varied depending on the selected time points. Additionally,
higher accuracy was achieved at the time points with higher SEP
amplitudes.

Channel Counts and Prediction Accuracy: Merged

Channel Analysis
An averaged potential between two neighboring channels is
considered to reflect the potential that the two electrically
connected channels generate (e.g., average reference in EEG).
Using this inter-channel averaging method, we investigated the
prediction accuracy of the “virtual large channel” (Figure 9).
As a result, we found that increasing the number of channels
improved prediction accuracy. This improvement was larger
in the 1 mA compared with the 4 mA condition, and also
larger in the D3, D4, and D5 conditions compared with the D1
and D2 conditions. In this analysis, we limited the time-series
information input to 1.6 ms because the full-length data points
increased accuracy to a nearly maximal plateau level in most
conditions. The input time-series was cut and extracted from the
time point 20 ms after stimulation onset.
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FIGURE 6 | Prediction results of stimulated finger type and intensity. (A) The results of the prediction using all 94 channels to classify five finger types × two

intensities = 10 conditions. Columns show actual (true) conditions and rows show predicted conditions. Each number in a cell corresponds to the number of the

predicted samples. (B) Accuracy obtained from single-channel predictions are showed by pseudo colors. The yellow star indicates the channel with maximum

accuracy (Ch 41, 0.96 ± 0.01, mean ± S.D.). The two asterisks indicate broken channels.

FIGURE 7 | (A) (Left) Accuracy at t ms from the stimulation onset was calculated from the ECoG signal obtained prior to t ms. The red trace (“ALL”) shows the

prediction accuracy obtained from all channels together (94 channels), and the other plot shows single-channel predictions. Data sections from the stimulation trigger

to 5.2ms afterwards might include the effects of direct artifact from electrical stimulation, and were thus excluded from prediction samples. (Right) The channel

locations are shown on the accuracy map (same as Figure 6B). (B) For reference, the representative SEP waveform (D1, 4mA) is displayed for the same time points

as the accuracy plot.

DISCUSSION

Finger SEP Recording with High-Density
Arrays
In this study, higher density electrode arrays and other high
performance recording equipment enabled us to perform SEP
recording that was spatiotemporally precise and obtain finger
somatotopy that was clearly delineated. The obtained somatotopy
exhibited a gradient that was lateral to the medial axis as
stimulated fingers advanced from D1 to D5. This result was
consistent with monkey multi-unit studies with penetrating
microelectrodes (Nelson et al., 1980; Pons et al., 1987), a human

study with fMRI (Kolasinski et al., 2016), and monkey studies
with optical imaging of intrinsic signals (Chen et al., 2001;
Shoham and Grinvald, 2001).

A recent study reported a method for delineating finger
somatotopy using high-density ECoG, mainly for the purposes
of surgical planning, such as epileptogenic focus or tumor
resection surgery (Prueckl et al., 2015; Wahnoun et al., 2015).
Our use of novel electrode arrays with higher density and higher
channel counts made it possible for us to obtain more detailed
spatiotemporal delineation. Thus, the efficacy of high-density
ECoG was re-confirmed not only for BMI applications, but also
for clinical functional mapping.

Frontiers in Neural Circuits | www.frontiersin.org 9 April 2017 | Volume 11 | Article 20

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kaiju et al. High-Resolutional ECoG Recording of SEP

FIGURE 8 | Spatial subsampling analysis. (A) Result of random spatial (channel) subsampling with time-series information in feature vectors. The vertical axis

shows the number of sampled channels. The horizontal axis indicates the time-series length used in the prediction (t = 0 indicates stimulation timing, tstim). Sampling

was repeated 30 times and the mean accuracy was plotted. (B) Result without time-series data. A single ECoG signal (voltage value) at one time point was used for

prediction. The horizontal axis shows different values corresponding to that time point.

FIGURE 9 | Merged channel analysis. (A) (Upper) Channel group definition. Channel signals included in the same red rectangle were averaged and made into a

single signal. (Middle) Example of averaged surface potential distribution. Potentials at 18 ms after stimulation (4 mA, D3) are shown. (Lower) Confusion matrices of

prediction results. Numbers under the matrices indicate prediction accuracy. Note that for this analysis, we used 1.6 ms of limited time-series information. (B) Channel

count vs. accuracy plot. Increasing channel counts improved prediction accuracy. Error bars indicate mean ± S.D. of 10-fold cross validation results.

Effect of High-Density Electrode on Finger
Prediction
Spatial sampling analysis (Figure 8) and merged channel analysis
(Figure 9) showed that the use of a high-density ECoG electrode
led to relatively high decoding accuracy.

According to the trajectory map (Figure 5B), D3, D4, and
D5 were only separated from one another by approximately

one channel interval (700 µm). Our high-density electrode array

could successfully delineate these slight differences, thus leading

to high prediction accuracy. However, some portions of the

trajectories overlapped and could not be separated. Our map was

generated exclusively from interpolated data obtained from an

electrode with a channel interval of 700 µm. Thus, there is much

potential for improvement in terms of trajectory separation and
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prediction accuracy when using electrode arrays with a higher
density than those used in this study.

In this study, we were unable to clearly determine the efficacy
of high-density electrodes for making predictions when time-
series information is included in the feature vectors (Figure 8A).
It is possible that time-series information could compensate for
the loss of spatial information in our test paradigm. This may
be the case with respect to the propagation dynamics of cortical
responses. The response to a stimulus is not localized, but moves
within a comparatively large area in a time-dependent manner.
Thus, we could detect the response pattern even if the sensor was
not precisely located to capture the initial portion of the response.
Conversely, when using limited time-series information, a high
channel count could recover the loss of time-series information
to some extent. Thus, this relationship may be bidirectional.

With regard to daily-life applications of BMI, limitations to
equipment design, such as sampling frequency limits or low
SNR, are likely. Our data support the important possibility that
increased channel counts and density can compensate for the loss
of time-series information.

ERP as a Valuable Feature for
Time-Sensitive Decoding
As feature vectors, we used event-related potentials (ERPs) and
focused on SEPs, which are a class of ERP. In contemporary
ECoG studies, the high-gamma band is the main target of
analysis. This is because the high-gamma band is closely
correlated with neural firing/synchrony (Ray et al., 2008) and
carries rich information about certain biological signals, such as
kinematics (Miller et al., 2007). In addition, high-gamma band
signals cannot be easily obtained from scalp EEG.

However, to calculate band power to use such a specific
band modulation (e.g., high-gamma), a time window with an
appropriate length for the desired band is usually necessary.
Thus, the instantaneity and accuracy of timing information may
be lost, along with other limitations, according to the signal
lengths used for implementing decoding algorithms (e.g., filter or
buffer length). Perception and accompanying SEPs in this study
reflected a very short (∼several milliseconds) event, such that
even event-related potentials that did not require special time
windowing were considered to be useful. Indeed, we reported
high accuracy (∼98%) with a very short segment of data (∼15
ms from stimulus onset).

ERPs are potentially suitable as feature vectors in some
circumstances in which ERPs with high SNRs can be obtained
by a single stimulation, like in this study. ERPs are also useful
in some BMI applications in which temporal information is
essential (e.g., perception of pain or hearing).

Electrode Placement toward BMI
Applications
According to our single-channel prediction map (Figure 6B),
even within each small patch, there were some differences in
prediction accuracy among the channels. In addition, as the
mislocated “patch C,” which was located only about 5 mm from
the optimal position showed (Figure 4A), decoding accuracy

drastically decreases when the position of the array is less than
ideal (Figure 6B). High-density arrays generally have small brain
coverage. Thus, the optimal placement of electrode arrays is
critically important to achieve high accuracy decoding with high-
density arrays.

In this study, the prediction accuracy was highest in the
most medial section of the arrays, and lower in the lateral
section. We observed dense D3, D4, and D5 responses in the
medial area, and comparably sparse D1 and D2 responses in
the lateral area (Figure 5B). These tendencies suggest that, for
effective decoding, the channels should be placed in an area where
the activation patterns to be classified are densely represented.
Unlike penetrating electrodes, it is possible to adjust the position
of ECoG arrays during surgery without risking tissue damage.
If it were possible to operate decoders intraoperatively during
ECoG implantation, highly efficient BMIs could be developed in
terms of optimization of electrode placement (decoder-suitable).
Recently, Xie and colleagues recorded human ECoG during a
hand motion task, performed during a craniotomy where the
participant was awake (Xie et al., 2015).

The skill and precision of the neurosurgeons in this study
enabled the electrodes to be partially placed into the central
sulcus. Thanks to this placement, we found that single-channel
prediction accuracy tended to be better in the channels in the
CS (Figure 6B). In addition, the positive surface potential seen
after stimulation seemed to arise within the vicinity of the CS and
propagate in the direction of the postcentral gyrus (Figure 5).
Sensory information ascending from the thalamus is mainly
delivered to area 3 in the CS first, and subsequently reaches
area 1 in the postcentral gyrus (Felleman and Van Essen, 1991).
Considering the observed propagation of sensory information
from the CS, it is possible that the placement of electrodes in
the CS will lead to higher decoding accuracy and faster decoding
capability from stimulus onset.

Limitations and Future Research
Contrary to our expectations, the efficacy of high-density and
multi-channel ECoG appears to be somewhat limited. One
reason relates to the use of the ERP itself as a feature vector. ERPs
contain signals in low-frequency bands. These low-frequency
signals generally have a higher number of channel correlations,
which can mask high-density effects. Another reason for the
low efficacy of the high-density property of our array in our
test paradigm may be our use of electrical stimulation, which
is non-physiological and strong. Elicited responses were quite
distinct, and prediction accuracy reached a nearly maximal
value, increasing the chance that the high-density effect would
be difficult to detect. To address this problem, other methods
of tactile stimulation, such as a vibration motor (Hotson
et al., 2016), braille device, 3-dimensional point stimulation
system (Tabot et al., 2013), diaphragm-type pneumatic device
(Zhu et al., 2009), or drum-type rolling device (Weber et al.,
2013) may be efficacious, as they are more physiologically
relevant.

Considering that others studies using different paradigms
(e.g., motor-decoding) demonstrated a high-density effect,
such effects may be highly dependent on stimulus type or
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classification/decoding tasks. Thus, we must exercise caution to
avoid over-generalization of the results, and plan experiments
with increasingly realistic conditions.
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