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in CKD can be broadly classified as myocardial remodel-
ing (i.e., left ventricular hypertrophy, systolic and diastolic 
dysfunction) and vascular remodeling (i.e., atherosclerosis, 
arteriosclerosis, vascular calcification), which interact with 
each other [1]. CVD is the leading cause of mortality in the 
dialysis population, accounting for 45% of all deaths. The 
prevalence of coronary heart disease, heart failure, and left 
ventricular hypertrophy is reported as high as 40%, 43%, 
and 70%, respectively [2, 3]. Particularly, heart failure 
poses a significant challenge in the management of ESKD. 
It frequently develops after initiation of dialysis and is a 
prominent mortality risk factor among these patients [4]. 
Traditional therapies to prevent CVD complications in the 
general population have shown to be ineffective in CKD. To 
address the unmet need, further research is needed to evalu-
ate novel therapeutic strategies to improve cardiovascular 
outcomes among patients on dialysis.

Introduction

Chronic kidney disease (CKD) and end-stage kidney dis-
ease (ESKD) are associated with an increased risk of CVD 
and mortality. CKD has the bidirectional relationship with 
cardiovascular disease (CVD). The manifestations of CVD 
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Sodium-glucose transporter type 2 (SGLT2) inhibitors 
have been shown to confer substantial kidney and cardio-
vascular benefits among patients with type 2 diabetes, heart 
failure, and/or high-risk CKD [5, 6]. In the current clinical 
landscape, SGLT2 inhibitors can be initiated among patients 
with eGFR 20 ml/min/1.73 m2 or more but need to be dis-
continued upon dialysis initiation for EKSD [7]. This prac-
tice likely stems from the diminished efficacy of SGLT2 
inhibitors in promoting glucosuria and natriuresis as kidney 
function declines [8, 9], coupled with undetermined safety 
profiles among patients with advanced CKD or ESKD 
who were historically excluded from pivotal clinical trials. 
Nevertheless, recent emerging data indicate that SGLT2 
inhibitors may provide cardiovascular benefits even among 
dialysis-dependent patients with low or absent kidney func-
tion. This evolving perspective may gain momentum now 
that the Food and Drug Administration (FDA) has removed 
dialysis dependency from the list of contraindications in the 
drug labels of SGLT2 inhibitors in 2023, after a multi-disci-
pline review acknowledging the current data and evolution 
in the understanding of this class of agents [10, 11].

This article aims to comprehensively review the hypoth-
esized clinical advantages, their postulated pathways, and 
potential safety issues associated with the use of SGLT2 
inhibitors in ESKD, with a special focus on heart failure. 
Additionally, we outline ongoing clinical trials of this drug 
class in the dialysis population.

Current Clinical Evidence of SGLT2 Inhibitors among 
Non-Dialysis Patients

Sodium-glucose transporter type 2 (SGLT2) inhibitors are 
initially approved by the FDA for the management of type 
2 diabetes. SGLT2 is mainly expressed in the kidneys, spe-
cifically in the apical membrane of the S1 and S2 segments 
of the proximal tubule. SGLT2 inhibitors induce glycosuria 
and natriuresis by inhibiting sodium and glucose reabsorp-
tion, leading to improved glycemic control, small reduction 
in blood pressure, and mild to modest weight loss among 
patients with type 2 diabetes [12, 13]. Interestingly, unlike 
traditional diuretics, SGLT2 inhibitor-induced diuresis is 
associated with fewer electrolyte abnormalities, a decreased 
risk of acute kidney injury, and less neurohormonal activa-
tion [8]. Additionally, SGLT2 inhibitor use lowers the risk 
of hyperkalemia [14], thereby facilitating the continuation 
of the combined regimen with renin-angiotensin-aldoste-
rone system inhibitors [15]. Beyond the renal effects of gly-
cosuria and natriuresis, SGLT2 inhibitors also offer broad 
metabolic benefits, including reduction in visceral, liver, 
and epicardial fat by shifting substrate utilization from car-
bohydrates to lipids and ketone bodies [16–20], decreased 
serum uric acid levels and lowered risk of gout flares via 

enhanced renal uric acid excretion [21, 22], reduced kidney 
stone formation by increasing urine citrate levels [23–26], 
and alleviation of anemia by increasing erythropoietin pro-
duction and suppressing proinflammatory pathways [27]. 
Cardiovascular outcome trials revealed that SGLT2 inhibi-
tion among patients with type 2 diabetes reduced the risk 
of cardiovascular events, cardiovascular mortality, and all-
cause mortality, with consistency of favorable heart failure 
and kidney outcomes across the drug class [5, 6].

It should be noted that SGLT2 inhibitors are the first drug 
class that has shown clear efficacy on clinical hard endpoints 
in both heart failure with reduced ejection fraction (HFrEF) 
and preserved ejection fraction (HFpEF). Furthermore, 
recent clinical trials have shown promising cardiac benefits 
of the drug regardless of diabetes status [28–34]. Addition-
ally, recent meta-analyses of clinical trials showed that 
SGLT2 inhibitor use is associated with a lower risk of atrial 
fibrillation/flutter events [35, 36]. Observational studies 
suggest that SGL2 inhibitors may stabilize atherosclerotic 
plaque among patients with type 2 diabetes and ischemic 
heart disease [37, 38], thereby reducing major adverse car-
diovascular events [39, 40], but meta-analyses showed their 
neutral effects on stroke or myocardial infarction [41, 42].

While SGLT inhibitors lead to improved glycemic con-
trol, better blood pressure management, and weight reduc-
tion, these factors alone do not fully explain the extensive 
cardiac benefits conferred by this drug class. Given the close 
relationship between the severity of CKD and the increased 
risk of CVD, the renoprotective effect of SGLT2 inhibitors 
is considered to play a significant role. This perspective is 
supported by multiple clinical trials demonstrating reduced 
albuminuria and a lowered risk of CKD progression by 
SLGT2 inhibition, benefits that are evident in both diabetic 
and non-diabetic patient populations [7, 43].

Potential Cardiovascular Benefits of SGLT2 
Inhibitors among Dialysis Patients

Urinary glucose excretion induced by SGLT2 inhibitors lin-
early diminishes with lower kidney function [44], and their 
plasma glucose-lowering effect is attenuated in patients 
with eGFR < 60  ml/min per 1.73 m2 and becomes negli-
gible when eGFR is < 30  ml/min per 1.73 m2 [45]. Nev-
ertheless, the benefits of SGLT2 inhibitors in kidney and 
cardiovascular outcomes are generally preserved among 
patients with CKD and are observed even among non-dia-
betic patients. For instance, the DAPA-CKD trial showed 
that dapagliflozin reduced the risk of kidney, cardiovascular 
and mortality endpoints even in a subgroup of patients with 
stage 4 CKD, which was consistent with those observed in 
the entire study [29, 46]. The EMPA-KIDNEY trial also 
demonstrated that empagliflozin significantly reduced the 
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risk of CKD progression or cardiovascular death across 
eGFR levels extending to stage 4 CKD [47]. Such kidney 
function-independent benefits were confirmed in a recent 
meta-analysis of over 90,000 participants from randomized, 
placebo-controlled clinical trials [48]. Interestingly, the 
most substantial risk reduction for heart failure outcomes 
was observed among patients with lower eGFR levels. Col-
lectively, these findings warrant clinical studies evaluating 
the effects of SGLT2 inhibitors on cardiovascular outcomes 
among dialysis patients, where these drugs may provide 
indirect and direct cardiovascular benefits (Fig. 1).

Indirect Cardiovascular Benefits of SGLT2 Inhibitors

Recent clinical studies have shown that residual kidney 
function, even at such low levels observed among dialysis 
patients, is closely associated with better clinical outcomes. 
In addition to better clearance of uremic toxins, greater 
residual kidney function is associated with less inflamma-
tion, better quality of life, fewer episodes of intradialytic 
hypotension, better nutritional status, more effective control 
of phosphorus, less pill burden, less requirement of eryth-
ropoietin stimulating agents (ESAs), a lower risk of cardio-
vascular events, and a lower risk of death [49–54]. . The 
majority of incident ESKD patients still have some kidney 
function, with approximately 27% and 10% starting dialy-
sis with an eGFR of 10–14  ml/min/1.73 m2 and ≥ 15  ml/
min/1.73 m2, respectively [4]. SGLT2 inhibitors slows the 
progression of CKD, and hence, may help preserve residual 
kidney function even after dialysis initiation. This in turn 
could lower the risk of CVD including heart failure.

An additional indirect cardiovascular benefit of SGLT2 
inhibitors is the mitigation of anemia and the improvement 
in iron utilization. Clinical trials have shown that these 
drugs can increase hematocrit levels by 1.9–2.4%, reduce 
the risk of developing anemia, and decrease the likeli-
hood of needing iron supplements or ESA treatment [27, 
55–59]. These effects are attributed to stimulation of ESA 
production and reduced hepcidin production by decreasing 
inflammation and activating nutrient deprivation signaling 
such as sirtuin-1 in the liver [60]. Notably, this benefit on 
anemia was consistently observed in moderate-to-severe 
CKD, where kidney erythropoietin production is impaired 
[55]. It is postulated that the activation of sirtuin-1 activa-
tion by SGLT2 inhibitors could stimulate hypoxia-inducible 
factor (HIF)-2α, leading to erythropoietin production in 
the liver [61]. Furthermore, unlike HIF prolyl hydroxylase 
inhibitors (HIF-PHI), experimental studies have shown that 
SGLT2 inhibitors suppressed the expression and activity of 
HIF-1α [62–66], albeit with some exceptions [67, 68]. This 
distinction could be an important property of this drug class 
because while HIF-1α does not significantly contribute to 
endogenous erythropoietin synthesis, it may enhance ath-
erosclerotic plaque instability and promote cardiac fibrosis 
[69]. Additionally, HIF-2α stimulation by SGLT2 inhibitor 
use has been also reported in in vitro studies [70–72], indi-
cating this effect is partly independent of glucosuria. Given 
the increased cardiovascular risk associated with ESA ther-
apy with or HIF-PHI inhibitor [73], and considering the 
high prevalence and associated mortality risk of functional 
iron deficiency [74], SGLT2 inhibitors could become an 

Fig. 1  Potential direct and indirect cardiovascular benefit of SGLT2 
inhibitors in the dialysis population. Potential indirect benefits include 
preservation of kidney function, which can lead to multiple benefits 
from various aspects including uremic toxin levels, volume and blood 
pressure (BP) control, and nutrition. SGLT2 inhibitors also improve 
anemia and iron utilization, leading to less requirement of erythro-

poietin stimulating agents (ESAs), which is known to increase the 
risk of cardiovascular events. SGLT2 inhibitors also directly act on 
cardiomyocytes and endothelial cells and lower intracellular sodium 
and calcium level, reduce inflammation, mitigate oxidative stress and 
endoplasmic reticulum (ER) stress, and regulate autophagy. Created 
using BioRender.com
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increase in mitochondrial calcium levels, likely through the 
action of sodium-calcium exchangers. SGLT2 inhibitors 
also inhibit hydrogen peroxide-induced late sodium current 
in cardiomyocytes with little effect on peak sodium current, 
which may protect against arrhythmias associated with pro-
longed action potentials [75, 89].

Of note, a phase III randomized, placebo-controlled 
clinical trial evaluated the effect of NHE-1 inhibition by 
cariporide among 5761 patients undergoing high-risk coro-
nary artery bypass graft surgery and found that cariporide 
significantly reduced the incidence of myocardial infarction 
but increased mortality from cerebrovascular events [90]. 
SGLT2 inhibitors may have an advantage on this regard 
because their use has been shown to have neutral effect on 
overall cerebrovascular events [41, 42]. However, the direct 
NHE-1 inhibition by SGLT2 inhibitors were not consistently 
observed in other studies [91–93], indicating the presence of 
unknown effect modifying factors.

2.	 Oxidative stress and inflammation.

Oxidative stress and inflammation are interdependently 
involved in the pathogenesis of CVD, perpetuating a 
chronic and vicious cycle with heart failure. Oxidative 
stress, caused by reactive oxygen species (ROS), induces 
the inflammation pathway through the activation of nucleo-
tide-binding domain, Leucine-rich-containing family, pyrin 
domain-containing-3 (NLRP3) inflammasome [94]. The 
subsequent release of inflammatory cytokines, if excessive, 
can lead to inflammatory cell death, known as pyroptosis 
[95]. In turn, inflammation also induces oxidative stress 
via various cellular signaling pathways involving media-
tors such as protein kinase C and calcium. These media-
tors activate sources of reactive oxygen species (ROS) such 
as nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase and the mitochondrial electron transport chain. 
Chronic inflammation and oxidative stress promote proin-
flammatory macrophage infiltration and augment interstitial 
collagen deposition, which creates areas of replacement 
fibrosis, eventually leading to progressive left ventricular 
remodeling and dysfunction [96, 97]. ROS reduces nitric 
oxide-cyclic guanosine monophosphate-protein kinase G 
(NO-cGMP-PKG) signaling, leading to myocardial hyper-
trophy and increased stiffness by diminishing myofilament 
phosphorylation [98]. Proinflammatory macrophage infil-
tration and decreased NO production in the endothelial cells 
play a significant role in the progression of atherosclerosis 
[99].

In the myocardium of HFrEF, myocardial injury or death 
is triggered by oxidative stress from various stimuli such 
as ischemia, pressure overload, or toxicity, followed by 
inflammatory responses. Activation of sympathetic nervous 

attractive alternative in the management of anemia in the 
dialysis population.

Direct Cardiovascular Benefits of SGLT2 Inhibitors

Recent preclinical and translational research has provided 
data supporting direct benefits of SGLT2 inhibitors on the 
cardiovascular system, including cardiomyocytes, endo-
thelial cells, and smooth muscle cells. Experimental stud-
ies using ex vivo isolated perfused hearts showed that 
empagliflozin mitigated ischemia-reperfusion injury and 
improved cardiac output, contractile dysfunction, and ven-
tricular arrhythmia vulnerability [75, 76]. Given the minimal 
SGLT2 expression in the heart [77, 78], extensive research 
has been conducted to identify the mechanisms behind the 
direct cardiovascular effects of SGLT2 inhibitors. First, 
several clinical studies revealed increased SGLT2 expres-
sion in endomyocardial biopsy samples from patients with 
various heart conditions [79–81]. Second, molecular dock-
ing analysis indicated that empagliflozin could bind with 
other glucose transporters (i.e., facilitated-diffusion glucose 
transporters [GLUT], SGLT1, and NHE) with much higher 
affinity for GLUT1 and GLUT4 compared with SGLT1 
and NHE [76]. It should also be noted that SGLT2 inhibi-
tors have variable selectivity for SGLT2 vs. SGLT1, i.e., 
2500× selectivity for empagliflozin, 1200× selectivity for 
dapagliflozin, 250× selectivity for canagliflozin, and 20x 
selectivity for sotagliflozin [82], and less selective SGLT2 
inhibitors was associated with a lower risk of heart failure 
in network meta-analyses [83, 84]. Third, in vitro studies 
using cardiomyocytes have shown that SGLT2 inhibitors 
elicit cellular responses without glucose in the medium [85], 
suggesting glucose transporter-independent mechanisms. 
The exact pathways of the direct cardioprotective effects of 
SGLT2 inhibitors remain to be fully elucidated but appear 
to involve various processes in the pathophysiology of 
heart failure, such as regulation of intracellular electrolytes, 
inflammation, oxidative stress, mitochondrial function, and 
autophagic flux [24, 86] (Fig. 2).

1.	 Intracellular electrolyte regulation.

Increases in myocardial intracellular sodium and calcium 
levels, coupled with a subsequent decrease in mitochon-
drial calcium levels, are recognized as early hallmarks and 
contributors of cardiovascular death and heart failure [86, 
87]. Several preclinical studies have shown that SGLT2 
inhibitors can counteract these adverse changes by directly 
inhibiting sodium-hydrogen exchanger 1 (NHE-1) in car-
diomyocytes and endothelial cells [85–88]. This inhibi-
tion leads to reduced intracellular sodium levels, followed 
by a decrease in intracellular calcium levels alongside an 
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of doxorubicin-induced cardiomyopathy, empagliflozin 
reduced ferroptpsis, fibrosis, apoptosis, and inflamma-
tion through the involvement of NLRP3 and myddosome-
related pathways, leading to improved cardiac functions 
[104]. Additionally, empagliflozin was shown to suppress 
the increase in the expression of proinflammatory makers 
induced by doxorubicin in vitro.

The cardiovascular benefits of SGLT2 inhibitors are fur-
ther seen through oxidative stress reduction. For instance, 
empagliflozin attenuated cardiomyocyte hypertrophy, 
diminished interstitial fibrosis, and reduced myocardial oxi-
dative stress in non-diabetic rats with left ventricular dys-
function post-myocardial infarction [105]. Furthermore, in 
an in vitro study, empagliflozin restored the endothelium-
mediated cardiomyocyte relaxation and contraction, which 
was impaired due to decreased nitric oxide availability and 
increased mitochondrial ROS following exposure to uremic 
serum from patients with ESKD [106]. Such anti-inflam-
matory and anti-oxidative properties of SGLT2 inhibitors 

system and renin-angiotensin-aldosterone system can also 
induce sustained myocardial inflammation [100]. Con-
versely, among patients with HFpEF, comorbid conditions 
such as aging, overweight/obesity, diabetes, sleep apnea, 
atherosclerotic disease, and smoking/chronic obstruc-
tive pulmonary disease are commonly present and known 
to cause chronic and systemic inflammation, which then 
induces oxidative stress [96, 97].

SGLT2 inhibitors have been shown to reduce the expres-
sion of various circulating inflammatory molecules (e.g., 
Interleukin [IL]-1β, IL-6, and IL-18, tumor necrosis factor-α 
[TNF-α], monocyte chemoattractant protein-1 [MCP-1]) 
and cell adhesion molecules across different studies [101, 
102]. Potential mechanisms underlying the anti-inflam-
matory effects of SGLT2 inhibitors include the reduction 
in intracellular calcium levels via NHE-1 inhibition and 
activation of 5’ adenosine monophosphate-activated pro-
tein kinase (AMPK), both leading to the suppression of the 
NLRP3 inflammasome activation [103]. In murine models 

Fig. 2  Potential pathways of direct cardiovascular benefits via SGLT2 
inhibitor use. SGLT2 inhibitors can prevent or improve cardiac dys-
function and remodeling by lowering intracellular sodium and calcium 

levels, reducing oxidative and endoplasmic reticulum (ER) stress, sup-
pressing the inflammatory process, and regulating autophagy. These 
mechanisms are interrelated. Created using BioRender.com
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in vivo studies [119, 120]. Another in vivo study showed 
that empagliflozin ameliorated sunitinib-induced cardiac 
dysfunction by restoring AMPK-mTOR mediated autoph-
agy in mice [121]. Conversely, Jiang, et al. showed that 
empagliflozin reduced cardiac infarct size and fibrosis and 
resulted in improved cardiac function and survival in mouse 
models and reported that those cardioprotective effects were 
at least in part through downregulation, not upregulation, of 
excessive autophagic flux through NHE-1 inhibition [122]. 
Empagliflozin also inhibited hyperactivation of autophagy 
in murine diabetic cardiomyopathy by inhibiting GSK-3β, 
resulting in reversal of cardiac dysfunction [123]. Impor-
tantly, such autophagy upregulation via AMPK activation 
and downregulation via NHE-1 or GSK-3β inhibition were 
also confirmed in accompanying in vitro studies [121–123]. 
Those findings indicate that the anti-inflammatory and anti-
oxidative effects on SGLT2 inhibitors are at least partly 
independent of their effects on the kidneys (i.e., glucosuria 
and natriuresis), suggesting a potential role in ESKD.

4.	 Endoplasmic reticulum stress.

Endoplasmic reticulum (ER) is a critical cellular organelle 
involved in protein folding and secretion, calcium storage, 
and lipid and carbohydrate metabolism [124]. ER stress is 
a response to proteostasis imbalance such as the accumula-
tion of misfolded or unfolded proteins. ER stress-induced 
inflammation can help limit tissue damage and promote tis-
sue repair; however, the effects of ER stress-induced inflam-
mation depend on the type of ER stressor, the disease stage, 
and the target cell type [125]. Oxidative stress also occurs 
alongside ER stress as the misfolded proteins produce ROS 
during attempts to refold, which disturbs cellular redox bal-
ance. This oxidative stress can further exacerbate ER stress, 
creating a vicious cycle that can lead to cell damage and 
disease [125, 126]. The disruption in ER homeostasis intri-
cately activates the unfolded protein response (UPR) and 
autophagy to restore normal function by halting protein 
translation, degrading misfolded proteins, and activating the 
signaling pathways that increase the production of molecu-
lar chaperones [124, 127].

Recent studies have shown that SGLT2 inhibitors have 
protective effects against ER stress in cardiomyocytes. 
Treatment with SGLT2 inhibitors has been shown to reduce 
the expression of key ER stress markers such as cleaved 
caspase 3, Bax, activating transcription factor 4, C/EBP 
homologous protein, and glucose-regulated protein78 in 
cardiomyocytes exposed to high glucose [128], hydrogen 
peroxide [129], angiotensin II [130], or doxorubicin [131, 
132] in both in vivo and in vitro studies. These findings 
suggest that SGLT2 inhibitors may directly prevent the 

can also lead to improvements in endothelial function and 
arterial wall stiffness as shown in both animal and clinical 
models [92, 107, 108] and may mitigate the development 
of cardiac fibrosis and atherosclerosis by inhibiting macro-
phage infiltration, reducing foam cell formation, and pro-
moting macrophage polarization from pro-inflammatory 
M1 subtype to anti-inflammatory M2 subtype [38, 101, 109, 
110].

3.	 Autophagy Regulation.

Autophagy-lysosome pathway is primarily a catabolic 
process that maintains cellular homeostasis. It captures 
misfolded proteins, damaged organelles, and pathogens in 
autophagosomes for degradation by lysosomal proteases 
[111]. This process plays an important role in facilitating 
metabolic adaptation, preventing cellular damage, and pre-
serving genomic stability. This catabolic process is acti-
vated in response to various stressors—such as shear stress, 
hypoxia, ischemia, and mitochondrial damage—via crucial 
signaling networks such as mTOR, AMPK, glycogen syn-
thase kinase 3 beta (GSK-3β), and the Hippo pathway [112]. 
Impaired autophagy can contribute to the accumulation of 
cellular debris, dysfunctional mitochondria, and NLRP3 
inflammasome activators and components, leading to cellu-
lar stress and inflammation [113]. Autophagy is particularly 
important for cardiomyocytes, the terminally differentiated 
cells that infrequently undergo cell division.

While essential for cardiac function and limiting disease 
progression post-injury, an imbalance in autophagy lev-
els—either suppression or excessive activation—can lead 
to or exacerbate pathological outcomes [114]. For instance, 
autophagy plays an adaptive role in progressive heart failure 
and protects myocardial cells, and autophagy activity was 
associated with left ventricular reverse remodeling among 
patients with dilated cardiomyopathy [80]. In the late period 
of heart failure, however, substances and injury myocar-
dial cells can be overly removed via autophagic pathway. 
Excessive autophagy activation may also occur with pres-
sure overload or ischemia/reperfusion injury [115–117]. 
Therefore, maintaining an “optimal window” of autophagy 
activity according to disease conditions is crucial for cel-
lular homeostasis [114].

SGLT2 inhibitors have been shown to “modulate” car-
diac autophagy and lysosomal degradation. These drugs 
promote autophagy through glucosuria-induced upregula-
tion of nutrient deprivation signals such as AMPK, sirtuins, 
and peroxisome proliferator–activated receptor-γ coacti-
vator (PGC)-1α, while downregulating nutrient surplus 
signals, including mTOR [118]. Consequently, this con-
tributes to the improvement of mitochondrial morphology, 
function, and biogenesis in the heart, as shown in several 
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Ongoing Clinical Trials

Several clinical trials are underway to investigate the effects 
of SGLT2 inhibitors in the dialysis population (Table 1). Such 
trials registered in CliniclTrials.gov include RENAL LIFE-
CYCLES (NCT05374291), DAPA-HD (NCT05179668), 
and SIP-AkiD (NCT05309785). RENAL LIFECYCLES 
aims to enroll 1500 patients with either advanced CKD 
(eGFR < 25  ml/min per 1.73 m2), ESKD requiring dialy-
sis with residual diuresis > 500 ml/day, or transplant kidney 
allograft with eGFR < 25 ml/min per 1.73 m2 and to evalu-
ate a composite endpoint of hard clinical outcomes, i.e., all-
cause mortality, kidney failure, and hospitalization for heart 
failure. Many other studies have cardiac imaging parameters 
or brain natriuretic peptide levels as the primary outcomes. 
New trials include CANARY (NCT05715814), CARe-MRI 
(NCT06182839), SEED (NCT05786443), EMPA-PRED 
(NCT06249945), and EMPA-RRED (NCT06249932) 
which are expected to begin early 2024. The results of these 
trials are expected to provide proof-of-concept evidence on 
the efficacy and safety of SGLT2 inhibitors, a potentially 
important step towards the better management of cardiovas-
cular disease among dialysis patients.

Conclusions

The pleiotropic effects of SGLT2 inhibitors, including their 
benefits on preserving kidney function and improving car-
diovascular health, make this drug class a promising thera-
peutic agent in the management of dialysis patients with 
ESKD. Clinical trials have demonstrated the cardiovascular 

initiation of cell death pathways triggered by ER stress in 
the heart.

Safety Considerations in the Use of SGLT2i in ESKD

Previous pharmacokinetic studies showed that among 
patients with advanced CKD and ESRD, when compared 
to those with normal kidney function, a single-dose admin-
istration generally resulted in similar peak plasma levels, 
a mildly prolonged half-life time, and approximately 1.5-
times larger AUC [133]. There appeared to be no clinically 
meaningful difference in those pharmacokinetic parameters 
from stage 4 CKD through ESRD. Additionally, 7 days of 
dapagliflozin 10 mg/day among dialysis patients resulted in 
no significant drug accumulation but peak concentrations 
similar to those observed among the age- and sex-matched 
control patients with normal kidney function [134].

From a clinical safety standpoint, the EMPA-REG Renal 
trial showed the risk of mild to moderate urinary tract infec-
tion associated with empagliflozin use was more pronounced 
among patients with more advanced CKD (i.e., 18.9% in 
the empagliflozin group vs. 8.1% in the placebo group in 
stage 4 CKD; no acute pyelonephritis or urosepsis was 
reported) [135]. This warrants caution in the use of SGLT2 
inhibitors among oliguric dialysis patients. However, in the 
DAPA-CKD trial, dapagliflozin did not show increased risk 
of adverse events across subgroups including CKD stage 
4, despite continuation of dapagliflozin even when eGFR 
declined to < 15 ml/min per 1.73m2 [46].

Table 1  Summary of ongoing clinical trials evaluating the effects of SGLT2 inhibitors in the dialysis population registered in ClinicalTrials.gov 
as of April 6, 2024
NCT Number Interventions Outcome Measures Target 

N
Randomization Placebo Start Date Comple-

tion Date
NCT06249945 Empagliflozin Echocardiogram parameters 150 Yes - Parallel Yes 2/1/2024 12/31/2030
NCT06249932 Empagliflozin Cardiac MRI parameters 95 Yes - Parallel Yes 2/1/2024 12/31/2030
NCT06182839 Canagliflozin Cardiac MRI parameters 92 Yes - Parallel Yes 3/30/2024 3/30/2029
NCT05967156 Empagliflozin BNP 15 No - Single arm No 6/1/2023 3/1/2024
NCT05965440 Dapagliflozin Intestinal microbiota 50 No - Single arm No 10/2/2023 12/15/2024
NCT05786443 Empagliflozin Body fluid distributions 60 Yes - Parallel Yes 1/31/2024 12/30/2025
NCT05737186 SGLT2 inhibitor Quality of Life 40 Yes - Parallel No 3/9/2023 12/31/2024
NCT05715814 Empagliflozin Measured GFR 20 No - Single arm No 2/1/2024 4/1/2025
NCT05687058 Empagliflozin Feasibility 24 No - Parallel No 11/1/2023 12/31/2024
NCT05685394 Dapagliflozin NT-proBNP 80 Yes - Parallel No 1/24/2023 12/1/2024
NCT05671991 Empagliflozin Peritoneal glucose absorption 30 Yes - Crossover Yes 3/1/2023 12/31/2024
NCT05614115 Empagliflozin Feasibility 75 Yes - Sequential Yes 3/21/2023 3/31/2025
NCT05374291 Dapagliflozin All-cause mortality, kidney 
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Abbreviations: SGLT2, sodium-glucose transporter-2; BNP, brain natriuretic peptide; MRI, magnetic resonance imaging
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