Current Hypertension Reports
https://doi.org/10.1007/511906-024-01314-3

MECHANISMS OF HYPERTENSION AND TARGET-ORGAN DAMAGE (JE HALL AND ME
HALL, SECTION EDITORS) ")

Check for
updates

Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney
Disease?

Rehma Siddiqui' - Yoshitsugu Obi' - Neville R. Dossabhoy' - Tariq Shafi’

Accepted: 6 June 2024
© The Author(s) 2024, corrected publication 2025

Purpose of Review Chronic kidney disease and end-stage kidney disease (ESKD) are well-established risk factors for car-
diovascular disease (CVD), the leading cause of mortality in the dialysis population. Conventional therapies, such as statins,
blood pressure control, and renin-angiotensin-aldosterone system blockade, have inadequately addressed this cardiovascular
risk, highlighting the unmet need for effective treatment strategies. Sodium—glucose transporter 2 (SGLT2) inhibitors have
demonstrated significant renal and cardiovascular benefits among patients with type 2 diabetes, heart failure, or CKD at risk
of progression. Unfortunately, efficacy data in dialysis patients is lacking as ESKD was an exclusion criterion for all major
clinical trials of SGLT?2 inhibitors. This review explores the potential of SGLT?2 inhibitors in improving cardiovascular out-
comes among patients with ESKD, focusing on their direct cardiac effects.

Recent Findings Recent clinical and preclinical studies have shown promising data for the application of SGLT?2 inhibitors
to the dialysis population. SGLT2 inhibitors may provide cardiovascular benefits to dialysis patients, not only indirectly by
preserving the remaining kidney function and improving anemia but also directly by lowering intracellular sodium and cal-
cium levels, reducing inflammation, regulating autophagy, and alleviating oxidative stress and endoplasmic reticulum stress
within cardiomyocytes and endothelial cells.

Summary This review examines the current clinical evidence and experimental data supporting the use of SGLT2 inhibi-
tors, discusses its potential safety concerns, and outlines ongoing clinical trials in the dialysis population. Further research is
needed to evaluate the safety and effectiveness of SGLT?2 inhibitor use among patients with ESKD.

Keywords Sodium-glucose cotransporter-2 inhibitors - End-stage kidney disease - Dialysis - Residual kidney function -
Chronic kidney disease - Heart failure - Mortality - Oxydative stress - Autophagy - Inflammation

Introduction in CKD can be broadly classified as myocardial remodel-

ing (i.e., left ventricular hypertrophy, systolic and diastolic

Chronic kidney disease (CKD) and end-stage kidney dis-
ease (ESKD) are associated with an increased risk of CVD
and mortality. CKD has the bidirectional relationship with
cardiovascular disease (CVD). The manifestations of CVD
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dysfunction) and vascular remodeling (i.e., atherosclerosis,
arteriosclerosis, vascular calcification), which interact with
each other [1]. CVD is the leading cause of mortality in the
dialysis population, accounting for 45% of all deaths. The
prevalence of coronary heart disease, heart failure, and left
ventricular hypertrophy is reported as high as 40%, 43%,
and 70%, respectively [2, 3]. Particularly, heart failure
poses a significant challenge in the management of ESKD.
It frequently develops after initiation of dialysis and is a
prominent mortality risk factor among these patients [4].
Traditional therapies to prevent CVD complications in the
general population have shown to be ineffective in CKD. To
address the unmet need, further research is needed to evalu-
ate novel therapeutic strategies to improve cardiovascular
outcomes among patients on dialysis.
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Sodium-glucose transporter type 2 (SGLT2) inhibitors
have been shown to confer substantial kidney and cardio-
vascular benefits among patients with type 2 diabetes, heart
failure, and/or high-risk CKD [5, 6]. In the current clinical
landscape, SGLT?2 inhibitors can be initiated among patients
with eGFR 20 ml/min/1.73 m? or more but need to be dis-
continued upon dialysis initiation for EKSD [7]. This prac-
tice likely stems from the diminished efficacy of SGLT2
inhibitors in promoting glucosuria and natriuresis as kidney
function declines [8, 9], coupled with undetermined safety
profiles among patients with advanced CKD or ESKD
who were historically excluded from pivotal clinical trials.
Nevertheless, recent emerging data indicate that SGLT2
inhibitors may provide cardiovascular benefits even among
dialysis-dependent patients with low or absent kidney func-
tion. This evolving perspective may gain momentum now
that the Food and Drug Administration (FDA) has removed
dialysis dependency from the list of contraindications in the
drug labels of SGLT?2 inhibitors in 2023, after a multi-disci-
pline review acknowledging the current data and evolution
in the understanding of this class of agents [10, 11].

This article aims to comprehensively review the hypoth-
esized clinical advantages, their postulated pathways, and
potential safety issues associated with the use of SGLT2
inhibitors in ESKD, with a special focus on heart failure.
Additionally, we outline ongoing clinical trials of this drug
class in the dialysis population.

Current Clinical Evidence of SGLT2 Inhibitors among
Non-Dialysis Patients

Sodium-glucose transporter type 2 (SGLT2) inhibitors are
initially approved by the FDA for the management of type
2 diabetes. SGLT2 is mainly expressed in the kidneys, spe-
cifically in the apical membrane of the S1 and S2 segments
of the proximal tubule. SGLT?2 inhibitors induce glycosuria
and natriuresis by inhibiting sodium and glucose reabsorp-
tion, leading to improved glycemic control, small reduction
in blood pressure, and mild to modest weight loss among
patients with type 2 diabetes [12, 13]. Interestingly, unlike
traditional diuretics, SGLT2 inhibitor-induced diuresis is
associated with fewer electrolyte abnormalities, a decreased
risk of acute kidney injury, and less neurohormonal activa-
tion [8]. Additionally, SGLT?2 inhibitor use lowers the risk
of hyperkalemia [14], thereby facilitating the continuation
of the combined regimen with renin-angiotensin-aldoste-
rone system inhibitors [15]. Beyond the renal effects of gly-
cosuria and natriuresis, SGLT?2 inhibitors also offer broad
metabolic benefits, including reduction in visceral, liver,
and epicardial fat by shifting substrate utilization from car-
bohydrates to lipids and ketone bodies [16—20], decreased
serum uric acid levels and lowered risk of gout flares via
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enhanced renal uric acid excretion [21, 22], reduced kidney
stone formation by increasing urine citrate levels [23-26],
and alleviation of anemia by increasing erythropoietin pro-
duction and suppressing proinflammatory pathways [27].
Cardiovascular outcome trials revealed that SGLT2 inhibi-
tion among patients with type 2 diabetes reduced the risk
of cardiovascular events, cardiovascular mortality, and all-
cause mortality, with consistency of favorable heart failure
and kidney outcomes across the drug class [5, 6].

It should be noted that SGLT2 inhibitors are the first drug
class that has shown clear efficacy on clinical hard endpoints
in both heart failure with reduced ejection fraction (HFrEF)
and preserved ejection fraction (HFpEF). Furthermore,
recent clinical trials have shown promising cardiac benefits
of the drug regardless of diabetes status [28—34]. Addition-
ally, recent meta-analyses of clinical trials showed that
SGLT?2 inhibitor use is associated with a lower risk of atrial
fibrillation/flutter events [35, 36]. Observational studies
suggest that SGL2 inhibitors may stabilize atherosclerotic
plaque among patients with type 2 diabetes and ischemic
heart disease [37, 38], thereby reducing major adverse car-
diovascular events [39, 40], but meta-analyses showed their
neutral effects on stroke or myocardial infarction [41, 42].

While SGLT inhibitors lead to improved glycemic con-
trol, better blood pressure management, and weight reduc-
tion, these factors alone do not fully explain the extensive
cardiac benefits conferred by this drug class. Given the close
relationship between the severity of CKD and the increased
risk of CVD, the renoprotective effect of SGLT2 inhibitors
is considered to play a significant role. This perspective is
supported by multiple clinical trials demonstrating reduced
albuminuria and a lowered risk of CKD progression by
SLGT?2 inhibition, benefits that are evident in both diabetic
and non-diabetic patient populations [7, 43].

Potential Cardiovascular Benefits of SGLT2
Inhibitors among Dialysis Patients

Urinary glucose excretion induced by SGLT?2 inhibitors lin-
early diminishes with lower kidney function [44], and their
plasma glucose-lowering effect is attenuated in patients
with eGFR <60 ml/min per 1.73 m2 and becomes negli-
gible when eGFR is <30 ml/min per 1.73 m2 [45]. Nev-
ertheless, the benefits of SGLT2 inhibitors in kidney and
cardiovascular outcomes are generally preserved among
patients with CKD and are observed even among non-dia-
betic patients. For instance, the DAPA-CKD trial showed
that dapaglifiozin reduced the risk of kidney, cardiovascular
and mortality endpoints even in a subgroup of patients with
stage 4 CKD, which was consistent with those observed in
the entire study [29, 46]. The EMPA-KIDNEY trial also
demonstrated that empaglifiozin significantly reduced the
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risk of CKD progression or cardiovascular death across
eGFR levels extending to stage 4 CKD [47]. Such kidney
function-independent benefits were confirmed in a recent
meta-analysis of over 90,000 participants from randomized,
placebo-controlled clinical trials [48]. Interestingly, the
most substantial risk reduction for heart failure outcomes
was observed among patients with lower eGFR levels. Col-
lectively, these findings warrant clinical studies evaluating
the effects of SGLT2 inhibitors on cardiovascular outcomes
among dialysis patients, where these drugs may provide
indirect and direct cardiovascular benefits (Fig. 1).

Indirect Cardiovascular Benefits of SGLT2 Inhibitors

Recent clinical studies have shown that residual kidney
function, even at such low levels observed among dialysis
patients, is closely associated with better clinical outcomes.
In addition to better clearance of uremic toxins, greater
residual kidney function is associated with less inflamma-
tion, better quality of life, fewer episodes of intradialytic
hypotension, better nutritional status, more effective control
of phosphorus, less pill burden, less requirement of eryth-
ropoietin stimulating agents (ESAs), a lower risk of cardio-
vascular events, and a lower risk of death [49-54]. . The
majority of incident ESKD patients still have some kidney
function, with approximately 27% and 10% starting dialy-
sis with an eGFR of 10-14 ml/min/1.73 m* and >15 ml/
min/1.73 m?, respectively [4]. SGLT2 inhibitors slows the
progression of CKD, and hence, may help preserve residual
kidney function even after dialysis initiation. This in turn
could lower the risk of CVD including heart failure.
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An additional indirect cardiovascular benefit of SGLT2
inhibitors is the mitigation of anemia and the improvement
in iron utilization. Clinical trials have shown that these
drugs can increase hematocrit levels by 1.9-2.4%, reduce
the risk of developing anemia, and decrease the likeli-
hood of needing iron supplements or ESA treatment [27,
55-59]. These effects are attributed to stimulation of ESA
production and reduced hepcidin production by decreasing
inflammation and activating nutrient deprivation signaling
such as sirtuin-1 in the liver [60]. Notably, this benefit on
anemia was consistently observed in moderate-to-severe
CKD, where kidney erythropoietin production is impaired
[55]. It is postulated that the activation of sirtuin-1 activa-
tion by SGLT?2 inhibitors could stimulate hypoxia-inducible
factor (HIF)-2a, leading to erythropoietin production in
the liver [61]. Furthermore, unlike HIF prolyl hydroxylase
inhibitors (HIF-PHI), experimental studies have shown that
SGLT?2 inhibitors suppressed the expression and activity of
HIF-1a [62-66], albeit with some exceptions [67, 68]. This
distinction could be an important property of this drug class
because while HIF-1a does not significantly contribute to
endogenous erythropoietin synthesis, it may enhance ath-
erosclerotic plaque instability and promote cardiac fibrosis
[69]. Additionally, HIF-2a stimulation by SGLT2 inhibitor
use has been also reported in in vitro studies [70—72], indi-
cating this effect is partly independent of glucosuria. Given
the increased cardiovascular risk associated with ESA ther-
apy with or HIF-PHI inhibitor [73], and considering the
high prevalence and associated mortality risk of functional
iron deficiency [74], SGLT2 inhibitors could become an
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Fig. 1 Potential direct and indirect cardiovascular benefit of SGLT2
inhibitors in the dialysis population. Potential indirect benefits include
preservation of kidney function, which can lead to multiple benefits
from various aspects including uremic toxin levels, volume and blood
pressure (BP) control, and nutrition. SGLT2 inhibitors also improve
anemia and iron utilization, leading to less requirement of erythro-

poietin stimulating agents (ESAs), which is known to increase the
risk of cardiovascular events. SGLT2 inhibitors also directly act on
cardiomyocytes and endothelial cells and lower intracellular sodium
and calcium level, reduce inflammation, mitigate oxidative stress and
endoplasmic reticulum (ER) stress, and regulate autophagy. Created
using BioRender.com
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attractive alternative in the management of anemia in the
dialysis population.

Direct Cardiovascular Benefits of SGLT2 Inhibitors

Recent preclinical and translational research has provided
data supporting direct benefits of SGLT?2 inhibitors on the
cardiovascular system, including cardiomyocytes, endo-
thelial cells, and smooth muscle cells. Experimental stud-
ies using ex vivo isolated perfused hearts showed that
empagliflozin mitigated ischemia-reperfusion injury and
improved cardiac output, contractile dysfunction, and ven-
tricular arrhythmia vulnerability [ 75, 76]. Given the minimal
SGLT?2 expression in the heart [77, 78], extensive research
has been conducted to identify the mechanisms behind the
direct cardiovascular effects of SGLT2 inhibitors. First,
several clinical studies revealed increased SGLT2 expres-
sion in endomyocardial biopsy samples from patients with
various heart conditions [79-81]. Second, molecular dock-
ing analysis indicated that empaglifiozin could bind with
other glucose transporters (i.e., facilitated-diffusion glucose
transporters [GLUT], SGLT1, and NHE) with much higher
affinity for GLUT1 and GLUT4 compared with SGLT1
and NHE [76]. It should also be noted that SGLT2 inhibi-
tors have variable selectivity for SGLT2 vs. SGLT1, i.e.,
2500x selectivity for empagliflozin, 1200x selectivity for
dapagliflozin, 250x selectivity for canagliflozin, and 20x
selectivity for sotagliflozin [82], and less selective SGLT2
inhibitors was associated with a lower risk of heart failure
in network meta-analyses [83, 84]. Third, in vitro studies
using cardiomyocytes have shown that SGLT2 inhibitors
elicit cellular responses without glucose in the medium [85],
suggesting glucose transporter-independent mechanisms.
The exact pathways of the direct cardioprotective effects of
SGLT2 inhibitors remain to be fully elucidated but appear
to involve various processes in the pathophysiology of
heart failure, such as regulation of intracellular electrolytes,
inflammation, oxidative stress, mitochondrial function, and
autophagic flux [24, 86] (Fig. 2).

1. Intracellular electrolyte regulation.

Increases in myocardial intracellular sodium and calcium
levels, coupled with a subsequent decrease in mitochon-
drial calcium levels, are recognized as early hallmarks and
contributors of cardiovascular death and heart failure [86,
87]. Several preclinical studies have shown that SGLT2
inhibitors can counteract these adverse changes by directly
inhibiting sodium-hydrogen exchanger 1 (NHE-1) in car-
diomyocytes and endothelial cells [85-88]. This inhibi-
tion leads to reduced intracellular sodium levels, followed
by a decrease in intracellular calcium levels alongside an
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increase in mitochondrial calcium levels, likely through the
action of sodium-calcium exchangers. SGLT2 inhibitors
also inhibit hydrogen peroxide-induced late sodium current
in cardiomyocytes with little effect on peak sodium current,
which may protect against arrhythmias associated with pro-
longed action potentials [75, 89].

Of note, a phase III randomized, placebo-controlled
clinical trial evaluated the effect of NHE-1 inhibition by
cariporide among 5761 patients undergoing high-risk coro-
nary artery bypass graft surgery and found that cariporide
significantly reduced the incidence of myocardial infarction
but increased mortality from cerebrovascular events [90].
SGLT?2 inhibitors may have an advantage on this regard
because their use has been shown to have neutral effect on
overall cerebrovascular events [41, 42]. However, the direct
NHE-1 inhibition by SGLT2 inhibitors were not consistently
observed in other studies [91-93], indicating the presence of
unknown effect modifying factors.

2. Oxidative stress and inflammation.

Oxidative stress and inflammation are interdependently
involved in the pathogenesis of CVD, perpetuating a
chronic and vicious cycle with heart failure. Oxidative
stress, caused by reactive oxygen species (ROS), induces
the inflammation pathway through the activation of nucleo-
tide-binding domain, Leucine-rich-containing family, pyrin
domain-containing-3 (NLRP3) inflammasome [94]. The
subsequent release of inflammatory cytokines, if excessive,
can lead to inflammatory cell death, known as pyroptosis
[95]. In turn, inflammation also induces oxidative stress
via various cellular signaling pathways involving media-
tors such as protein kinase C and calcium. These media-
tors activate sources of reactive oxygen species (ROS) such
as nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase and the mitochondrial electron transport chain.
Chronic inflammation and oxidative stress promote proin-
flammatory macrophage infiltration and augment interstitial
collagen deposition, which creates areas of replacement
fibrosis, eventually leading to progressive left ventricular
remodeling and dysfunction [96, 97]. ROS reduces nitric
oxide-cyclic guanosine monophosphate-protein kinase G
(NO-cGMP-PKG) signaling, leading to myocardial hyper-
trophy and increased stiffness by diminishing myofilament
phosphorylation [98]. Proinflammatory macrophage infil-
tration and decreased NO production in the endothelial cells
play a significant role in the progression of atherosclerosis
[99].

In the myocardium of HFrEF, myocardial injury or death
is triggered by oxidative stress from various stimuli such
as ischemia, pressure overload, or toxicity, followed by
inflammatory responses. Activation of sympathetic nervous
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Fig. 2 Potential pathways of direct cardiovascular benefits via SGLT2
inhibitor use. SGLT2 inhibitors can prevent or improve cardiac dys-
function and remodeling by lowering intracellular sodium and calcium

system and renin-angiotensin-aldosterone system can also
induce sustained myocardial inflammation [100]. Con-
versely, among patients with HFpEF, comorbid conditions
such as aging, overweight/obesity, diabetes, sleep apnea,
atherosclerotic disease, and smoking/chronic obstruc-
tive pulmonary disease are commonly present and known
to cause chronic and systemic inflammation, which then
induces oxidative stress [96, 97].

SGLT?2 inhibitors have been shown to reduce the expres-
sion of various circulating inflammatory molecules (e.g.,
Interleukin [IL]-1p, IL-6, and IL-18, tumor necrosis factor-a
[TNF-a], monocyte chemoattractant protein-1 [MCP-1])
and cell adhesion molecules across different studies [101,
102]. Potential mechanisms underlying the anti-inflam-
matory effects of SGLT2 inhibitors include the reduction
in intracellular calcium levels via NHE-1 inhibition and
activation of 5’ adenosine monophosphate-activated pro-
tein kinase (AMPK), both leading to the suppression of the
NLRP3 inflammasome activation [103]. In murine models

levels, reducing oxidative and endoplasmic reticulum (ER) stress, sup-
pressing the inflammatory process, and regulating autophagy. These
mechanisms are interrelated. Created using BioRender.com

of doxorubicin-induced cardiomyopathy, empagliflozin
reduced ferroptpsis, fibrosis, apoptosis, and inflamma-
tion through the involvement of NLRP3 and myddosome-
related pathways, leading to improved cardiac functions
[104]. Additionally, empagliflozin was shown to suppress
the increase in the expression of proinflammatory makers
induced by doxorubicin in vitro.

The cardiovascular benefits of SGLT2 inhibitors are fur-
ther seen through oxidative stress reduction. For instance,
empaglifiozin attenuated cardiomyocyte hypertrophy,
diminished interstitial fibrosis, and reduced myocardial oxi-
dative stress in non-diabetic rats with left ventricular dys-
function post-myocardial infarction [105]. Furthermore, in
an in vitro study, empagliflozin restored the endothelium-
mediated cardiomyocyte relaxation and contraction, which
was impaired due to decreased nitric oxide availability and
increased mitochondrial ROS following exposure to uremic
serum from patients with ESKD [106]. Such anti-inflam-
matory and anti-oxidative properties of SGLT2 inhibitors

@ Springer



Current Hypertension Reports

can also lead to improvements in endothelial function and
arterial wall stiffness as shown in both animal and clinical
models [92, 107, 108] and may mitigate the development
of cardiac fibrosis and atherosclerosis by inhibiting macro-
phage infiltration, reducing foam cell formation, and pro-
moting macrophage polarization from pro-inflammatory
M1 subtype to anti-inflammatory M2 subtype [38, 101, 109,
110].

3. Autophagy Regulation.

Autophagy-lysosome pathway is primarily a catabolic
process that maintains cellular homeostasis. It captures
misfolded proteins, damaged organelles, and pathogens in
autophagosomes for degradation by lysosomal proteases
[111]. This process plays an important role in facilitating
metabolic adaptation, preventing cellular damage, and pre-
serving genomic stability. This catabolic process is acti-
vated in response to various stressors—such as shear stress,
hypoxia, ischemia, and mitochondrial damage—via crucial
signaling networks such as mTOR, AMPK, glycogen syn-
thase kinase 3 beta (GSK-3f), and the Hippo pathway [112].
Impaired autophagy can contribute to the accumulation of
cellular debris, dysfunctional mitochondria, and NLRP3
inflammasome activators and components, leading to cellu-
lar stress and inflammation [113]. Autophagy is particularly
important for cardiomyocytes, the terminally differentiated
cells that infrequently undergo cell division.

While essential for cardiac function and limiting disease
progression post-injury, an imbalance in autophagy lev-
els—either suppression or excessive activation—can lead
to or exacerbate pathological outcomes [114]. For instance,
autophagy plays an adaptive role in progressive heart failure
and protects myocardial cells, and autophagy activity was
associated with left ventricular reverse remodeling among
patients with dilated cardiomyopathy [80]. In the late period
of heart failure, however, substances and injury myocar-
dial cells can be overly removed via autophagic pathway.
Excessive autophagy activation may also occur with pres-
sure overload or ischemia/reperfusion injury [115-117].
Therefore, maintaining an “optimal window” of autophagy
activity according to disease conditions is crucial for cel-
lular homeostasis [114].

SGLT?2 inhibitors have been shown to “modulate” car-
diac autophagy and lysosomal degradation. These drugs
promote autophagy through glucosuria-induced upregula-
tion of nutrient deprivation signals such as AMPK, sirtuins,
and peroxisome proliferator—activated receptor-y coacti-
vator (PGC)-1a, while downregulating nutrient surplus
signals, including mTOR [118]. Consequently, this con-
tributes to the improvement of mitochondrial morphology,
function, and biogenesis in the heart, as shown in several
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in vivo studies [119, 120]. Another in vivo study showed
that empagliflozin ameliorated sunitinib-induced cardiac
dysfunction by restoring AMPK-mTOR mediated autoph-
agy in mice [121]. Conversely, Jiang, et al. showed that
empagliflozin reduced cardiac infarct size and fibrosis and
resulted in improved cardiac function and survival in mouse
models and reported that those cardioprotective effects were
at least in part through downregulation, not upregulation, of
excessive autophagic flux through NHE-1 inhibition [122].
Empagliflozin also inhibited hyperactivation of autophagy
in murine diabetic cardiomyopathy by inhibiting GSK-3p,
resulting in reversal of cardiac dysfunction [123]. Impor-
tantly, such autophagy upregulation via AMPK activation
and downregulation via NHE-1 or GSK-3p inhibition were
also confirmed in accompanying in vitro studies [121-123].
Those findings indicate that the anti-inflammatory and anti-
oxidative effects on SGLT2 inhibitors are at least partly
independent of their effects on the kidneys (i.e., glucosuria
and natriuresis), suggesting a potential role in ESKD.

4. Endoplasmic reticulum stress.

Endoplasmic reticulum (ER) is a critical cellular organelle
involved in protein folding and secretion, calcium storage,
and lipid and carbohydrate metabolism [124]. ER stress is
a response to proteostasis imbalance such as the accumula-
tion of misfolded or unfolded proteins. ER stress-induced
inflammation can help limit tissue damage and promote tis-
sue repair; however, the effects of ER stress-induced inflam-
mation depend on the type of ER stressor, the disease stage,
and the target cell type [125]. Oxidative stress also occurs
alongside ER stress as the misfolded proteins produce ROS
during attempts to refold, which disturbs cellular redox bal-
ance. This oxidative stress can further exacerbate ER stress,
creating a vicious cycle that can lead to cell damage and
disease [125, 126]. The disruption in ER homeostasis intri-
cately activates the unfolded protein response (UPR) and
autophagy to restore normal function by halting protein
translation, degrading misfolded proteins, and activating the
signaling pathways that increase the production of molecu-
lar chaperones [124, 127].

Recent studies have shown that SGLT?2 inhibitors have
protective effects against ER stress in cardiomyocytes.
Treatment with SGLT?2 inhibitors has been shown to reduce
the expression of key ER stress markers such as cleaved
caspase 3, Bax, activating transcription factor 4, C/EBP
homologous protein, and glucose-regulated protein78 in
cardiomyocytes exposed to high glucose [128], hydrogen
peroxide [129], angiotensin II [130], or doxorubicin [131,
132] in both in vivo and in vitro studies. These findings
suggest that SGLT2 inhibitors may directly prevent the
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Table 1 Summary of ongoing clinical trials evaluating the effects of SGLT2 inhibitors in the dialysis population registered in ClinicalTrials.gov

as of April 6, 2024

NCT Number Interventions Outcome Measures Target Randomization Placebo Start Date Comple-
N tion Date
NCT06249945 Empagliflozin Echocardiogram parameters 150 Yes - Parallel Yes 2/1/2024 12/31/2030
NCT06249932 Empagliflozin Cardiac MRI parameters 95 Yes - Parallel Yes 2/1/2024 12/31/2030
NCT06182839 Canagliflozin Cardiac MRI parameters 92 Yes - Parallel Yes 3/30/2024 3/30/2029
NCT05967156 Empagliflozin BNP 15 No - Single arm No 6/1/2023 3/1/2024
NCT05965440 Dapagliflozin Intestinal microbiota 50 No - Single arm No 10/2/2023 12/15/2024
NCT05786443 Empaglifiozin Body fluid distributions 60 Yes - Parallel Yes 1/31/2024 12/30/2025
NCT05737186 SGLT2 inhibitor ~ Quality of Life 40 Yes - Parallel No 3/9/2023 12/31/2024
NCTO05715814 Empagliflozin Measured GFR 20 No - Single arm No 2/1/2024 4/1/2025
NCT05687058 Empagliflozin Feasibility 24 No - Parallel No 11/1/2023 12/31/2024
NCTO05685394 Dapagliflozin NT-proBNP 80 Yes - Parallel No 1/24/2023 12/1/2024
NCT05671991 Empagliflozin Peritoneal glucose absorption 30 Yes - Crossover Yes 3/1/2023 12/31/2024
NCT05614115 Empagliflozin Feasibility 75 Yes - Sequential Yes 3/21/2023 3/31/2025
NCT05374291 Dapagliflozin All-cause mortality, kidney 1500  Yes - Parallel Yes 11/8/2022 1/1/2027
failure, and heart failure
NCT05309785 Canagliflozin Pharmacokinetics 44 No - Single arm No 11/24/2022  2/1/2025
NCT05179668 Dapagliflozin Cardiac MRI parameters 108 Yes - Parallel Yes 10/1/2022 9/30/2025

Abbreviations: SGLT2, sodium-glucose transporter-2; BNP, brain natriuretic peptide; MRI, magnetic resonance imaging

initiation of cell death pathways triggered by ER stress in
the heart.

Safety Considerations in the Use of SGLT2i in ESKD

Previous pharmacokinetic studies showed that among
patients with advanced CKD and ESRD, when compared
to those with normal kidney function, a single-dose admin-
istration generally resulted in similar peak plasma levels,
a mildly prolonged half-life time, and approximately 1.5-
times larger AUC [133]. There appeared to be no clinically
meaningful difference in those pharmacokinetic parameters
from stage 4 CKD through ESRD. Additionally, 7 days of
dapagliflozin 10 mg/day among dialysis patients resulted in
no significant drug accumulation but peak concentrations
similar to those observed among the age- and sex-matched
control patients with normal kidney function [134].

From a clinical safety standpoint, the EMPA-REG Renal
trial showed the risk of mild to moderate urinary tract infec-
tion associated with empagliflozin use was more pronounced
among patients with more advanced CKD (i.e., 18.9% in
the empagliflozin group vs. 8.1% in the placebo group in
stage 4 CKD; no acute pyelonephritis or urosepsis was
reported) [135]. This warrants caution in the use of SGLT2
inhibitors among oliguric dialysis patients. However, in the
DAPA-CKD trial, dapagliflozin did not show increased risk
of adverse events across subgroups including CKD stage
4, despite continuation of dapagliflozin even when eGFR
declined to <15 ml/min per 1.73m? [46].

Ongoing Clinical Trials

Several clinical trials are underway to investigate the effects
of SGLT2 inhibitors in the dialysis population (Table 1). Such
trials registered in CliniclTrials.gov include RENAL LIFE-
CYCLES (NCT05374291), DAPA-HD (NCT05179668),
and SIP-AkiD (NCT05309785). RENAL LIFECYCLES
aims to enroll 1500 patients with either advanced CKD
(eGFR <25 ml/min per 1.73 m2), ESKD requiring dialy-
sis with residual diuresis>500 ml/day, or transplant kidney
allograft with eGFR <25 ml/min per 1.73 m2 and to evalu-
ate a composite endpoint of hard clinical outcomes, i.¢., all-
cause mortality, kidney failure, and hospitalization for heart
failure. Many other studies have cardiac imaging parameters
or brain natriuretic peptide levels as the primary outcomes.
New trials include CANARY (NCT05715814), CARe-MRI
(NCT06182839), SEED (NCT05786443), EMPA-PRED
(NCT06249945), and EMPA-RRED (NCT06249932)
which are expected to begin early 2024. The results of these
trials are expected to provide proof-of-concept evidence on
the efficacy and safety of SGLT2 inhibitors, a potentially
important step towards the better management of cardiovas-
cular disease among dialysis patients.

Conclusions

The pleiotropic effects of SGLT2 inhibitors, including their
benefits on preserving kidney function and improving car-
diovascular health, make this drug class a promising thera-
peutic agent in the management of dialysis patients with
ESKD. Clinical trials have demonstrated the cardiovascular
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benefits of SGLT2 inhibitors even among patients with
advanced CKD, where its primary glycosuric effect is
substantially diminished. Additionally, preclinical studies
suggest potential direct actions of SGLT2 inhibitors in the
cardiovascular system, where SGLT2 expression is mini-
mal or negligible. These findings underscore the potential
of SGLT2 inhibitors in preventing cardiovascular compli-
cations among dialysis patients. Ongoing pilot clinical tri-
als are expected to provide preliminary results to evaluate
whether larger clinical trials would be warranted from both
safety and efficacy standpoint.
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