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Abstract: Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia is the most common
cause of neonatal brain damage and results in significant neurological sequelae, including cerebral
palsy. The current therapeutic interventions are extremely limited in improving neonatal outcomes.
The present study tests the hypothesis that the suppression of endogenous glucocorticoid receptors
(GRs) in the brain increases hypoxic-ischemic (HI) induced neonatal brain injury and worsens
neurobehavioral outcomes through the promotion of increased inflammation. A mild HI treatment
of P9 rat pups with ligation of the right common carotid artery followed by the treatment of 8%
O2 for 60 min produced more significant brain injury with larger infarct size in female than male
pups. Intracerebroventricular injection of GR siRNAs significantly reduced GR protein and mRNA
abundance in the neonatal brain. Knockdown of endogenous brain GRs significantly increased brain
infarct size after HI injury in male, but not female, rat pups. Moreover, GR repression resulted in a
significant increase in inflammatory cytokines TNF-α and IL-10 at 6 h after HI injury in male pups.
Male pups treated with GR siRNAs showed a significantly worsened reflex response and exhibited
significant gait disturbances. The present study demonstrates that endogenous brain GRs play an
important role in protecting the neonatal brain from HI induced injury in male pups, and suggests a
potential role of glucocorticoids in sex differential treatment of HIE in the neonate.

Keywords: glucocorticoid; glucocorticoid receptor; neuroprotection; Rice–Vannucci; neonatal;
hypoxic-ischemic; encephalopathy; brain; neuroinflammation; functional outcomes

1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal brain damage and occurs in
three per thousand live term births and six per thousand premature infant births [1–3]. Each year in the
United States, HIE affects 12,000 infants and causes 22% of neonatal deaths worldwide [4]. Currently,
the standard of care for hypoxia-ischemia (HI) injury is hypothermia treatment, which has a limited
capacity in reducing mortality and long-term negative neurodevelopmental outcomes [5]. Clinically,
when neonates do not respond to this therapy, there are few candidates for alternative interventions [5].
Thus, there is an urgent need to develop new therapeutic techniques and adjuvant therapies to combat
HI brain injury in infants.

The glucocorticoid receptor (GR) pathway has emerged as a promising target for the treatment
of HI brain injury. GR plays a critical role in the development of infant birth weight, muscle tone,
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and its requirement for proper neuronal system maturation [6]. At birth, the GR is upregulated in the
neonatal brain and peripheral organs, as it is necessary for organ maturation [7]. A large amount of
evidence provides a close linkage between hypoxia and glucocorticoids. Neonatal hypoxia causes
a surge in plasma adrenocorticotropic hormone (ACTH) and glucocorticoid levels, and long-term
reprogramming of the HPA-axis [8,9]. We demonstrated that gestational hypoxia downregulated
the GR in the developing brain via epigenetic mechanisms, rendering the neonatal brain vulnerable
to hypoxic-ischemic injury by decreasing the GR-mediated neuroprotection [10,11]. Exogenous
(i.e., therapeutic) and endogenous (i.e., physiologic) glucocorticoids play critical roles in the regulation
of brain function and repair through activation of the GR [12]. Interestingly, studies of hypoxic-ischemic
brain injury indicate that glucocorticoids provide both neuroprotective and neurotoxic effects [7]. The
effect of glucocorticoids is influenced by the injection site, severity of injury, dosing, and timing of drug
administration. Previous findings from our group showed that the administration of glucocorticoids
conferred robust neuroprotection and ameliorated brain damage after severe HI injury in neonatal rat
pups [13]. However, the role of endogenous GR in the immature brain in the pathological setting of HI
injury remains unknown.

Clinically, HIE affects male infants more than female infants [14]. In the rodent model, brain
damage is more severe in male rats affected by neonatal HI injury [15]. Interestingly, rodent
models of HI injury do not show sex differentiation when the infarction size is severe [10,13,16–18].
Furthermore, hypothermic interventions targeted at HI injury protect female preferentially [15,16]. In
hypoxic-ischemic injury, GR mRNA is preferentially increased in male neonatal rodents [10]. The role
of glucocorticoids and sex-dependent protection in mild HI injury is currently unknown.

Herein, we investigate the role of GR in neonatal HI injury by knocking down endogenous
brain GR in newborn rats. We examined the effects of GR repression on HI-induced inflammatory
cytokine expression profile, acute brain injury, and short- and long-term neurobehavioral outcomes in
an animal model of neonatal rats. We have shown that endogenous brain GRs play an important role
in suppressing inflammatory cytokine production and protecting the neonatal brain from HI induced
injury in male pups. The present findings suggest a potential role of glucocorticoids in sex differential
treatment of HIE in the neonate.

2. Results

2.1. Knockdown of Glucocorticoid Receptor in the Neonatal Brain

To create an effective knockdown model, GR siRNAs (100 pmol) or the negative control were
administered via intracerebroventricular (ICV) injection on postnatal day 7 (P7) of male and female
rat pups. GR protein and mRNA abundance was measured 48 h after the treatment. As shown in
Figure 1A, the GR siRNA treatment resulted in a significant decrease in GR protein abundance in the
brain 48 h after the treatment. Consistently, RT-qPCR analyses showed that the GR siRNA treatment
significantly downregulated GR mRNA abundance 48 h after the treatment (Figure 1B).
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Figure 1. Glucocorticoid receptor is effectively knocked down at the protein and mRNA level. The 
glucocorticoid receptor (GR) siRNA repressed GR expression in the neonatal rat brain. The neonatal 
rats received either GR siRNA (100 pmol) or negative control (100 pmol) via intracerebroventricular 
(ICV) injection seven days after birth (P7). The brain samples were collected 48 hours after ICV 
treatment and glucocorticoid receptor (GR) protein abundance was evaluated via Western blotting (A) 
and mRNA abundance was evaluated (B) via real-time RT-qPCR relative to GADPH, respectively. Data 
are means ± SEM. n = 5. ** p < 0.01 *** p < 0.001, GR siRNA vs. negative control. 

2.2. Effect of GR Repression on HI-Induced Infarction Size in the Neonatal Brain 

In order to elucidate the role of GR in the neonatal brain during HI injury, we sought to create a 
mild HI injury model with ligation of the right common carotid artery followed by the treatment of 8% 
O2 for 60 min. As shown in Figure 2, the mild HI treatment produced greater brain injury with larger 
infarct size in female (13.49 ± 3.74 %, n = 8) than male (4.81 ± 2.80%, n = 5) pups. GR repression with 
siRNAs significantly increased HI-induced brain injury in male pups (12.96 ± 3.13%, n = 5 vs. 4.81 ± 
2.80%, n = 5), but not in female pups (14.18 ± 2.56%, n = 11 vs. 13.49 ± 3.74%, n = 8) (Figure 2). Thus, the 
repression of endogenous brain GR minimized the difference in HI-induced infarction size in male and 
female pups (12.96 ± 3.13% vs. 14.18 ± 2.56%). Because GR repression showed no significant effect on 
HI-induced brain injury in female pups, we focused our following studies on male pups. 

 

 

Figure 2. Knockdown of endogenous GR exacerbates mild HI injury in the male neonatal rat pup brain. 
GR siRNA (100 pmol) or negative control (100 pmol) was injected by ICV injection 48 h on postnatal 
day 7 (P7) before HI-injury. HI-injury was performed on postnatal day 9 (P9) for 60 min in 8% FiO2. We 
separated sex into the following groups: negative control (negative control: male, n = 5; female, n = 8) 

Figure 1. Glucocorticoid receptor is effectively knocked down at the protein and mRNA level. The
glucocorticoid receptor (GR) siRNA repressed GR expression in the neonatal rat brain. The neonatal
rats received either GR siRNA (100 pmol) or negative control (100 pmol) via intracerebroventricular
(ICV) injection seven days after birth (P7). The brain samples were collected 48 h after ICV treatment
and glucocorticoid receptor (GR) protein abundance was evaluated via Western blotting (A) and
mRNA abundance was evaluated (B) via real-time RT-qPCR relative to GADPH, respectively. Data are
means ± SEM. n = 5. ** p < 0.01 *** p < 0.001, GR siRNA vs. negative control.

2.2. Effect of GR Repression on HI-Induced Infarction Size in the Neonatal Brain

In order to elucidate the role of GR in the neonatal brain during HI injury, we sought to create a
mild HI injury model with ligation of the right common carotid artery followed by the treatment of
8% O2 for 60 min. As shown in Figure 2, the mild HI treatment produced greater brain injury with
larger infarct size in female (13.49 ± 3.74 %, n = 8) than male (4.81 ± 2.80%, n = 5) pups. GR repression
with siRNAs significantly increased HI-induced brain injury in male pups (12.96 ± 3.13%, n = 5 vs.
4.81 ± 2.80%, n = 5), but not in female pups (14.18 ± 2.56%, n = 11 vs. 13.49 ± 3.74%, n = 8) (Figure 2).
Thus, the repression of endogenous brain GR minimized the difference in HI-induced infarction size in
male and female pups (12.96 ± 3.13% vs. 14.18 ± 2.56%). Because GR repression showed no significant
effect on HI-induced brain injury in female pups, we focused our following studies on male pups.
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Figure 2. Knockdown of endogenous GR exacerbates mild HI injury in the male neonatal rat pup brain.
GR siRNA (100 pmol) or negative control (100 pmol) was injected by ICV injection 48 h on postnatal
day 7 (P7) before HI-injury. HI-injury was performed on postnatal day 9 (P9) for 60 min in 8% FiO2.
We separated sex into the following groups: negative control (negative control: male, n = 5; female,
n = 8) versus GR siRNA (male, n = 5; female, n = 11). In the male population, GR siRNA increased
infarct volume. No significant difference was seen in the female population, although the total brain
injury was increased with a mild hypoxic-ischemic model. Data are means ± SEM, * p = 0.0315, GR
siRNA vs. negative control.
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2.3. Effect of GR Knockdown on HI-Induced Changes in Short- and Long-Term Neurobehavioral Function in
Male Pups

A battery of neurobehavioral tests were performed to examine the effect of GR repression on
HI-induced short- and long-term function outcomes (Figure 3). We first evaluated the mortality of rat
pups and weight gain after HI injury between animals that received scramble siRNAs as a negative
control (negative control; 100 pmol) and GR siRNAs (100 pmol). There was no difference in the
mortality rate between sham operated pups and HI-treated pups that received the negative control of
siRNAs, however HI-treated pups with GR knockdown showed an increased mortality rate (Figure 4A).
In the subsequent weight and behavioral data, we only include the data points from those animals
that survived. We then measured the weight gain two, four, and six days after HI injury in male pups.
Compared with the sham treatment, both groups of HI-treated pups that received the negative control
or GR siRNAs decreased body weight gain (Figure 4B).
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after initial injury. 
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0.0001), and a group*days interaction effect (F(4,95) = 3.067, p < 0.05) of the latency in seconds for the 
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Figure 3. Design/timeline of short- and long-term behavioral tests after hypoxic-ischemic injury. The
neonatal male rats received GR siRNA (100 pmol) or negative control (100 pmol) by ICV injection on
postnatal day 7 (P7). Animals were then divided into two groups, Sham and HIE. Hypoxic-ischemic
injury was performed on postnatal day 9 with carotid ligation and subsequent 8% O2 exposure for
60 min. Animals in sham group had carotid arteries exposed without subsequent hypoxic-ischemic
injury induction. HI-injury was performed on postnatal day 9 (P9) for 60 min in 8% FiO2. Pups were
returned to dams. Neurobehavioral tests began two days after injury and extended to 9 weeks after
initial injury.

To assess post-HI motor and neurobehavioral deficits, we began with a battery of acute behavioral
tests (negative geotaxis test, righting reflex test, and the wire hanging test) starting 48 h after HI
injury and again at four days and six days after injury (Figures 3 and 4C–E). The negative geotaxis
test assesses a reflex reaction initiated by vestibular and postural systems caused by the abnormal
positioning of the head and body, requiring organized motor movement for successful completion [19].
Results from the geotaxis test showed that GR repression caused a significant time delay compared to
the negative control group and sham animals in male pups (Figure 4C). Two-way ANOVA analysis
indicated a main effect of group (F(2,95) = 6.538, p = 0.0022), days (F(2,95) = 10.94, p < 0.0001), and
a group*days interaction effect (F(4,95) = 3.067, p < 0.05) of the latency in seconds for the geotaxis
test. There were also significant differences two days after HI injury between treatment groups with
GR siRNA versus the negative control group. Furthermore, the results showed that in the two-day
window, the pups that experienced HI injury had significantly underperformed the sham group
in response latency. The righting reflex test assesses simple motor coordination and is reflective of
subcortical maturation. Two-way ANOVA analysis demonstrated a main effect of days (F(2,97) = 36.69,
p < 0.0001) and group*days interaction effect (F(4,97) = 2.51, p < 0.0467) (Figure 4D). Two days after
injury, repression of the GR during HI injury caused a significant increase in response latency compared
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to sham, indicating a worse performance. The wire hanging test evaluates both neuromuscular and
locomotor functioning. Two-way ANOVA revealed a main effect of days (F(2,97) = 19.73, p < 0.0001) on
latency to fall (Figure 4E). In the short-term studies, differences seen in performance between groups
disappeared at four and six days after the initial HI insult.
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differences in the rats’ cadence, which describes the number of steps per second that the animal takes 
along its walking path (Figure 6a). Two-way ANOVA revealed a main group effect (F(2.99) = 9.324, p = 

Figure 4. Repression of GR worsens short-term neurobehavioral deficits in the neonatal male rat with
mild HI injury. The neonatal male rats received GR siRNA (100 pmol) or negative control (100 pmol)
by ICV injection 48 h before HI-injury (8% O2; 60 min). The sham group did not undergo HI-injury
treatment. The short-term neurobehavioral assessment was taken two, four, and six days after HI insult.
(A) Mortality rate with Groups: negative control without injury (sham); (n = 12) versus negative control
with HI injury (n = 13) versus GR siRNA (n = 14) with HI injury. Subsequent weight and behavioral
studies do not include animals that did not survive. (B) Weight added since HI injury, (C) geotaxis
test, (D) righting reflex, and the (E) wire hanging test were evaluated accordingly. Groups for weight
and short-term behavior were negative control without injury (sham); (n = 12) versus negative control
with HI injury (n = 13) versus GR siRNA (n = 11) with HI injury. Data are means ± SEM, * p < 0.05,
*** p < 0.0001.
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Male rats were assessed again five, six, and seven weeks after HI injury with the CatWalk for
sensorimotor deficits in order to quantify motor impairment (Figure 5). First, we found notable
differences in the rats’ cadence, which describes the number of steps per second that the animal takes
along its walking path (Figure 6A). Two-way ANOVA revealed a main group effect (F(2.99) = 9.324,
p = 0.0002) and a time effect (F(2,99) = 5.948, p = 0.0036). Animals treated with GR siRNAs to repress the
GR before HI injury performed significantly worse than the sham group at five, six, and seven weeks,
whereas the animals with the negative control showed no significant difference from sham animals. As
shown in Figure 6B, the run speed (cm/s) demonstrated a main group effect (F(2,99) = 4.561, p = 0.0127)
and a main time effect (F(2.99) = 5.655, p = 0.0047). Animals that underwent HI-injury with GR siRNA
treatment significantly performed worse than the sham group at seven weeks after the initial injury,
whereas no significant difference was observed between animals with the negative control and sham
group. We found a trend at the other time points, that GR repression caused worse motor impairments
after HI injury than the non-treatment group.

The dynamic parameter, step cycle, examining the duration of the animals’ step and swing phase
showed the motor changes between paws at five, six, and seven weeks after HI injury (Figure 6C).
In general, there were no significant differences found between sham and animals received negative
siRNAs with HI injury (Figure 6C). The right front paw demonstrated significant effects between time
(F(2,66) = 8.152, p = 0.0007) and grouping (F(2,33) = 4.133, p = 0.0250) with a multiple comparisons test
demonstrating significant differences in step cycle between the sham and GR siRNA with HI injury at
seven weeks after injury. The left front paw had significant effects between the time (F(2,66) = 5.913,
p = 0.0043) and grouping (F(2,33) = 5.537, p = 0.0085) with the multiple comparisons test showing
significant differences at 5 weeks between sham animals and those treated with GR siRNA before HI
injury. The right hind paw had significant time (F(2,66) = 8.485, p = 0.0005) and group (F(2,33) = 5.038,
p = 0.0123) effects with significant differences between the sham and GR knockdown before HI at
5 and 7 weeks. Lastly, the left hind paw showed significant time (F(2,66) = 8.788, p = 0.0004) and
grouping (F(2,33) = 5.322, p = 0099) effects with significant differences between the sham and GR
siRNA treatment at five and six weeks after HI injury.

Stand is a static parameter of gait function and is described as the duration of contact of the paw
with the glass. As shown in Figure 6D, the right front paw showed significant differences in both the
time (F(2,66) = 9.297, p = 0.0003) and grouping (F(2,33) = 4.658, p = 0.0165) effects. The left front paw
showed markedly significant differences in the time effect (F(2,66) = 10.61, p = 0.0001) and grouping
effect (F(2,33) = 6.443, p = 0.0043). Two-way ANOVA analyses revealed significant changes in time
of the left front paw contacting the glass during its gait between the sham and GR siRNA treatment
groups at five, six, and seven weeks after HI injury. The right hind paw gave significant differences in
time effect (F(2,66) = 14.02, p < 0.0001) and grouping effect (F(2,33) = 3.344, p = 0.047) with significant
changes between the sham and GR siRNA treatment group 7 weeks after HI injury. Lastly, the left hind
paw showed significant differences when considering the main time effect (F(2,66) = 14.1, p < 0.0001)
and the grouping effect (F(2,33) = 4.269, p = 0.0224) with no significant changes in a follow-up analyses.
Other parameters of max intensity, max area, print area, print width, print length, stride length, swing,
duty cycle, and swing speed are described in detail in Supplemental Table S1.
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weight distribution on a glass plate. The animal traverses the glass plate to a goal box. (A) Two walking 
patterns were collected at five weeks post HI injury with GR siRNA treatment or sham. (B) A pictorial 
representation of the CatWalk parameters. The black boxes represent the stance, which is the duration 
of time a paw is in contact with the glass. The white boxes represent the swing duration of a paw when 
it is not in contact with the glass. A step cycle describes the time, in seconds, from when an initial paw 
contact on the glass to the next time the paw comes in contact with glass. Additional data is included in 
Supplemental Table S1. 

Figure 5. Schematic illustration of the CatWalk gait parameters. The CatWalk is a highly sensitive
tool that analyzes the gait and locomotion of rodents. A camera detects the illuminated footprints
and weight distribution on a glass plate. The animal traverses the glass plate to a goal box. (A) Two
walking patterns were collected at five weeks post HI injury with GR siRNA treatment or sham. (B) A
pictorial representation of the CatWalk parameters. The black boxes represent the stance, which is the
duration of time a paw is in contact with the glass. The white boxes represent the swing duration of a
paw when it is not in contact with the glass. A step cycle describes the time, in seconds, from when an
initial paw contact on the glass to the next time the paw comes in contact with glass. Additional data is
included in Supplemental Table S1.
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Figure 6. Repression of GR worsens long-term neurobehavioral deficits in the neonatal male rat with
mild HI injury. The neonatal male rats received GR siRNA (100 pmol) or negative control (100 pmol)
by ICV injection 48 h before HI-injury (8% FiO2; 60 min). Groups were sham (negative control; (n = 12)
versus negative control with HI injury (n = 13) versus GR siRNA (n = 11) with HI injury. Catwalk test
was performed at five, six, and seven weeks after HI injury for (A) cadence, (B) run speed, (C) step
cycle duration, and (D) stand duration. Data are means ± SEM, * p < 0.05.

At nine weeks, we performed the open-field test and Morris water maze (Figure 7). Interestingly,
two-way ANOVA analyses revealed group (sham vs. negative control vs. GR siRNA) effects in the
cued (F(2,33) = 4.211, p = 0.0235) and spatial learning day 1 (F(2,33) = 3.904, p = 0.031) without group
effects evident in spatial learning day 2 and 3. By the third day of testing (spatial learning day 2), rats
with HI injury were performing similar to their sham counterparts. In addition, we found noticeable
differences in escape latency, the time an animal takes to reach the platform, without significant changes
in the velocity of the animals. In the cued training, repression of the GR worsened the ability for the
rats to escape, though they performed similar to their HI-injured counterparts by the two remaining
trials. A two-way ANOVA showed significant group effects in the cued (F(2,33) = 7.193, p = 0.0026) and
spatial learning day 1 (F(2,33) = 8.778, p = 0.0009). By spatial learning day 2 and spatial learning day 3,
no significant differences were found. It is important to note that we found that the GR siRNA group
appeared to perform worse during the probe trials. However, the behavioral performance during these
trials was widely variable, which possibly contributed to the lack of significant differences between
groups (Figure 7E,F). The total distance traveled in the open-field test did not show any significant
group effects. Notably, HI injury alone caused a higher directional turn bias with repression of GR
increasing this pattern in the open-field test (Figure 7L).
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Figure 7. Repression of GR and long-term neurobehavioral deficits in the neonatal male rat with mild
HI injury. The neonatal male rats received GR siRNA (100 pmol) or negative control (100 pmol) by ICV
injection 48 h before HI-injury (8% FiO2; 60 min). Groups were sham (negative Control; (n = 12) versus
negative control with HI injury (n = 13) versus GR siRNA (n = 11) with HI injury. (A–D) Morris water
maze cued training to spatial learning day 3 testing for the distance moved before arrival to the platform.
(E–H) Cued training to spatial learning day 3 for the latency to platform in seconds. (I,J) Probe trials
performed before Spatial 2 and 3. (K,L) Open-field test. * p < 0.05, *** p < 0.01, **** p < 0.001, two-way
ANOVA group (sham vs. negative control vs. GR siRNA) effect. # p < 0.05, ## p < 0.01, ### p < 0.001
sham vs. GR siRNA. † p < 0.05, negative control vs. GR siRNA.

2.4. Effect of GR Knockdown on HI-Induced Changes in Inflammatory Cytokine Production in the
Neonatal Brain

We further assessed the expression profile of key inflammatory cytokines in the neonatal rat brain
via RT-qPCR 6, 12, and 24 h after HI injury. As shown in Figure 8, HI injury caused a time-dependent
increase in mRNA abundance of pro-inflammatory cytokines TNF-α, IL-1b, IL-6, and anti-inflammatory
cytokine IL-10. GR repression with siRNAs significantly increased HI-induced production of TNF-α
and IL-10, and a tendency of increase of IL-1b at six hours. In contrast at 12 h after HI treatment,
there was a tendency of decrease in TNF-α, IL-1b, and IL-10 in animals treated with GR siRNAs, as
compared with those treated with the negative control. In addition, in sham groups at 24 h, there was
a significant increase in TNF-α and a tendency of increase in IL-10 in animals treated with GR siRNAs,
as compared with those treated with the negative control.
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Figure 8. Repression of the GR increases cytokine profile 6 h after mild HI injury. The neonatal male
rats received GR siRNA (100 pmol) or negative control (100 pmol) by ICV injection 48 h before HI-injury
(8% FiO2; 60 min). Groups were sham with negative control, sham with GR siRNA, negative control
with HI injury, and GR siRNA with HI injury. Whole brain RNA was isolated at six, 12, and 24 h after
HI injury and cytokines TNF-α (A–C), IL-10 (D–F), IL-6 (G–I), and IL-1β (J–L). * p < 0.05, ** p < 0.01,
**** p < 0.0001.

3. Discussion

This study demonstrates the following novel findings: One, repression of neonatal endogenous
brain GR in a mild HI model sensitizes the neonatal brain to acute HI injury and results in increased
brain infarction size in male neonatal rat pups; two, downregulation of brain GR causes greater
impairment of short- and long-term neurobehavioral functioning after HI injury; and three, lastly, GR
repression significantly increased HI-induced production of inflammatory cytokines TNF-α and IL-10
at six hours after HI injury. Thus, the present study provides evidence of a causal role of endogenous
brain GR in the regulation of inflammatory response, acute brain injury and functional outcomes in the
setting of hypoxic-ischemic injury. Of great interest, the effect of GR repression on mild HI injury in
the neonate was a male specific change.
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The goal of this study was to investigate the role of the GR in the pathogenesis of brain injury caused
by asphyxia in near-term infants. We used P9 neonatal rats to closely mimic the brain development
seen in a full-term newborn as a translational preclinical model [20–22]. A Rice–Vannucci model was
implemented to evaluate the potential injury caused by a hypoxic-ischemic (HI) insult. In a full-term
newborn, the GR is diffusely expressed throughout the whole brain and the expression level is highest
at birth, when the HPA-axis becomes active and is critical to a newborn’s immediate survival [23].
The GR is vital for the normal central nervous system (CNS) development in the neonate and for the
proper regulation of the HPA axis [12]. During hypoxic-ischemic encephalopathy (HIE), cerebral blood
flow is compromised, causing widespread cellular dysfunction, neuroinflammation and apoptosis [7].
Previous studies have found that fetal hypoxia downregulates GR expression in the developing brain
and decreases the GR-mediated neuroprotection in the neonatal brain in response to HI insult [10,11].
Furthermore, glucocorticoids are protective in a severe HI model of injury in both male and female
neonatal rats [13].

In the present study, we sought to use siRNAs to knockdown GR expression in the neonatal
brain to investigate the role of endogenous brain GR in HI-induced inflammation in mild brain
injury and short- and long-term neurobehavioral outcomes. Our rationale was based on the complex
regulation of glucocorticoid and progesterone receptor observed with other GR antagonist, including
mifepristone [24,25]. We have shown that intracerebroventricular (ICV) injection of GR siRNAs
significantly downregulated GR expression in the neonatal rat brain, providing a model to explore
the role of endogenous brain GR in the pathogenesis of HI injury in the neonatal brain. Our previous
studies showed that glucocorticoid administration via intracerebroventricular or intranasal injections is
neuroprotective in both males and females in a severe HI model [13]. Evidence of both neuroprotective
and neurotoxic effects exists in the literature and the effects seem to differ based on timing, dose,
duration of treatment, and severity of injury [7,12]. The present finding that GR repression significantly
increased mild HI-induced brain injury in male pups, without affecting female pups, is novel. Clinical
findings mainly in preterm infants suggest a possible sex difference with a female advantage in
long-term cognitive outcome [16]. However, currently there are no sex-specific follow-up data on HIE
in term infants for meta-analysis due to the scarcity of research in this area. Because the pathophysiology
and mechanism of HI brain damage in preterm versus term populations are quite different [16,26], it
is of critical importance to investigate potential sex dimorphism in HIE of term brain injury as well.
Some studies in rodent HIE models showed no significant difference between male and female pups in
severe HI-induced brain injury of above 40% brain infarction in the ipsilateral hemisphere [10,13,16–18],
although variable sex differences in long term cognitive outcome were observed [16]. A question
of great interest is whether such a severe brain injury, which may not be often seen in the clinical
setting, masks the subtle sex difference. The present study of a rat HIE model of term brain injury
demonstrated a clear sex difference in HI-induced mild brain injury of around 5% brain infarction in
male rat pups and 13% in female pup brains. Of importance, we found that transient knockdown of
GRs in the neonatal brain by siRNAs eliminated the sex difference in acute brain injury caused by mild
HI insult. These findings suggest an exciting and novel mechanism of endogenous brain GRs in the
sex dimorphism of HIE in term infants.

We found that GR repression caused a higher mortality rate after HI injury. Previous studies
showed that moderately dosed glucocorticoid treatment decreased the mortality rate and reduced
the recovery time after HI injury [27–29]. Subsequently, our studies revealed that the knockdown of
the GR decreased neurobehavioral performance in both short- and long-term neurobehavioral tests.
The neurobehavioral outcomes of perinatal asphyxia are extremely important to evaluate because the
sequelae of HI injury in children present as motor and cognitive deficits. The plasticity of the neonatal
brain and the possibility of compensatory changes in the contralateral hemisphere make differences
observed highly significant following HI injury. The Rice-Vannucci model is a widely accepted HIE
model that has been used to study neurocognitive impairments that last into adulthood, such as cerebral
palsy [30]. Given that chronic functional deficits and disability constitute a major sequela of neonatal
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HI injury, we served to explore the effect of GR repression on short- and long-term functional studies.
Short-term neurobehavioral impairments are predictive of later functional impairments in patients
that experienced neonatal asphyxia [31–33]. Moreover, because neurobehavioral studies have high
variability, it is prudent to employ multiple behavioral tests to increase the specificity and sensitivity
of the test protocol [34]. A recent study found that repression of the GR in the adult mouse brain
caused worsened neurological performance after stroke [35]. Activation of the GR by glucocorticoids
in the neonatal rat has had differing results in exacerbating or preventing long-lasting neurological
impairments, though studies showing neurobehavioral outcomes are few [36–38].

We next observed the long-term neurobehavioral outcomes to improve our understanding of how
the loss of endogenous GR may negatively impact brain recovery. We analyzed gait abnormalities
with the CatWalk that revealed significant differences in the cadence, run speed, duration of the stance,
and duration of the step cycle. Our study found that the pups with GR repression in the brain had
a slower cadence or steps taken per second several weeks after HI injury. Interestingly, cadence is
slower in stroke patients compared to their normal counterparts [39]. Similarly, cadence is impaired
in rat models with intracerebral hemorrhage (ICH) [40]. Stand, or stance, is considered the duration
of time the hind or front paws have ground contact in seconds. In the present study, the male pups
with downregulated GR showed an increase in the amount of stand time, reflective of increased injury,
principally in the opposing left front and right hind limbs. The bilateral impairment seen in these
animals is due to compensatory postural adjustments for the injured limbs [41,42]. This is observed
with the animal’s stance, with the hind limb opposite to the injured limb compensating for the front
limb. The step cycle is described as the time in seconds between two consecutive contacts in the
same paw and was significantly increased in animals with GR repression during the initial HI injury.
A similar pattern presents in an adult middle cerebral artery occlusion stroke model [42].

The Morris water maze (MWM) is designed to assess learning and memory. In the present study,
the animals that experienced HI injury demonstrated notable impairments in the distance travelled and
time taken to reach the platform, without changes in confounding variables, such as velocity. Secondly,
GR repression in the brain caused worsened performance outcomes than the other two groups, with
improvement by spatial learning day 2. The cued learning is used as a control to safely determine
whether the animals are performing similarly before testing for memory, a part of the test that is too
often omitted in studies evaluating hypoxia-ischemia. The cued learning test requires motivation to
escape from the water and consistency of rudimentary abilities of intact eyesight and locomotor ability
that allows them to swim away from the wall and subsequently climb onto the platform [43]. Since the
animals start at varying performance levels during the cued testing, it is difficult to interpret results on
spatial learning days 1 to 3. Studies suggest that impairments in cued learning may be associated with
changes in the striatum and not the hippocampus [44]. This observation is consistent with other studies
that use the MWM as an accepted test to evaluate long-term changes from a hypoxic-ischemic insult,
though the cued training data is not available [45,46]. Interestingly, we found a worsened performance
of the animals that had downregulated GR at the time of injury in the latency to target, suggesting a
deficit in either the locomotor ability to or the spatial memory required to reach the platform.

Neuroinflammation is a critical aspect of the pathogenesis of hypoxic-ischemic
encephalopathy [7,26,47,48]. Neonatal encephalopathy is accompanied by an elevation of cytokines
in the blood and cerebrospinal fluid [48,49]. Inflammation is a key aspect of the pathogenesis of HIE
that may be manipulated to ameliorate further brain damage. The present study showed that mild HI
insult produced time-dependent increases in pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in
the neonatal brain. Glucocorticoids are essential immunomodulatory agents, and microglial GRs act
on several key processes, limiting pro-inflammatory actions of activated microglia in the brain [50–54].
We found that the knockdown of brain GRs with siRNAs caused an upregulation of pro-inflammatory
cytokine TNF-α and anti-inflammatory cytokine IL-10 six hours after HI injury. In seeking a more
clinically relevant model of mild HIE, these subtle changes detected may be the key to the exacerbated
injury observed. In adult ischemia, TNF-α is decreased with glucocorticoid agonism and is connected
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to increased apoptosis [55,56]. Interestingly, the increase of IL-10 may be a compensatory response
to the initial injury caused by GR repression. In addition, GR repression had a tendency to increase
HI-induced IL-1β at six hours after HI treatment, but did not affect IL-6. These findings suggest GR’s
complicated regulation of neural inflammatory response. It is possible that in the immature brain,
downregulation of the GR allows specific targeting of a cellular subtype within the brain and thereby
is specific to certain regions of the brain.

It is worth noting that the long-term results of dexamethasone and other glucocorticoids remain
controversial, although in treatment of HIE, glucocorticoids acting on GR is a worthy candidate as an
adjuvant therapy to hypothermia due to its broad ability to lower neuroinflammation and promote
recovery after HI brain injury in the neonate. The present study revealed that GR plays a protective
role in the neonatal brain. This is consistent with our previous findings that the administration of
glucocorticoids before and after HI injury confers protection through the activation of the GR [10,13].
By knocking down the endogenous brain GR with siRNAs, the present study in a mild HI brain injury
model demonstrated that GR repression increased infarction size, exacerbated negative neurobehavioral
outcomes, and enhanced the inflammatory response. In Harding et al., we demonstrated no sex-specific
differences in a severe HI-injury model [13]. Of great interest, mild HI-injury helped to reveal subtle sex
differences, suggesting that male pup brains are better protected by the GR against mild HI-induced
brain injury. Consistent with the present finding, a recent study demonstrated that females are more
vulnerable with a preferentially lethal rate to genomic instability-induced inflammation during the
early development, and males are protected by high levels of intrinsic testosterone [57]. The present
study reveals GR action as another possible mechanism to protect males against inflammation induced
by mild-HI injury in the male neonatal rat. Indeed, the previous study demonstrated that GR mRNA
expression is significantly greater in male brains than that in female brains in both term fetuses
and postnatal day 10 rat pups [10]. Similarly, GR mRNA abundance was found to be higher in the
hippocampus and a tendency of greater levels in the cerebellum of male than female brains [58]. Thus,
the present findings provide new insights into a potential therapeutic strategy of glucocorticoids as
an adjuvant therapy in treatment of HIE with a sex preference in male infants. Follow-up studies
are needed to simultaneously evaluate the female and male neonate to fully understand whether the
behavioral changes and inflammatory markers detected are sex-dependent.

Several limitations of the study deserve to be mentioned. Our present study evaluated the negative
impacts of GR repression in HI injury. To knockdown brain-specific GR, we used ICV injection, which
is considered to directly impact the central nervous system. We cannot exclude the possibility of siRNA
GR leakage to the peripheral system through the blood brain barrier and causing systemic effects
and involvement of peripheral organ systems. The finding that GR repression exacerbated infarction
size through TTC staining gave the macroscopic level of assessment of brain injury, though further
approaches of brain MRI imaging and immunofluorescence may reveal more details in changes outside
of infarction zones. The cytokine studies provided feasible biomarkers to understand the changes
over time by which a mild form of HI injury. Future study of an immunohistochemical approach may
provide additional information about the neuroinflammatory distribution of specific brain regions and
the cell types that are involved in these differences.

This study provides evidence that GR may play a causal role in regulating acute brain injury,
inflammation, and behavioral changes observed in mild HI injury. First, this study demonstrated
that the repression of endogenous brain GR sensitizes the male neonatal brain to acute HI injury, as
seen through an increase in brain infarction size. Secondly, we found greater impairment of short-
and long-term neurobehavioral function after HI injury. Lastly, GR repression caused a significant
increase of inflammatory cytokines TNF-α and IL-10 at six hours after mild HI injury in the male
neonatal rat. This study provides evidence of the role GR may play in protecting the male neonatal
brain from greater brain injury. Therapeutically, this study provides further evidence of the importance
of cytokine profiles in HI-injury as biomarkers of injury severity.
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4. Materials and Methods

4.1. Experimental Animals

Pregnant Sprague–Dawley rats were purchased from Charles River Laboratories (Portage, MI,
USA). After the animals gave birth, pups were kept with dams in a room maintained at 24 ◦C with
a 12-h light/dark cycle and provided ad libitum access to normal rat chow and filtered water. Pups
of both sexes were randomly divided into groups with scramble control (negative control) or Nr3c1
(Glucocorticoid Receptor) siRNA (Dharmacon, Lafayette, CO, USA). All procedures and protocols were
approved by the Institutional Animal Care and Use Committee (IACUC) of Loma Linda University
(IACUC #:8160017, 6 April 2018) and followed the guidelines by the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.

4.2. Intracerebroventricular (ICV) Injection

Pups were anesthetized with 2% isoflurane in oxygen with loss of pedal reflexes as a measure of
proper anesthetization. An incision was made on the skull to expose the skull in P7 neonatal rats using
a stereotactic apparatus. We positioned a Hamilton syringe 2 mm inferior, 1.5 mm lateral, and 3 mm
deep in relation to the bregma as referenced previously [13]. With the Hamilton syringe, 100 pmol of
Nr3c1 siRNA (Dharmacon) or 100 pmol of Scramble siRNA was injected at 1 µl/min for 2 min. The
syringe was held in the right cerebrum for an additional 3 min to prevent back-flow of siRNA. Once the
Hamilton syringe was removed, the incision site was closed. The incision was sutured, anesthesia was
removed, and the pups then recovered on a heating pad for 10 min before being returned to their dam.

4.3. Neonatal Hypoxic–Ischemic Encephalopathy (HIE) Rat Model

We performed HIE at P9 to reflect human brain development equivalent to a full-term
infant [20,59,60]. A modified Rice–Vanucci rat model of hypoxic-ischemic encephalopathy was
used as previously described [13]. In brief, P9 rat pups were anesthetized with 2% isoflurane in oxygen.
Proper anesthetization was determined by loss of the pedal reflex. Pups were divided into sham and
those undergoing HI injury. The right common carotid artery was ligated with a 5.0 silk surgical suture
and cut between the ligations. Pups were then returned to dams. After one hour of recovery, pups
were placed in a hypoxic chamber at 37 ◦C with 8% oxygen balanced with 92% nitrogen for 60 min.
Pups were then returned to their dams to recover after hypoxic exposure. For the sham-treatment,
pups were anesthetized with 2% isoflurane and the left carotid artery was exposed without ligation
and without hypoxia treatment. Pups were subsequently returned to dams and allowed to recover.

4.4. Measurement of Infarction Size

Pups were euthanized 48 h after HI-injury to determine brain infarct size as previously
described [10]. Serial coronal sections of the brain were cut (2-mm thick) and immersed it in a
2% solution of 2,3,5-triphenyltetrazolium chloride monohydrate (TTC; Sigma–Aldrich) for 5 min at
37 ◦C and fixed with 10% formaldehyde overnight. Both the caudal and rostral was photographed for
subsequent analysis. The infarction size was analyzed by the Image J software (Version 1.40; National
Institutes of Health, Bethesda, MD, USA), summed for each brain, and expressed as a percentage of
the whole brain.

4.5. Neurobehavioral Tests

Neurobehavioral outcomes were evaluated after HI-injury with a battery of neurobehavioral tests.
Assessments were performed at postnatal day 11, 13, and 15 (2, 4, and 6 days after injury) to evaluate
short-term effects of the injury and interventions on subcortical maturation (righting reflex test), motor
coordination and vestibular sensitivity (geotaxis test), and neuromuscular and locomotor development
(wire hanging test). The chronic effect of the injury and interventions was evaluated by measuring
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locomotion (automated gait analyses), spatial learning and memory (Morris water maze), and general
activity levels (open field test). Reflex Test was measured at P11, P13, and P15 pups. The pups were
removed from dams and placed on a heating pad. The pups were placed on their back on a flat surface
with forearms and hindlimbs being held in place. We recorded the amount of time taken for each
pup to completely right itself with four paws on the surface. The average of three tests was recorded,
with the overall group data expressed as response latency mean ± SEM. Geotaxis Test was measured at
P11, P13, and P15 pups. The pups were placed with their heads pointing downward on a surface of
approximately 30◦ incline. The surface had a cotton pad to provide traction for the pup. The time took
to make a complete 180◦ turn was measured (time at completion = shoulders and head were facing
upward to the slope). Each trial was performed for a maximum of 60 s. An average of three trials was
calculated for each pup. The overall group data is expressed as response latency mean ± SEM. Wire
Hanging Test was measured at P11, P13, and P15 pups. On P11, P13, and P15, pups were suspended
from their forelimbs from a horizontal string between two metal rods (5mm × 5mm string, 47 cm long,
and 50 cm high). After initiation of the time, pups were allowed to support themselves with their hind
limbs to help prevent them from falling and allow them to traverse the string. An average of three
trials was calculated for each animal. CatWalk Test was performed at 5, 6, and 7 weeks-post-HI injury.
The CatWalk XT system is highly sensitive to locomotion and gait alterations following neurological
injury (Noldus Information Technology Inc., Leesburg, VA, USA). Surprisingly, this automated test is
rarely used in hypoxic-ischemic models to study gait abnormalities. In this test, the rats are allowed to
walk across a glass walkway measuring 1.3 meters in length that is dimly illuminated with fluorescent
light. Footprint images with intensity measurements are recorded by a camera positioned under the
glass walkway. For our study, the rats were acclimated for 3 days before testing, with each animal
given 10 min in a darkened goal box at the end of the runway and 5 min training on the runway. At
the start of experiment, the rats were acclimated in the darkened goal box positioned at the end of the
runway for 5 min. The animals were prompted to complete 5 compliant runs with 2 min between runs
in the darkened box with their cage mate. Compliant runs are defined as runs lasting longer than 1 s
but shorter than 15 s with a maximum allowed speed variation <60%. The CatWalk walkway was
cleaned after three trials to ensure accurate data collection. Footprint identification and labeling was
performed using the CatWalk XT software (CatWalk XT v10.6, Noldus Information Technology Inc.,
Leesburg, VA, USA) and static and dynamic parameters generated for 5 compliant runs per rat. The
mean score from 5 trials was analyzed. Morris Water Maze was performed at 9-weeks post injury. The
rats were evaluated for spatial learning and memory function using the standard Morris water maze
(MWM) test. The MWM paradigm consisted of a three-day procedure including cued learning (day 1)
and spatial learning (day 2 and 3). Probe trials were taken at the beginning of day 2 and 3 for spatial
memory evaluation [61]. The rats were placed in a metal pool (100 cm diameter) filled with water. The
animals were allowed to swim to an escape platform that was either 1.5 cm above the water surface
during the cued trial, or 1.5 cm below the water surface during the spatial learning or absent from the
water during the probe trials. Each animal was administered 10 trials per day (60 s max per trial) in
5 blocks of 2 consecutive trials. Open-Field Test was performed at 9-weeks post injury. The open-field
test (OFT) was performed in the rats at 9 weeks after the HI injury. The maze was constructed from
metal with a dark base surface (maze dimensions, 49 cm long, 35.5 cm wide, 44.5 cm tall). Light levels
in the room were dimmed with halogen lights at a distance to provide ample light. The rats were
observed in the OFT for 30 min and movement parameters were recorded by an overhead camera
and analyzed by a computerized tracking system (Noldus Ethovision; Information Technology, Inc.,
Leesburg, VA, USA).

4.6. Real time RT-qPCR

Total RNA was extracted from the right hemisphere whole brain tissue 6, 12, and 24 h after
hypoxic-ischemic insult. Total RNA was extracted using the TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA, USA) with subsequent reverse transcription using the iScript cDNA synthesis system
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(Bio-Rad, Hercules, CA, USA). RNA quality was assessed using a Nanodrop spectrophotometer
(Thermo Fisher Scientific) by determining A260/A280 and A260/A230 values. RNA used had a value of
A260/A280 value of 1.9–2.0 and A260/A230 value of 2.0–2.3. We then performed subsequent electrophoresis
of 1 µg of total RNA on a 1% agarose gel to reveal intact 28S, 18S, and 5S RNA species. We then
measured mRNA abundance of GR, TNF-α, IL-10, IL-6, and IL-1β using iQ SYBR Green Supermix
(Bio-Rad). The following reverse transcription polymerase chain reaction protocol was used: 95 ◦C
for 5 min followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min. The GR primers used were
5’-aggtctgaagagccaagagtt-3’ (forward) and 5’-tggaagcagtaggtaaggaga-3’ (reverse). The TNF-α primers
used were 5’-gccgatttgccacttcatac-3’ (forward) and 5’-aagtagacctgcccggactc-3’ (reverse). The IL-10
primers used were 5’-cactgctatgttgcctgctcttac-3’ (forward) and 5’-gggtctggctgactgggaag-3’ (reverse). The
IL-6 primers used were 5’-gcctattgaaaatctgctctgg-3’ (forward) and 5’-ggaagttggggtaggaagga-3’ (reverse).
The IL-1β primers used were 5’-agcaacgacaaaatccctgt-3’ (forward) and 5’-gaagacaaaccgcttttcca-3’
(reverse). PCR was performed in triplicate, and threshold cycle numbers (CT) was generated by
CFX connect Real Time System (Bio-Rad) were averaged for each sample. Internal reference was
glyceraldehyde-3-phosphate dehydrogenase.

4.7. Statistical Analysis

The data were expressed ± standard error of the mean (SEM). Experimental number (n) represents
pups from multiple dams. The data was assessed by a two-way analysis of variance (ANOVA) followed
by a Holm–Sidak post-hoc test for comparisons of multiple groups or Student’s t-test (unpaired,
two-tailed) for comparisons between two groups, where appropriate using the Graph-Pad Prism
software (GraphPad Software Version 7, San Diego, California, CA, USA). For all comparisons, p < 0.05
indicated statistical significance.
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