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Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD),

which is characterized by a series of abnormal changes such as

glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive

deposition of extracellular matrix. Simultaneously, the occurrence of

inflammatory reaction can promote the aggravation of DN-induced kidney

injury. The most important processes in the canonical inflammasome pathway

are inflammasome activation and membrane pore formation mediated by

gasdermin family. Converging studies shows that pyroptosis can occur in

renal intrinsic cells and participate in the development of DN, and its

activation mechanism involves a variety of signaling pathways. Meanwhile,

the activation of the NOD-like receptor thermal protein domain associated

protein 3 (NLRP3) inflammasome can not only lead to the occurrence of

inflammatory response, but also induce pyroptosis. In addition, a number of

drugs targeting pyroptosis-associated proteins have been shown to have

potential for treating DN. Consequently, the pathogenesis of pyroptosis and

several possible activation pathways of NLRP3 inflammasome were reviewed,

and the potential drugs used to treat pyroptosis in DN were summarized in this

review. Although relevant studies are still not thorough and comprehensive,

these findings still have certain reference value for the understanding, treatment

and prognosis of DN.
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Introduction

Inflammasomes were first discovered in 2002 as multi-protein complexes with the

function of inducing inflammation (Martinon et al., 2002). The assembly and activation of

inflammasomes can occur in different organelles such as mitochondria, endoplasmic

reticulum, and nucleus (Pandey et al., 2021). Clinical diagnosis of certain diseases and

monitoring of treatment response can be realized through inflammasome imaging

systems (Nandi et al., 2022). NOD-like receptor thermal protein domain associated

protein 3 (NLRP3) inflammasome is a well-studied inflammasome, which is mainly

composed of NLRP3, apoptosis-associated speck-like protein containing a caspase
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recruitment domain (ASC) and caspase-1, and assembled after

pattern recognition receptors (PRRs) receive danger signals

(Broz and Dixit, 2016). The activation of

NLRP3 inflammasome not only leads to an inflammatory

response, but also induces a type of lytic cell death known as

pyroptosis (Huang et al., 2021b).

Over long periods of time, the study of pyroptosis was put on

hold and was once defined as “apoptosis” (Zychlinsky et al., 1994;

Hersh et al., 1999). It was not until 2015 that Academician Shao

Feng and his team reported the process of gasdermin D

(GSDMD) being cleaved by caspase family that people began

to make new breakthroughs in the study of pyroptosis (Shi et al.,

2015). Currently, pyroptosis is defined as a member of

programmed cell death (PCD), which has crosstalk between

apoptosis and autophagy (Doerflinger et al., 2020; Zhang

et al., 2021b). Necroptosis, pyroptosis, and ferroptosis are

three widely studied non-apoptotic cell deaths. Molecularly,

necroptosis is a form of PCD that depends on the sequential

activation of receptor interacting serine/threonine kinase 3

(RIPK3) and mixed lineage kinase domains, which can

assemble into oligomeric complexes called necrosomes

(Linkermann and Green, 2014). Ferroptosis is characterized

by the overwhelming, iron-dependent accumulation of lethal

lipid ROS, independent of caspases and necrosomes components

(Dixon et al., 2012). Apoptosis involves several different

activation mechanisms, including the intrinsic and extrinsic

pathways, intrinsic endoplasmic reticulum pathway, and these

processes dependent on TNF receptors, caspase-3, and Bcl-2

family (Wong, 2011). Pyroptosis mainly depends on the pore-

forming properties of the gasdermin family (Yu et al., 2021b).

Morphologically, apoptosis is manifested in the formation of

apoptotic bodies, cytoplasmic shrinkage, and chromatin

condensation; necroptosis is mainly manifested by cell

swelling, and there are no obvious involvement of phagocytes

and lysosomes; ferroptosis is mainly manifested by

mitochondrial changes, including shrinkage, electron-dense

ultrastructure, and reduced/disappeared cristae (Galluzzi et al.,

2018). It has been recognized that when pyroptosis occurs,

deoxyribonucleic acid (DNA) double-strand breaks, cells swell,

pores form in the cell membrane, and cells contents leak out,

resulting in the destruction of the balance of sodium and

potassium ions inside and outside the cells (Kovacs and Miao,

2017). These different cell death modes perform different

functions. Although pyroptosis can recruit immune cells to

attack pathogens by releasing inflammatory factors, excessive

pyroptosis can damage cell membrane integrity and lead to organ

damage (Man et al., 2017). Initially, pyroptosis was thought to

occur only in immune cells, but a large number of studies have

shown that pyroptosis can also occur in other cell types. For

instance, pyroptosis can promote the proliferation, invasion, and

metastasis of cancer cells, and it can also induce retinopathy

under high glucose (HG) stimulation (Zhou and Fang, 2019; Gan

et al., 2020).

Diabetic nephropathy (DN) is not only a chronic disease with

a complex pathogenesis, but also one of the main factors leading

to end-stage renal disease (ESRD) (Ilyas et al., 2017). Based on

current epidemiological data, the number of DN patients is

expected to increase further in the coming decades (Saeedi

et al., 2019). The occurrence of DN can induce a series of

abnormal changes such as glomerular hypertrophy, podocyte

loss, and mesangial matrix expansion (Alicic et al., 2017).

Progressive DN is not only the result of glucose metabolism

disorder and reactive oxygen species (ROS) production, but also

the result of chronic low-grade inflammation and fibrosis

(Rayego-Mateos et al., 2020; Maiti, 2021). Genomics analysis

found significant ferroptosis in the DN group (Wang et al.,

2022c). It has also been found that necroptosis shares several

upstream signaling pathways with apoptosis, and that

necroptosis may have a greater impact on podocyte loss in

DN than apoptosis under the regulation of ubiquitin

C-terminal hydrolase L1 (UCHL1) (Xu et al., 2019).

Furthermore, studies have shown that in the DN mouse

model, the redox balance in kidney cells was disrupted and

pyroptosis was shown to be triggered, resulting in loss of

kidney cells and impaired kidney function (Cuevas and

Pelegrín, 2021). The release of a large number of pro-

inflammatory factors such as Interleukin-1β (IL-1β) and

Interleukin-18 (IL-18) will lead to an increase in renal

vascular permeability, and the urinary protein excretion rate

will further increase (Yaribeygi et al., 2019).

NLRP3 inflammasome-mediated pyroptosis is one of the

main activation mechanisms of pyroptosis and also a key step in

the activation of inflammatory responses. When the

NLRP3 inflammasome is activated, it converts inactive pro-

caspase-1 into active cleaved-caspase-1, which subsequently

promotes the production of mature IL-1β and IL-18 and

cleaves GSDMD. The N-terminal fragment of GSDMD leads

to the formation of membrane pores and induces pyroptosis

(Wang and Hauenstein, 2020). Meanwhile, the activation of

NLRP3 inflammasome can cause the production of a large

number of inflammatory factors, which is the pathogenesis of

certain inflammatory diseases including DN (Yang et al., 2021b).

Hyperglycemia, hyperlipidemia, and hyperuricemia can all

activate the NLRP3 inflammasome, and NLRP3 knockout

(KO) can attenuate glomerular hypertrophy,

glomerulosclerosis, and mesangial matrix expansion in

streptozotocin (STZ)-induced diabetic mice (Qiu and Tang,

2016; Wu et al., 2018). Therefore, targeting NLRP3 and

GSDMD to inhibit pyroptosis may serve as a potential

therapeutic strategy (Newton et al., 2021). In this review, we

first introduced three activation mechanisms of pyroptosis and

described the correlation between NLRP3 inflammasome

activation and pyroptosis, and then we explored several

pathways that may lead to NLRP3 inflammasome activation

and its effects in pyroptosis.Finally, some potential therapeutic

drugs for pyroptosis in DN were summarized.
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Three molecular mechanisms of
pyroptosis

Canonical inflammasome pathway

Activation of inflammasome and cleavage of gasdermin family

are two of the most important processes in the canonical

inflammasome pathway. When the recognition of pathogen-

associated molecular patterns (PAMPs) and damage-associated

molecular patterns (DAMPs) by PRRs was activated by bacteria,

viruses and various pathological factors, different inflammasomes

were assembled with the participation of adaptor proteins (such as:

ASC) and effector proteins (such as: caspase family) (Lin et al.,

2020). Subsequently, pro-caspase-1 can be recruited by

inflammasomes and activated into cleaved-caspase-1. Cleaved-

caspase-1 can activate IL-1β and IL-18. Next, the activated IL-1β
and IL-18 can release into the extracellular in amanner independent

of the gasdermin family and mediate the inflammatory cascade.

However, GSDMD can be cleaved into GSDMD-N-terminal

(GSDMD-NT) with pore forming characteristics and GSDMD-

C-terminal (GSDMD-CT), which is the key process leading to

pyroptosis (Liu et al., 2016b).

The PRR family includes Toll-like receptors (TLRs) and

C-type lectin receptors (CLRs), which are mainly located on

cell membranes, and NOD-like Receptors (NLRs) and absent in

melanoma 2 (AIM2)-like receptors (ALRs), which are mainly

located in the cytoplasm (Plato et al., 2015). Different

inflammasomes adapt to different activation mechanisms, and

their activation signals are diverse, such as ROS generation,

endoplasmic reticulum (ER) stress, calcium (Ca2+) overload,

and nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase (NOXs) activation (Xue et al., 2019). In general, the

activation of the NLRP3 inflammasome requires the

participation of ASC, but for NLR family CARD domain

containing 4 (NLRC4) and NLRP1, they can directly interact

with caspase-1 independent of ASC (Zhai et al., 2017; Duncan

and Canna, 2018). Additionally, recent studies have shown that

Cd exposure can activate AIM2 by increasing oxidative stress

(Zhou et al., 2022). Cerebral ischemia/reperfusion (I/R) injury

can also induce the release of ectopic dsDNA to promote

AIM2 inflammasome assembly and pyroptosis (Li et al.,

2019). Moreover, AIM2 has also been identified as a direct

target of miR-485, which can inhibit inflammatory response

under the action of MEG3 (Liang et al., 2020). It is known

that AIM2 inflammasome can also be activated in macrophages

to induce GSDMD-dependent pyroptosis (Gao et al., 2019).

Interestingly, the expression of GSDMD-N was also

significantly increased accompanied by the increase of

AIM2 in kidney induced by aldosterone, which aggravated the

renal fibrosis (Wu et al., 2022b). Downregulation of AIM2 can

reduce the expression of caspase-1, IL-1β, and IL-18 in human

glomerular mesangial (HGM) cells (Zhen et al., 2014). Although

the above experiments can prove that the AIM2 inflammasome is

related to pyroptosis, there is still a gap in the research on

whether AIM2 can be a new target for inhibiting pyroptosis

in DN.

In addition to AIM2 inflammasome, TLR2, and TLR4 have

recently been found to further activate NLRP3 inflammasome by

activating nuclear-factor κB (NF-κB) signaling pathway to

regulate ozonation-induced pyroptosis (Tian et al., 2021).

Meanwhile, the regulation of TLR/NF-κB pathway can also

improve renal function and promote renal injury repair

(Wang et al., 2019a; Wu et al., 2019). Additionally, Mincle is

a C-type lectin receptor whose activation has been shown in vitro

to promote the release of pro-inflammatory cytokines and

pyroptosis of macrophages (Gong et al., 2020). Inhibition of

the Mincle/Syk/NF-κB signaling pathway can also reduce the

expression of ASC and caspase-1 (He et al., 2022). Although there

is still a lack of research on the role of CLRs and TLRs in

pyroptosis of DN, their effects on pyroptosis in other cells should

not be ignored.

Gasdermin family includes GSDMA, GSDMB, GSDMC,

GSDMD, DFNA5, and DFNB59, they are widely expressed in

different cells and tissues (Kovacs and Miao, 2017). It has been

reported that the N-terminal domain of gasdermin family can

bind to phosphorylated phosphatidylinositol and may form

pores on lipid membranes (Ding and Shao, 2018). Although

such pore formation character of gasdermin family is the

molecular basis for pyroptosis, GSDMD is the primary

molecule with pore-forming properties in the canonical

inflammasome pathway (Ding et al., 2016). And so far, there

are no known mechanisms, other than cleavage, for regulating

GSDMD (Gao et al., 2022a). GSDME can also mediated

pyroptosis, but whether other proteins of gasdermin family

can regulate pyroptosis in DN still lacks specific research

(Rogers et al., 2019; Li et al., 2021g).

Non-canonical inflammasome pathway

In the non-canonical inflammasome pathway, caspase-4/5/

11 can directly respond to the pathogen structural molecules

[e.g., lipopolysaccharide (LPS), lipid A] through the caspase

recruitment domain (CARD) and lead to the cleavage of

GSDMD and the release of IL-1β and IL-18 (Rathinam et al.,

2019). The product of this pathway can also induce the activation

of caspase-1 and promote IL-1β and IL-18 maturation (Downs

et al., 2020). It has been reported that GSDMB does not induce

pyroptosis through its N-terminal like other proteins of

gasdermin family, but promotes caspase-4 activity by directly

binding to the CARD domain of caspase-4 (Chen et al., 2019b).

Subsequently, activated caspase-4 can lead to membrane pore

formation with the help of GSDMD, followed by potassium

influx to activate NLRP3 (Linder and Hornung, 2020).

Downregulation of caspase-4 can inhibit the occurrence of

TNF-α-induced pyroptosis of human pulmonary artery
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endothelial cells (HPAEC) and the activation of GSDMD and

GSDME (Wu et al., 2022a). Additionally, leishmania

lipophosphoglycan (LPG) and C/EBP homologous protein

(CHOP) have also been reported to induce the activation of

caspase-11, and activated caspase-11 can directly act on pro-

caspase-1 and activate it (Yang et al., 2014; de Carvalho et al.,

2019). Caspase-11 has a special recognition mechanism for

protein substrates, which is mainly mediated by the P1′-P4′
region of its substrate GSDMD, and caspase-4 and caspase-5 are

also regulated by the same mechanism (Bibo-Verdugo et al.,

2020). Arginine adenosine-5′-diphosphoribosylation (ADP-

ribosylation) of caspase-4/11 can block its recognition and

cleavage of GSDMD (Li et al., 2021k). Moreover, CHOP

silencing significantly reduced the activity of caspase-11 and

the cleavage of GSDMD in renal tubular epithelial cells (Yang

et al., 2014; Zhang et al., 2018). The above evidence suggests that

inhibiting the activation of non-canonical inflammasome

pathway may be a therapeutic target for certain diseases, but

this is beyond the scope of this paper. Taking together, the

activation of pyroptosis mediated by caspase-4/5/11 has a

complex mechanism, and its role in DN still needs to be

further explored.

Caspase-3-mediated inflammasome
pathway

Traditionally, caspase-3 is the core molecular of apoptosis

and caspase-8 is also involved in apoptosis. However, recent

studies have shown that caspase-3 was activated during LPS-

induced pyroptosis (Hu et al., 2021). In some cases, gasdermin

E (DFNA5) can also be cleaved by caspase-3 and lead to a

transition from apoptosis to pyroptosis (Wang et al., 2017;

Zhang et al., 2021h). Although inflammasome is generally

considered to play a major role in the canonical

inflammasome pathway, AIM2 inflammasome has recently

been found to activate caspase-3 and promote

DFNA5 expression (Li et al., 2021i). Zeng et al. (2019) also

used NLRP3 specific inhibitors to inhibit the activation of the

NLRP3-mediated pyroptosis, finding that ATP induced

macrophage pyroptosis via the caspase-3/GSDME axis.

Meanwhile, activated caspase-3 can also inactivate pore-

forming domain (PFD) in GSDMD, inhibiting GSDMD-

mediated pyroptosis (Taabazuing et al., 2017). It is worth

noting that both GSDMD-NT and GSDME-NT can act on

mitochondria and make them generate a large amount of ROS,

inducing apoptosis and further stimulating the release of

inflammatory substances (Rogers et al., 2019). Besides,

caspase-1, which mediates the canonical inflammasome

pathway, can not only activate caspase-3/7, but also

activate Bid in GSDMD deficient cells and lead to apoptosis

by inducing the release of cytochrome C in mitochondrial

(Tsuchiya et al., 2019). When caspase-11 is overexpressed,

caspase-3 can also be activated to promote apoptosis (Miao

et al., 2018). Notably, transfection of podocytes with GSDMD

siRNA reversed HG-induced inflammation and apoptosis,

which may be related to the blocking of JNK signaling

pathway (Li et al., 2021a). Although apoptosis-related

proteins were also activated in caspase-3-dependent

pyroptosis signaling pathway, pyroptosis activation

occurred more rapidly (Tsuchiya, 2021). Interestingly, the

expression of autophagy-related proteins light chain (LC)

3 I/II and beclin 1 were also reduced with the inhibition of

NLRP3 in podocytes of DN (Hou et al., 2020b). Z-DEVD-

FMK, an inhibitor of caspase-3, has also been reported to

improve proteinuria and tubulointerstitial fibrosis in DN mice

and this nephroprotective effect may be related to the

inhibition of GSDME (Wen et al., 2020). Moreover, the

studies also showed that programmed cell death-ligand 1

(PD-L1) can activate caspase-8 and specifically cleave

GSDMC under the action of TNF-α, and then the pores

can form in the cell membrane and the apoptosis can

transform into pyroptosis (Hou et al., 2020a).

Consequently, there is a crosstalk between apoptosis and

pyroptosis and even autophagy. Although the mechanism is

not completely clear, it provides a new perspective for

understanding PCD. Figure 1 summarized the three

molecular mechanisms of pyroptosis.

NLRP3 inflammosome activation and
pyroptosis

NLRP3 is a member of the NLRs protein family and also

one of the core molecules in the NLRP3 inflammasome.

Different domains contained in NLRP3 play different

functions. When a leucine-rich repeat (LRR) domain

located at the C-terminus is recognized by the ligand, the

nucleotide-binding oligomerization domain (NOD) located at

the center of the molecule can play an oligomerization role,

resulting in conformational rearrangement of NLRP3 and

exposing the pyrin domain (PYD) or CARD located at the

N-terminus, which subsequently activates the biological

effects of the corresponding effector molecules (Inohara

et al., 2005). Many studies suggest that inhibiting the

expression of NLRP3 has a protective effect on cells (Song

et al., 2018a; Wang et al., 2020a). However, it has also been

shown that in the unilateral ureter obstruction (UUO) model,

Nlrp3−/− increased the damage of renal tubular epithelial

cells, and they also suggest that NLRP3 may have an

inflammasome-independent role (Pulskens et al., 2014).

The reasons for this discrepancy in findings are not fully

understood. However, some studies on inflammasome

activation did not select cell-specific NLRP3 knockout

mice, which may interfere with experimental results due to

the inability to distinguish the inflammasomes in the renal
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parenchyma or phagocytes. It has also been suggested that

NLRP3 exerts its function independently of the

inflammasome or performs its regulatory role in the form

of the NLRP3 inflammasome may be related to different cell

types (Komada and Muruve, 2019).

Conventional studies suggest that NLRP3 inflammasome

activation is an essential part of the canonical inflammasome

pathway. The activation of NLRP3 inflammasome can lead to

the cleavage of GSDMD and lytic cell death (Yu et al., 2021b).

However, through recent studies in macrophages, Evavold

et al. (2018) suggested that GSDMD activation following

activation of the NLRP3 inflammasome may determine

two distinct cell fates. One induces GSDMD-dependent

pyroptosis, while the other induces the indirect release of

IL-1 triggered by hyperactivation of cells in a viable state. In

other words, even if the NLRP3 inflammasome causes

GSDMD to be cleaved by activated caspase-1, pyroptosis

does not necessarily occur. Not only that, they also found

that the activation of the NLRP3 inflammasome in these two

different cell fates is sensitive to different treatments, such as

high extracellular potassium concentrations. Meanwhile,

several studies in recent years have shown that cytokines

can be released from living cells without pyroptosis occurring

in the process (Gaidt et al., 2016; Zanoni et al., 2016).

Interestingly, GSDMD may also regulate the

NLRP3 inflammasome through miR-223 (Kong et al.,

2022). Furthermore, in the absence of GSDMD, sustained

exposure to LPS can trigger pyroptosis and the release of

inflammatory cytokines via activation of the caspase-3/

GSDME axis. This means that inhibition of GSDMD alone

does not completely prevent cytokine secretion and

pyroptosis in response to certain inflammatory challenges

(Wang et al., 2021a). Consequently, although the advantages

and disadvantages of NLRP3 inflammasome blockers, the

inhibition of GSDMD-induced pyroptosis and the status of

clinical trials have been discussed, the protective effect on

cells by inhibiting the activation of the NLRP3 inflammasome

is not necessarily related to the inhibition of pyroptosis (Coll

et al., 2022). Therefore, when exploring the role of

NLRP3 inflammasome inhibitors, it is necessary to verify

whether the pyroptosis-associated proteins (such as

GSDMD) are regulated accordingly, so as to more

accurately understand whether the therapeutic effects of

these inhibitors are also related to the regulation of

pyroptosis. Despite the many advances made in recent

years, the focus on NLRP3 and pyroptosis still leaves gaps

in our understanding of the inflammasome. In conclusion,

although the activation of the NLRP3 inflammasome does not

necessarily lead to pyroptosis, it is still important to review

the regulatory pathway of the inflammasome and its potential

clinical application as a pre-signal for the activation of the

canonical inflammasome pathway of pyroptosis.

FIGURE 1
The three molecular mechanisms of pyroptosis. (1) In the canonical inflammasome pathway, when the recognition of PAMPs and DAMPs by
PRRs was activated, different inflammasomes were assembled with the participation of adaptor proteins (such as: ASC) and effector proteins (such
as: caspase family). Subsequently, pro-caspase-1 can be recruited by inflammasomes and activated into cleaved-caspase-1. Cleaved-caspase-1 can
activate IL-1β. Next, the activated IL-1β can release into the extracellular. GSDMD can be cleaved into GSDMD-N-terminal (GSDMD-NT) with
pore forming characteristics, which is the key process leading to pyroptosis. (2) In the non-canonical inflammasome pathway, caspase-4/5/11 can
directly respond to LPS and lead to the cleavage of GSDMD. GSDMB can promote caspase-4 activity by directly binding to the CARD domain of
caspase-4. (3) In the caspase-3-mediated inflammasome pathway, GSDME can also be cleaved by caspase-3 and lead to pyroptosis.
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NLRP3 inflammosome-dependent
pyroptosis regulatory pathways in
diabetic nephropathy

It is well known that chronic sterile inflammation in DN is

closely related to renal impairment. The inflammatory cascade

induced by NLRP3 inflammasome and IL-1β and IL-18 also has a
significant impact on the development of DN. Meanwhile,

activation of NLRP3 inflammasome is also the key process to

initiate pyroptosis. There are multiple recognized mechanisms or

pathways for the activation of NLRP3 inflammasome, such as the

massive production of mitochondrial ROS, the reduction of

intracellular potassium concentration, and the destabilization

of lysosomes (Jo et al., 2016; Paik et al., 2021). However, it

still remains to be demonstrated whether the protective effects of

these signaling pathways by regulating NLRP3 inflammasome

activation are related to pyroptosis. Here we describe several

possible signaling pathways, hopefully providing a more

complete overview.

NF-κB/NLRP3 inflammasome signalling
pathway

In general, NF-κB binds with inhibitor of NF-κB (IκB) to
anchor in cytoplasm in inactive form, dissociates upon

stimulation and exposes the active form of P50/

P65 heterodimer. It then enters the nucleus and

participates in various reactions (Porta et al., 2020). NF-κB
can be activated by a variety of factors, and it can regulate

inflammatory response, stress response, pyroptosis and

apoptosis (Yu et al., 2020; Yu et al., 2021a; Piao et al.,

2021). Recently, evidence from clinical and experimental

studies has shown that TLRs can induce sterile

tubulointerstitial inflammatory responses through the NF-

κB signaling pathway. The NLRP3 inflammasome can be

activated by NF-κB during this process, linking the

perception of metabolic stress in the DN kidney with the

activation of a pro-inflammatory cascade (Tang and Yiu,

2020). In addition, it has also been shown that lncRNA-

Gm4419 can directly interact with p50, which can interact

with the NLRP3 inflammasome and lead to increased

expression of pro-inflammatory cytokines in mesangial cells

(MCs) under HG stimulation (Yi et al., 2017). These evidences

suggest the existence of the NF-κB/NLRP3 axis in the kidney

and its regulatory role in the inflammatory response to DN.

In addition to promoting inflammation, the NF-κB/
NLRP3 axis also plays a role in regulating pyroptosis. For

example, in renal ischemia-reperfusion injury (IRI), Tisp40-

dependent phosphorylation promoted the activation of p65 in

tubular epithelial cells (TEC) and triggered GSDMD-mediated

pyroptosis (Xiao et al., 2020). In DN, this role in regulating

pyroptosis has also been confirmed. For instance, the increased

activity of the mammalian target of rapamycin (mTOR) can also

promote the activation of NF-κB p65 in podocytes and trigger

NLRP3-dependent pyroptosis (Wang et al., 2020d). In vitro and

in vivo experiments demonstrated that the activation of the

TLR4/NF-κB signaling pathway also promoted GSDMD

expression in tubule cells, although they did not examine

whether the NLRP3 inflammasome was activated in this

experiment (Wang et al., 2019b). However, in another study,

knockdown of lncRNA XIST using lentivirus was found to

inhibit NLRP3/GSDMD axis-mediated pyroptosis in HK-2

cells through the microRNA-15b-5p (miR-15b-5p)/TLR4 axis

(Xu et al., 2022). Furthermore, Xu et al. (2021b) also constructed

a DN mouse model and overexpressed the Forkhead box M1

(FOXM1) which can drive renal tubular regeneration in

podocytes. They found that can FOXM1 bind to the Sirtuin 4

(SIRT4) promoter and inhibit the phosphorylation of NF-κB,
and then the expression of nephrin (a podocyte marker) was

increased while the expression of the NLRP3 inflammasome and

cleaved-caspase-1 were decreased. Recently, AMPK was used to

inhibit the activation of NF-κB via silent mating type information

regulation-2 homolog-1 (SIRT1), and the expression of NLRP3,

caspase-1, IL-1β, and GSDMD-N were observed to decrease in

podocytes of DN mice (Li et al., 2020a). The use of catalpol (Cat)

can increase the expression of adenosine 5′-monophosphate

(AMP)-activated protein kinase (AMPK) and SIRT1,

effectively inhibit pyroptosis in podocytes, and improve the

abnormal structure and function in kidney of DN (Chen

et al., 2020b). These studies further established a relationship

between NLRP3 inflammasome activation and pyroptosis in DN,

and also provided a solid theoretical basis for how to regulate

pyroptosis and play a protective role by inhibiting the NF-κB/
NLRP3 axis.

Recently, Xin et al. (2018) found that X-linked inhibitor of

apoptosis protein (XIAP) can also inhibit the activation of NF-

κB and alleviate HG-induced podocyte injury and renal

fibrosis. Meanwhile, dual specificity phosphatase-4 (DUSP-

4) inhibited the sustained activation of p38 and c-Jun

N-terminal kinase (JNK) mitogen-activated protein kinase

(MAPK) and protected the structure and function of

glomeruli and podocytes in DN (Denhez et al., 2019).

Inhibition of ROS/MAPK/NF-κB signaling pathway can

also inhibit renal dysfunction induced by HG (Chen et al.,

2018c). However, inhibition of NF-κB by XIAP or MAPK has

not been verified to be related to NLRP3-mediated pyroptosis

in the kidney. Interestingly, metformin not only can activate

AMPK and inhibit the mTOR pathway to reduce pyroptosis in

diabetic cardiomyopathy, but also correct glucose metabolic

reprogramming by inhibiting the TLR4/NF-κB signaling

pathway and inhibit NLRP3-induced pyroptosis. They also

found that downregulation of sodium-glucose cotransporter 1

(SGLT1) also inhibited NF-κB activation and pyroptosis

induced by HG (Yang et al., 2019a; Chai et al., 2021; Zhang

et al., 2021g). Although it has not been demonstrated that
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these mechanisms are also present in DN, it is still of interest.

In conclusion, these evidences all indicated that the activation

of NF-κB/NLRP3 signaling pathway is one of the key factors

regulating pyroptosis, and inhibiting the activation of this

signaling pathway may inhibit the occurrence of pyroptosis.

Figure 2 summarized the functions of different molecules and

pathways in NF-κB/NLRP3-mediated pyroptosis.

TXNIP/NLRP3 inflammasome signalling
pathway

Generally speaking, thioredoxin-interacting proteins

(TXNIP) can inhibit the antioxidant activity of thioredoxin

protein (Trx) when interacting with it (Yoshihara, 2020). In

order to prove whether TXNIP has an effect on DN, Qi et al.

analyzed the transcription profile of proximal renal tubular

epithelial cells under HG condition by using cDNA

microarray and found significant changes in TXNIP

expression compared with the control group (Qi et al.,

2007). Continuous overexpression of TXNIP can lead to

the increase of ROS expression and progressive renal

interstitial fibrosis (Tan et al., 2015). Knockdown of TXNIP

can inhibit phenotypic changes in podocytes and the

production of ROS induced by HG by reducing the activity

of mTOR signaling pathway (Song et al., 2019). Furthermore,

downregulation of TXNIP antagonized EMT induced by HG

by inhibiting MAPK activation and transforming growth

factor β1 (TGF-β1) expression (Wei et al., 2013). These

studies all suggested that TXNIP can be a potential target

for the treatment of DN. Considering the phenomenon that

has been stated before, that is, increased activity of mTOR

signaling pathway can promote the activation of NF-κB and

then trigger NLRP3-mediated pyroptosis, and inhibiting the

activation of MAPK can also protect renal function by

inhibiting the activation of NF-κB, it is not difficult to

understand that regulating TXNIP may have a regulatory

effect on pyroptosis. Moreover, several studies have shown

that TXNIP/NLRP3 axis-dependent pyroptosis can be

detected in neuron cells, liver cells, intestinal cells and

FIGURE 2
NF-κB/NLRP3 signaling pathway is involved in the regulation of pyroptosis. (1) NF-κB binds with IκB in inactive form, dissociates the active form
of P50/P65 heterodimer upon stimulation. (2) lncRNA XIST/miR-15b-5p/TLR4/NF-κB signaling pathway, AMPK/SIRT1/NF-κB signaling pathway,
AMPK/mTOR/NF-κB signaling pathway, DSUP-4/MAPK/NF-κB signaling pathway, ROS/MAPK signaling pathway and FOXM1/SIRT4/NF-κB signaling
pathway, they all can regulate the activation of NF-κB. (3) Tisp40 and lncRNA-Gm4419 can promote the activation of NF-κB p65/p50, and XIAP
can inhibit the activation of NF-κB. (4) P50 can act with NLRP3 inflammasome and lead to increased expression of pro-inflammatory cytokines and
GSDMD-N. (5) NF-κB can promote the transcription of inflammasome genes. (6) Knockdown of SGLT1 partially reduced pyroptosis, ROS generation
and NF-κB activation.
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other cells (Heo et al., 2019; Ding et al., 2020; Jia et al., 2020). It

can be seen that TXNIP/NLRP3 signaling pathway also has a

regulatory effect on pyroptosis.

It has been reported that TXNIP is an NLRP3 binding

protein, and its interaction with NLRP3 can promote the

activation of NLRP3 inflammasome (Chen et al., 2018b).

NLRP3 inflammasome has been found to be activated

through mROS/TXNIP/NLRP3 signaling pathway in

ischemic acute kidney injury (AKI) (Wen et al., 2018). In

the meantime, both in vitro and in vivo experiments have

demonstrated that TXNIP acts as a transcription target of

forkhead box O1 (FOXO1). After FOXO1 was knocked out,

TXNIP expression and NLRP3 inflammasome activation under

HG stimulation were inhibited (Ji et al., 2019; Nyandwi et al.,

2020). Besides, inhibition of EZH2/EGR1/TXNIP/

NLRP3 signaling pathway and Nrf2/TXNIP/NLRP3 signaling

pathway can slow down the progression of DN (Dai et al., 2021;

Abd El-Khalik et al., 2022). All of these studies revealed a

regulatory role for the TXNIP/NLRP3 axis in DN, but whether

NLRP3 inflammasome-dependent pyroptosis is also affected in

these processes has not been demonstrated. Of course, in

addition to the above-mentioned activation mechanisms of

TXNIP/NLRP3 axis, studies have confirmed the other

activation mechanisms of TXNIP/NLRP3 axis and their

effects on pyroptosis in DN. Wang and Zhao (2021) found

that the ANRIL/MIR-497/TXNIP axis was activated in the

kidney tissue of diabetic patients, and the high expression of

lncRNA-ANRIL can promote the activation of the TXNIP/

NLRP3/caspase-1 axis and cause pyroptosis in human kidney-2

(HK-2) cells. ER stress, previously considered as one of the

primary culprits leading to the development of DN, has recently

been found that one of its pathogenic mechanisms seems to be

related to pyroptosis. From in vitro experiments to in vivo, it has

demonstrated that the excessive activation of ER stress sensor

inositol-requiring enzyme 1 alpha (IRE1α) can promote the

NLRP3-mediated pyroptosis and the expression of TXNIP in

renal tubular cells (Ke et al., 2020). Taken together, these

evidences suggested that the TXNIP/NLRP3 axis has a role

in regulating pyroptosis and is a promising target for the

treatment of DN. Figure 3 summarized present studies

exploring molecular mechanisms in TXNIP/NLRP3-mediated

pyroptosis.

FIGURE 3
TXNIP/NLRP3 signaling pathway is involved in the regulation of pyroptosis. (1) TXNIP can inhibit the antioxidant activity of Trx. (2) The deficiency
of TXNIP can inhibit the MAPK/NF-κB signaling pathway and mTOR/NF-κB signaling pathway. (3) IRE1α/miR-200a/TXNIP signaling pathway, ANRIL/
miR-497/TXNIP signaling pathway, mROS/TXNIP signaling pathway and EZH2/EGR1/TXNIP/NLRP3 signaling pathway, they all can regulate the
activation of TXNIP. (4) Nrf2 can inhibit the expression of TXNIP, and FOXO1 can promote the expression of TXNIP. (5) The interaction of TXNIP
with NLRP3 can promote the activation of NLRP3 inflammasome and lead to increased expression of cleaved-caspase-1 and GSDMD-N.
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Nrf2/HO-1/NLRP3 inflammasome
signalling pathway

Nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate

the intracellular redox balance and has anti-inflammatory effects.

Under certain stimulation, Nrf2 will be separated from kelch-like

ECH-associated protein 1 (Keap1) and translocated to the nucleus to

activate its downstream target genes such as heme oxygenase-1

(HO-1) and superoxide dismutase (SOD) (Bellezza et al., 2018).

Activation of Nrf2/HO-1 signaling pathway has been reported to

inhibit iron death and apoptosis under HG stimulation (Ma et al.,

2020; Antar et al., 2022). Meanwhile, a number of studies in DN

mouse model have shown that oxidative stress and inflammatory

response in kidney can be improved by activating Nrf2/HO-

1 signaling pathway (Alaofi, 2020; Lu et al., 2020). These results

suggested that the Nrf2/HO-1 signaling pathway may be a potential

target for the treatment of DN.

Recent studies have shown that the Nrf2/HO-1 signaling

pathway can also regulate the expression of NLRP3. Chen et al.

(2019c) and Huang et al. (2020a) demonstrated the inhibitory effect

of activation of Nrf2/HO-1 signaling pathway on

NLRP3 inflammatory activation in different cells. Additionally,

the increased expression of Nrf2 and HO-1 can also reduce the

expression of ROS, caspase-1, and IL-1β (Bian et al., 2020a).

Subsequently, one study in alveolar macrophage showed that

Nrf2/HO-1 signaling also appears to be involved in NLRP3-

mediated pyroptosis (Fei et al., 2020). It has been found that in

AKI, inhibition of protein arginine methylation transferase 5

(PRMT5) can significantly reduce the expression of ROS,

NLRP3 and GSDMD-N of renal tubular cells by activating the

Nrf2/HO-1 signaling pathway (Diao et al., 2019). Besides, inhibition

of miR-92a-3p can also alleviate NLRP3-mediated pyroptosis in

renal ischemia-reperfusion injury (IRI) via its potential target Nrf1

(Wang et al., 2020b). The above studies all indicated that the Nrf2/

HO-1 axis was closely related to the production of ROS, and the

production of mitochondrial ROS was considered to be a regulator

of the NLRP3 inflammasome. However, it has been reported that

mitochondrial electron transport chain (ETC) maintains the

activation of NLRP3 inflammasome by relying on polymerase

chain reaction to generate ATP, but no evidence that

mitochondrial ROS is essential for this process has been found

(Billingham et al., 2022). Generally speaking, pyroptosismediated by

Nrf2/HO-1/NLRP3 pathway can occur in a variety of cells, which

can be considered as a potential therapeutic target.

Recently, the studies on Nrf2/HO-1/NLRP3 signaling

pathway and pyroptosis in DN have also made many

advances. Ab-38b, which has the property of activating Nrf2,

inhibited the expression of NLRP3 and IL-1β by HO-1 in

mesangial cells of diabetic mouse. However, this study did not

examine whether GSDMD expression was also affected (Du et al.,

2020). Other evidence suggested that lncRNA-MALAT1 can act

as a molecular sponge, leading to downregulation of miR-30c and

promoting the NLRP3-dependent pyroptosis in HK2 cells

induced by HG (Liu et al., 2020). Furthermore, MALAT1 can

increase the expression of NLRP3 in renal tubular epithelial cells

and induce pyroptosis by regulating miR-23c and ELAV like

RNA binding protein 1 (ELAVL1) (Li et al., 2017). Other studies

in diabetes models found that, miR-23a-3p is also a member of

the miR-23 family and can negatively regulate its downstream

target gene NEK7 and inhibit NEK7-dependent

NLRP3 activation (Zhou et al., 2020; Chang et al., 2021).

However, these mechanisms have not been tested in kidney

cells. Additionally, miR-200c also has the ability to bind

MALAT1 and can affect the expression of Nrf2 and HO-1.

Atorvastatin can reduce the overexpression of mir-200c

induced by HG in podocytes and inhibit oxidative stress and

the expression of NLRP3 and GSDMD-N (Zuo et al., 2021). The

above evidences all indicated that the Nrf2/HO-1/

NLRP3 signaling pathway has the effect of regulating

pyroptosis, but more research is needed to explore the

possibility of its use as a therapeutic target in DN. Figure 4

summarized the functions of different molecules and pathways in

pyroptosis mediated by Nrf2/HO-1/NLRP3 signaling pathway.

HIF-1α/NLRP3 inflammasome signalling
pathway

Hypoxia inducible factor 1-alpha (HIF-1α) is an active

component of HIF-1, which is regulated by hypoxia and

regulates the activity of HIF-1 (Yang et al., 2021a). HIF-1α
regulates numerous downstream target genes such as vascular

endothelial growth factor (VEGF) and glucose transporter-1

(GLUT-1) (Fan et al., 2019; Hepp et al., 2021). Recently, it was

found that VEGF, as one of the downstream target genes of HIF-1α,
has the effect of inhibiting pyroptosis in hepatocytes (Zhao et al.,

2018a). Meanwhile, overexpression of HIF-2α in macrophages

improves insulin resistance and reduces NLRP3 inflammasome

activation (Li et al., 2021h). Furthermore, various evidences have

shown that accumulation of HIF-1α can significantly increase the

expression of NLRP3, GSDMD-N, and cleaved caspase-1 in

microglia and cardiomyocytes (Jiang et al., 2020; Yuan et al.,

2021). Besides, the inhibition of NF-κB/HIF-1α signaling

pathway can alleviate hypoxia-induced pyroptosis in

C2C12 myoblasts (Yu et al., 2019). These evidences suggested

that HIF-1α has a regulatory effect on NLRP3 inflammasome-

mediated pyroptosis.

It is known that HIF-1α is one of the downstream transcription

factors of mTOR, and mTOR is one of the downstream targets of

PI3K/Akt axis (Appelberg et al., 2020). In the DNmousemodel, Leu

is an activator of mTOR that can lead to an increase of

NLRP3 inflammasome and induce podocytes pyroptosis (Wang

et al., 2020d). In addition, caspase-8 can promote the activation of

NLRP3 inflammasome by regulating HIF-1α through NF-κB
nuclear translocation. Next, mature IL-1β in turn can promote

the activation of caspase-8/HIF-1α/NLRP3/NLRP12/NLRC4,
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resulting in pyroptosis (Huang et al., 2019; Chen et al., 2020a). In

conclusion, although it has not been directly demonstrated whether

HIF-1α/NLRP3 is related to pyroptosis, we can still speculate that

HIF-1αmay be a potential target for NLRP3-mediated pyroptosis in

DN. Notably, ASC is one of the key components of the activation of

NLRP3 inflammasome, and glycogen synthase kinase-3beta (GSK-

3β) can interact with ASC and induce the activation of

NLRP3 inflammasome in cardiac fibroblast (Wang et al., 2020c).

Simultaneously, inhibition of miR-129 can alter the pyroptosis rate

of neuronal cells through IGF-1/GSK3β signaling pathway (Wang

et al., 2021b). Meanwhile, Wang et al. also found that inhibition of

GSK-3β reduced NLRP3 expression and inhibited pyroptosis in

cardiomyocytes (Wang et al., 2022b). Interestingly, several studies

have shown that GSK-3β can regulate the expression of HIF-1α
(Flügel et al., 2007; Mennerich et al., 2014). However, there is no

direct evidence of the relationship between HIF-1α, GSK-3β and

pyroptosis of renal cells in DN. Consequently, the mechanism

between HIF-1α, GSK-3β and NLRP3-dependent pyroptosis in

DN needs to be further explored. Figure 5 summarized present

studies exploring molecular mechanisms in HIF-1α/NLRP3-
mediated pyroptosis.

PTEN/PI3K/Akt inflammasome signalling
pathway

Phosphatase and tensin homologue (PTEN) is a newly

discovered tumor suppressor gene, whose protein products have

the functions of dephosphorylating and can regulate apoptosis, cell

metastasis and cell growth (Khokhar et al., 2020). A recent study

found that podocyte dysfunction and proteinuria seem to be related

to the reduced expression of PTEN in mouse models of DN (Lin

et al., 2015). Another study showed that epithelial-mesenchymal

transformation (EMT) of renal tubular epithelial cells induced by

HG was also aggravated by the decreased expression of PTEN, and

the mechanism may be related to peroxisome proliferator-activated

receptor gamma (PPARγ) (Yan et al., 2019). Meanwhile, in a

streptozotocin (STZ)-induced diabetic mouse model, upregulation

of PTEN can reduce the phosphorylation levels of phosphoinositide

3-kinases (PI3K) and protein kinase B (Akt/PKB), thereby

alleviating inflammation and renal interstitial fibrosis in DN

(Song et al., 2020). These studies demonstrated the protective

effect of PTEN on DN kidney cells. Interestingly,

methyltransferase-like protein 3 (METTL3) can modify PTEN,

FIGURE 4
Nrf2/HO-1/NLRP3 signaling pathway is involved in the regulation of pyroptosis. (1) Nrf2 can be separated from Keap1 and translocated to the
nucleus to activate its downstream target genes such as HO-1 and HIF-1α. (2) Ab-38b can activate Nrf2 and inhibit NLRP3 expression. (3) lncRNA-
MALAT1/miR-200c/Nrf2 signaling pathway, MALAT1/miR-23c/ELAVL1/NLRP3 signaling pathway, MALAT1/miR-30c/NLRP3 signaling pathway and
miR-23a-3p/NEK7/NLRP3 signaling pathway, they all can regulate the activation of NLRP3. (4) MiR-92a-3p can inhibit the expression of Nrf2,
and PRMT5 can promote the expression of Nrf2. (5) Nrf2 can promote the expression of ROS and ROS can lead to the activation of
NLRP3 inflammasome and increase the expression of cleaved-caspase-1 and GSDMD-N.
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and the increased expression of METTL3 has a specific inhibitory

effect on pyroptosis of podocytes under HG condition (Liu et al.,

2021a). Meanwhile, experiments in the human retinal pigment

epithelium (RPE) cell line and cardiomyocyte also demonstrated

that METTL3 overexpression can inhibit PTEN and increase the

phosphorylation level of Akt (Zha et al., 2020). Next, activation of

SIRT1 can also inhibit ROS generation and NLRP3 inflammasome

activation through the activation of Akt signaling pathway (Han

et al., 2020). Besides, other studies have also shown that NLRP3-

mediated pyroptosis can also be affected by PI3K/Akt pathway in

liver cells (Li et al., 2018b). The PTEN/PI3K/Akt signaling pathway

will be affected when the level of ROS in vivo incresed, resulting in

increased expression of NLRP3, caspase-1 and GSDMD-N (Zhang

et al., 2021c). It can be seen that the PTEN/PI3K/Akt signaling

pathway also has a role in regulating NLRP3-mediated pyroptosis.

To further investigate the relationship between PTEN and

pyroptosis, Zhao et al. (2020) induced macrophages with LPS and

found that the activation of NLRP3 was inhibited with Akt by

increasing the phosphorylation of NLRP3 at S5 and decreasing the

ubiquitination at lysine 496. Furthermore, as a component of

NLRP3 inflammasome, DEAD-box helicase 3 X-linked (DDX3X)

can be phosphorylated by Akt and affect the function of

NLRP3 inflammasome (Guo et al., 2021). These evidences

suggested that Akt has a direct role in regulating NLRP3.

Moreover, other studies suggested that the activation of mTOR,

which is the downstream target of PI3K/Akt, can also promote

NLRP3-mediated pyroptosis, and PTEN can directly interact with

NLRP3 to activate NLRP3 inflammasome (Huang et al., 2020c;

Wang et al., 2020d). However, none of the above-mentioned

mechanisms have been confirmed in the DN kidney model,

and further verification is required. Figure 6 shows the

potential mechanism of pyroptosis mediated by PTEN/PI3K/

Akt signaling pathway.

Pyroptosis and renal cells in diabetic
nephropathy

The intrinsic cells of kidney include mesangial cells, capillary

endothelial cells, podocytes, renal tubular epithelial cells and renal

interstitial fibroblasts. Among them, the glomerular capillary

endothelial cells, basement membrane and podocytes constitute

FIGURE 5
HIF-1α/NLRP3 signaling pathway is involved in the regulation of pyroptosis. (1) HIF-1α can be degraded in normoxia. (2) In hypoxia, NF-κB and
PI3K/Akt/mTOR/NF-κB signaling pathway can be activated, and caspase-8 can also promote the nuclear translocation of NF-κB. (3) NF-κB directly
bound to theHIF-1α promoter and enhanced its transcription. HIF-1α couldmodulate the activation of the NLRP3 inflammasome, and the increase in
VEGF-A can also result in NLRP3 inflammasome activation. (4) HIF-2α binds directly to the Cpt1a promoter and inhibits the expression of it. HIF-
2α can also regulate the H3K27me3 methylation during NLRP3 inflammasome activation. (5) Both Cpt1a and miR-129/IGF-1/PI3K/Akt/GSK3β
signaling pathway can regulate the expression of ASC which is involved in the activation of NLRP3 inflammasome.
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the glomerular filtration barrier. The progression of DN is associated

with glomerular basement membrane (GBM) thickening, podocytes

injury and interstitial fibrosis caused by various factors. In recent

years, it has been found that GSDMD and GSDME related to

pyroptosis are widely distributed in tissues such as placenta, heart,

brain, intestine, and kidney (Ruan et al., 2020). Inhibition of

pyroptosis seems to be a new way to delay the development of

DN. Here, we reviewed the situation of pyroptosis in podocytes,

renal tubular epithelial cells, and kidney endothelial cells.

Pyroptosis of podocytes in diabetic
nephropathy

Because of the notoriously difficult to regenerate, damage to

podocytes will lead to damage to the glomerular filtration barrier

and the occurrence of proteinuria. Recent studies have shown

that the inhibition of pyroptosis as well as the inhibition of

apoptosis or autophagy can protect the podocytes structure and

function from damage. For instance, combined treatment with

mycophenolate mofetil, tacrolimus, and steroids significantly

inhibited the activation of NLRP3 and caspase-1 and reduced

GSDMD-N levels in lupus nephritis models (Cao et al., 2021).

The use of superoxide dismutase-mimic agent and glyburide can

also inhibit pyroptosis and NLRP3 inflammatory activation in

HIV by inhibiting production of ROS (Haque et al., 2016). Zhang

et al. (2021a) also stimulated mouse podocytes with the soluble

complement complex C5b-9 and found that a long-chain

noncoding RNA (lncRNA) KCNQ1OT1 can interact with

miR-486a-3p and induce pyroptosis in podocytes by affecting

the transcriptional activity of NLRP3. These results suggested

that the inhibition of NLRP3 inflammasome may have a

regulatory effect on pyroptosis in podocytes.

In addition to hyperglycemia and other factors involved in

the progression of DN, overactivation of pyroptosis in podocytes

is also one of the important factors leading to cell loss and

dysfunction. Qian et al. demonstrated that excessive activation of

pyroptosis mediated by caspase-11/4 and GSDMD in HFD/STZ-

induced DN mice can lead to podocyte injury (Cheng et al.,

2021). Furthermore, the level of miR-21-5p in exosomes derived

from macrophages was increased in response to HG stimulation,

and inhibition of miR-21-5p can reduce the production of ROS

and the expression of NLRP3, caspase-1 and IL-1β in podocytes

(Ding et al., 2021b). In addition, the purinergic P2X7 receptor

FIGURE 6
PTEN/PI3K/Akt signaling pathway is involved in the regulation of pyroptosis. (1) PPAR can regulate the transcription of PTEN, and METTL3 can
also modify PTEN. (2) Upregulation of PTEN can reduce the phosphorylation of PI3K and Akt. SIRT1 can interact with Akt directly, consequently
promoting the activity of Akt and inhibiting the production of ROS via Akt/PDH axis. (3) DDX3X can be phosphorylated by Akt, and Akt can increase the
phosphorylation of NLRP3. (4) PI3K/Akt/mTOR/NF-κB signaling pathway can also regulate pyroptosis mediated by NLRP3 inflammasome. (5)
PTEN directly interacts with NLRP3 and enables NLRP3 inflammasome assembly and activation.
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(P2X7R) expressed in podocytes can lead to the opening of

ligand-gated ion channels and potassium outflow in response

to ATP stimulation. Next, assembly and activation of

NLRP3 inflammasome can be initiated due to reduced

intracellular potassium ion level (Wang et al., 2018). However,

in the latter two experiments, although changes in

NLRP3 expression levels were confirmed, changes in GSDMD

were not detected. All in all, it can be seen that the over-activation

of pyroptosis has a significant impact on podocyte injury in DN.

However, more studies are needed to confirm the activation

mechanism of pyroptosis by different signaling pathways as

described before, and we also need to find more effective

therapeutic targets.

Pyroptosis of renal tubular epithelial cells
in diabetic nephropathy

From developmental studies, we have learned that the effect

of renal tubular epithelial cells injury on DN seems to be no less

than that of glomerular cells injury. DN is a syndrome

characterized by renal ischemia and hypoxia, and renal

tubular epithelial cells are very sensitive to hypoxia. Moreover,

the exacerbation of renal tubular interstitial fibrosis will

eventually lead to irreversible renal damage. Consequently, the

study on the mechanism of renal tubular epithelial cells injury

has been paid more and more attention in recent years. Some

studies have found that when renal tubular epithelial cells are

exposed to excessive molybdenum or cadmium, they can not

only induce autophagy, but also activate the ROS/NLRP3/

caspase-1 signaling pathway and lead to pyroptosis (Wei

et al., 2020; Zhang et al., 2021b). Moretti J et al. found that

caspase-11 can promote GSDMD cleavage and membrane

translocation in renal tubular cells in AKI, and scanning

electron microscope (SEM) results further confirmed the

formation of small protrusion bodies (indicating pore

formation in the membrane) (Miao et al., 2019). Previous

studies have also shown that the activation of TNF-α/caspase-
3/GSDME axis in ureteral can lead to pyroptosis and cell damage

(Li et al., 2021j). When GSDMEwas inhibited, pyroptosis and the

transcription of pro-inflammatory cytokines induced by AKI

were alleviated (Xia et al., 2021). These evidences highlight the

possibility of GSDMD or GSDME-mediated pyroptosis in renal

tubular epithelial cells.

To investigate the mechanism of the NLRP3 inflammasome

in DN tubular cells, Ding et al. found decreased miR-10a/b

expression and increased NLRP3 inflammasome activation in

db/db and STZ-treated mice. The reason may be related to the

fact that miR-10a/b can target the 3′ untranslated region of

NLRP3 mRNA and inhibit the assembly of

NLRP3 inflammasome (Ding et al., 2021a). Furthermore,

other studies have demonstrated NLRP3 inflammasome

activation and pyroptosis in DN tubular cells. Wang et al.

(2022d) found that miR-93-5p can also bind to NLRP3 and

regulate pyroptosis of renal tubular epithelial cells in DN. At the

same time, under the regulation of Wilms tumor 1-associating

protein (WTAP), NLRP3 was methylated and pyroptosis was

induced in HK-2 cells (Lan et al., 2022). Han et al. (2022) also

found that overexpression of transcription factor EB (TFEB) can

reduce the level of ROS and inhibit pyroptosis. Additionally, it

was found that the cleavage of GSDME at 267–270 can be

inhibited by inhibiting the activity of caspase-3 in STZ-

induced diabetic mice, and tubulointerstitial fibrosis was

improved (Wen et al., 2020). This result again demonstrated

the role of the caspase-3/GSDME axis on tubular cell injury in

DN. What’s more, some evidence emphasizes that lncRNA

GAS5 and circACTR2, which function as molecular sponges,

can affect the expression of NLRP3, caspase-1, GSDMD-N and

IL-1β in renal tubular epithelial cells under HG conditions (Xie

et al., 2019; El-Lateef et al., 2022). Vascular cell adhesion protein

1(VCAM1) has also been found to be positively correlated with

pyroptosis and immune cell infiltration (Jia et al., 2021). All these

evidences indicated that inhibition of pyroptosis has a protective

effect on DN tubular cells. In addition, other studies have

demonstrated that under HG conditions, the activation of

NLRP3 inflammasome can be mediated by CD36 under and

inhibited with OPTN by enhancing mitochondrial phagocytosis

(Chen et al., 2019a; Hou et al., 2021). However, they did not

examine whether the expression of GSDMD changed in the

process. In short, pyroptosis in renal tubular epithelial cells of

DN is regulated by different mechanisms, and inhibition of it has

the potential to be a therapeutic target for slowing the

progression of DN.

MicroRNAs (miRNAs) are a class of noncoding RNAs with

potential roles in regulating the pathogenesis of various diseases.

For instance, increased expression of miR-34a has been found in

renal tubular epithelial cells from patients with renal fibrosis and

mice with UUO (Liu et al., 2019c). The miR-21 in exosomes from

renal tubular epithelial cells may accelerate the development of

renal fibrosis through the PTEN/Akt axis (Zhao et al., 2021).

Many studies have also reported the potential role of miRNAs in

DN (Dewanjee and Bhattacharjee, 2018). For instance, miR-483-

5p expression was reduced in HG-stimulated renal tubular

epithelial cells, which attenuated its restriction on

MAPK1 and TIMP2 mRNAs, ultimately promoting renal

interstitial fibrosis (Liu et al., 2021b). In the STZ-induced

diabetic mice, renal fibrosis was reduced by modulating the

miR-21/Smad7 signaling pathway (Liu et al., 2019a).

Furthermore, inhibition of miR-122-5p, miR-133b, and miR-

199b can attenuate EMT of renal tubular epithelial cells in

diabetic mice (Sun et al., 2018; Zang et al., 2022).

Interestingly, miRNAs were also found to have regulatory

roles of pyroptosis in tubular epithelial cells. For example,

regulation of ANRIL/miR-497/TXNIP and miR-667-5p/

NLRC4 axis can both promote the progression of pyroptosis

in DN (Wang and Zhao, 2021; Li et al., 2022c). Collectively,
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different miRNAs may be potential strategies for the treatment of

EMT and pyroptosis of renal tubular epithelial cells in DN.

Pyroptosis of glomerular endothelial cells
in diabetic nephropathy

Glomerular endothelial cells (GECs) are more susceptible to

damage by circulating substances in the blood as the first barrier

of the glomerular filtrationmembrane. Meanwhile, GECs are rich

in mitochondria and require a lot of energy. Impaired GECs can

affect hemodynamic and are closely related to the production of

proteinuria. Moreover, renal tubular epithelial cells can release

cytokines through autocrine or paracrine mechanisms and

induce inflammatory responses to impair glomerular structure

and function. Subsequently, damaged GECs can reduce blood

supply to the renal tubules, leading to increased damage of renal

tubules (Chen et al., 2020c). It can be seen that the effect of GECs

damage on DN is also very important.

There is a close relationship between endothelial dysfunction

and various diseases in humans. For example, in hyperuricemia,

pyroptosis in human umbilical vein endothelial cells (HUVEC)

can be promoted by regulating NLRP3 expression (Chi et al.,

2021). The activation of the ROS/NLRP3/caspase-1 signaling

pathway induced by oxidative stress can also lead to endothelial

dysfunction and pyroptosis in chronic kidney disease (CKD)

(Tang et al., 2019). Several studies have demonstrated that

hyperglycemia can also adversely affect structure and function

of GECs. For instance, in the DN mouse model, the

overexpression of METTL14 induced by HG can promote

apoptosis and inflammation in GECs (Li et al., 2021d).

Moreover, loss of autophagy in endothelial cells altered the

phenotype of GECs and led to sparse capillaries in the

glomeruli of diabetic animals (Lenoir et al., 2015). It is worth

noting that some recent studies have shown that the pyroptosis

also exists in GECs. For instance, Han et al. (2021) regulated

GSDMD expression by inhibiting interferon regulatory factor 2

(Irf2), which improved endothelial pyroptosis in DN. The use of

NaB can also ameliorate HG-induced GECs damage by

modulating the canonical inflammasome pathway via the NF-

κB/IκB-α signaling pathway (Gu et al., 2019). However, there are

still few studies on the role of NLRP3 inflammasome-mediated

pyroptosis in GECs, and further research is needed.

Epithelial-to-mesenchymal transition
and endothelial-to-mesenchymal
transition and pyroptosis in diabetic
nephropathy

DN is histologically characterized by the excessive deposition

of extracellular matrix (ECM) in glomerular mesangium, GBM,

and tubulointerstitium (Steffes et al., 1989; Mason and Wahab,

2003). It has been suggested that activated fibroblasts/

myofibroblasts are the main cells for the accumulation of

ECM and that both epithelial-to-mesenchymal transition

(EMT) and endothelial-to-mesenchymal transition (EndMT)

can lead to the increase of fibroblasts (Kalluri and Neilson,

2003; Potenta et al., 2008). Numerous studies have shown that

EMT in renal tubular epithelial cells is a key process in

tubulointerstitial fibrosis (TIF) and also one of the key reasons

for the progression of renal fibrosis in DN (LeBleu et al., 2013;

Lovisa et al., 2015). Rather than being directly transformed into

myofibroblasts, renal epithelial cells secrete cytokines and

chemokines to promote the development of fibrosis (Carew

et al., 2012). When EMT occurs, cell adhesion molecules,

including E-cadherin and the zonula occludens (ZO-1)

protein-1, are lost and replaced by the mesenchymal marker

alpha-smooth muscle actin (α-SMA) and the intermediate

filament proteins (Sun et al., 2020). EndMT refers to the

transition from endothelial cells (ECs) to mesenchymal cells

and can be considered as a special type of EMT that occurs in

ECs. When EndMT occurs, the endothelial phenotypes are lost

and mesenchymal-like characteristics are acquired in endothelial

cells (Liang et al., 2016). In DN, EMT can occur in renal tubular

epithelial cells and podocytes, while EndMT can occur in

glomerular endothelial cells (Loeffler and Wolf, 2015; Tu

et al., 2019; Shi et al., 2020). Inhibition of EMT or EndMT in

renal cells can alleviate renal fibrosis in DN (Liu et al., 2016a;

Shang et al., 2017).

Connective tissue growth factor (CTGF/CCN2), TGF-β1, IL-
6, and sonic hedgehog (SHH) are all key regulators of renal

fibrosis (Lovisa et al., 2015). Although there are many pro-

fibrotic factors can affect renal function, the TGF-β/Smad

signaling pathway is considered to be one of the major

pathways that orchestrate renal fibrosis (Zheng et al., 2021).

Numerous studies have shown that TGF-β can induce EMT and

EndMT in renal cells of DN (Wang et al., 2014; Sun et al., 2018;

Guan et al., 2022). Sustained HG levels induce the expression of

TGF-β, which subsequently activates Smad 2/3 through

phosphorylation. Inhibiting p53-mediated nuclear

translocation of Smad2/3 may be an effective strategy to

prevent diabetes-induced renal fibrosis (Higgins et al., 2018).

Interestingly, Zhang et al. (2019c) found that silencing of

GSDMD significantly reduced TGF-β expression in fibroblast-

like synoviocytes. Moreover, Li et al. (2022b) also demonstrated

in HG-induced renal tubular epithelial cells that regulation of

TGFB1 can regulate pyroptosis and inhibit cellular inflammation

and cell death. Although these studies suggest that the TGF-β
signaling pathway may have a regulatory role in pyroptosis of

DN, the specific mechanism still needs to be confirmed by more

studies.

The Wnt/β-Catenin signaling pathway has also been shown

to regulate EMT and EndMT in DN kidney cells (Li et al., 2015;

Zhang et al., 2019b). However, there are two opposing views on

the role of Wnt/β-Catenin axis in DN. It has been suggested that
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under conditions of high glucose or diabetes, the decreased

secretion of some Wnt proteins can induce apoptosis and

EMT in mesangial cells (Lin et al., 2006; Lin et al., 2008;

Beaton et al., 2016). However, it has also been suggested that

nitric oxide (NO) donor treatment can inhibit diabetes-mediated

oxidative stress and reduce the expression of TGF-β1 (Hsu et al.,

2015). Notably, it was found in breast cancer cells that inhibition

of the wnt/β-Catenin signaling pathway can inhibite EMT and

the expression of NLRP3 and IL-1β (Zheng et al., 2020). The use
of siRNA or drugs to inhibit the expression of β-Catenin can

inhibit the activation of NLRP3 inflammasome, which may be

related to the fact that β-Catenin can interact with NLRP3 and

promote the association of NLRP3 with ASC (Huang et al.,

2020b). Furthermore, inhibiting the expression of TXNIP can

also inhibit the Wnt/β-Catenin signaling pathway (Dong et al.,

2020). Meanwhile, TXNIP can regulate NLRP3-mediated

pyroptosis as previously described. Collectively, these studies

suggest that the wnt/β-Catenin signaling pathway may have a

regulatory effect on NLRP3, but no studies have directly

demonstrated the role of the Wnt/β-Catenin axis in renal cells

pyroptosis of DN.

Glucocorticoid receptor (GR), presenting in almost every

tissue of the body, is a nuclear hormone receptor and the target of

a number of synthetic steroids (Goodwin et al., 2013). The

expression of α-SMA and β-Catenin were significantly

increased after endothelial GR knockout in diabetic mice, and

then EndMT was induced by upregulating Wnt signaling

(Srivastava et al., 2021c). Additionally, loss of podocyte GR

can also lead to the upregulation of Wnt signaling, the

disruption of fatty acid metabolism, and the exacerbated

glomerular fibrosis (Srivastava et al., 2021b). GR has also been

shown to be a inducer of EMT in breast cancer cells (Shi et al.,

2019), and overexpression of the homeobox protein HOX-A13

(HOXA13) in renal tubular epithelial cells can inhibit EMT by

activating GR signaling (Peng et al., 2016). However, the

regulation effect of EMT has not been demonstrated in DN

kidney cells. Interestingly, studies have shown that inhibition of

CASP1/NLRP3 expression increased GR levels (Paugh et al.,

2015), and glucocorticoids can activate NF-κB/NLRP3 signaling

pathway through GR (Feng et al., 2019). However, whether GR is

involved in NLRP3-mediated pyroptosis in DN is still unclear.

Fibroblast growth factor receptors (FGFRs) are tyrosine

kinase receptors that mediate biological responses by binding

to fibroblast growth factors (FGFs) (Itoh and Ornitz, 2004).

Specific knockout of FGFR1 in endothelial cells can lead to

the activation of TGF-β signaling and exacerbate EndMT

(Chen et al., 2014). Li et al. (2020b) also demonstrated that

FGFR1 was a critical regulator of EndMT-associated EMT

activation in diabetic kidneys in diabetic kidneys. FGF21, a

potential diabetes drug, can inhibit the phosphorylation of

tyrosine kinase via FGFR1. And tyrosine kinase can regulate

the activation of NLRP3 inflammasome through

phosphorylation of ASC. FGF21 can also significantly inhibit

the expression of the expression of caspase-1 and IL-1β and

improve vascular intimal hyperplasia in diabetic mice (Wei et al.,

2019). FGFR1 has also been implicated in the PI3K/Akt signaling

pathway, and knockdown of FGFR1 reduced the expression of

TLR4 and NLRP3 in periodontitis (Huang et al., 2021a).

However, whether FGFR is also involved in NLRP3-mediated

pyroptosis in DN remains unclear.

Notch signaling is activated by interaction between Notch

receptors and their ligands, which is a common mechanism of

proteinuria in kidney disease (Murea et al., 2010). The expression

of snail1 is directly regulated by the Notch signaling pathway, and

the Notch/snail signaling pathway has been shown to regulate

HG-induced EMT in renal tubular epithelial cells (Yang et al.,

2017). In HUVECs, inhibition of Notch signaling can also

significantly attenuate TGF-β1-induced EndMT (Yang et al.,

2020). However, the regulatory effect of Notch signaling on

EndMT in DN kidney has not been precisely studied. In

addition to regulating EMT and EndMT, Notch1 signaling has

also been reported to promote the activation of Snail and inhibit

NLRP3 function in models of hepatic injury (Jin et al., 2020).

Silencing of Notch1 in keloid fibroblasts fibroblasts alsomarkedly

inhibited the expression of the NLRP3 inflammasome and α-

SMA (Lee et al., 2020). These findings suggest a possible

regulatory role of Notch signaling on NLRP3, but whether it

regulates pyroptosis in DN remains unclear.

The hedgehog interacting protein (Hhip) is a signaling

molecule in the hedgehog pathway whose expression is

quiescent after birth (Bishop et al., 2009). The activation of

hedgehog signaling has been shown to be associated with

EMT in liver cancer cells (Ding et al., 2017). In the UUO

model, inhibition of hedgehog signaling pathway was also

demonstrated to improve EMT in HK-2 cells (Li et al.,

2021c). In the DN model, Zhao et al. found that

hyperglycemia stimulated the expression of the Hhip by

enhancing the generation of ROS, and TGF-β1/
Smad2 pathway was also activated, which promoted the

transition of glomerular endothelial cells to the mesenchyme.

In addition, they found that Hhip expression was also increased

in mouse podocytes cultured in a HG environment, resulting in

podocyte loss and the activation of TGF-β1 and α-SMA (Zhao

et al., 2018b). Furthermore, the use of the hedgehog inhibitor

GANT-61 can also attenuate the expression of caspase-1, IL-1β,
and IL-18 in chondrocyte (Liu et al., 2019b). However, there is no

evidence to directly demonstrate the relationship between

hedgehog and pyroptosis in DN.

Sirtuin3 (SIRT3) is a mitochondrial nicotinamide adenine

dinucleotide (NAD+)-dependent deacetylase that can effectively

prevent the development of DN, whether by regulating the

AMPK/SIRT3 signaling pathway or the SIRT3/SOD2 signaling

pathway (Liu et al., 2019d; Guan et al., 2021; Wongmekiat et al.,

2021; Li et al., 2022a). Under HG conditions, the expression of

SIRT3 was inhibited in HK-2 cells, and glycolysis was abnormally

altered, ultimately leading to EMT (Li et al., 2020c). Srivastava
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et al. (2021a) also constructed endothelial SIRT3 knockout mice

model and found that loss of SIRT3 accelerated EndMT in

diabetic kidneys. Mechanistically, SIRT3 in endothelial cells

can regulate glucose and lipid metabolism and mesenchymal

transdifferentiation by regulating TGF-β/Smad3 axis. These

evidences suggest that SIRT3 has a key role in diabetic renal

fibrosis. In addition to regulating the process of renal fibrosis,

SIRT3 has also been found to regulate the activation of

inflammasomes. Guan et al. (2021) found that

SIRT3 interacted with NLRC4 to promote its activation in

macrophages, and SIRT3 is indispensable for the activation of

the NLRP3 inflammasome. However, Liu et al. (2018) suggest

that NLRP3 inflammasome activation was increased in SIRT3-

deficient macrophages. In addition, studies have shown that

cardiomyocyte pyroptosis can be reduced by activating the

Nrf2/SIRT3 signaling pathway (Gu et al., 2021). However,

there is no direct evidence that the role of SIRT3 in regulating

NLRP3 inflammasome activation and pyroptosis is also present

in DN kidney cells.

Dipeptidyl peptidase-4 (DPP-4) is a cell surface serine

protease that cleaves various substrates, while dipeptidyl

peptidase-4 inhibitors (DPP-4i) have the ability to inhibit

DPP-4 enzyme activity under diabetic conditions. Therefore,

DPP-4 inhibitors have been developed as novel agents for

glycemic control in the clinic (Muskiet et al., 2014).

Inhibition of DPP-4 activity can improve insulin sensitivity

and reduce angiotensin II receptor-1 (AT-1) -mediated tubular-

interstitial EMT (Huang et al., 2016). Reduction of DPP-4

expression in podocytes of diabetic rat can restore stromal

cell-derived factor 1 α (SDF-1α) levels and may attenuate

EMT through the activation of the PKA pathway (Chang

et al., 2017). Additionally, linagliptin can also inhibit EndMT

by inhibiting the activity of DPP-4, and improve renal fibrosis

in STZ-induced diabetic mice. These evidences suggest that

DPP-4 can also regulate EMT and EndMT. Furthermore, the

use of linagliptin can reduce the expression of ASC, NALP3 and

IL-1β in cardiomyocytes of db/db mice (Birnbaum et al., 2019).

DPP-4i sitagliptin and omarigliptin can also inhibit

NLRP3 expression in macrophages and HG-induced human

glomerular endothelial cells (Dai et al., 2014; Li et al., 2021b).

However, whether DPP-4i can also inhibit NLRP3-mediated

pyroptosis in DN kidney cells remains to be verified.

Pyroptosis and drugs in diabetic
nephropathy

Because the complex pathogenesis of DN is not completely

clear, the current treatment methods are still not enough to

effectively delay the progression of DN. More and more

evidences indicated that pyroptosis is one of the mechanisms

of cell injury in DN. Therefore, therapeutic drugs targeting

pyroptosis and their mechanism are worth exploring.

Therapeutic drugs targeting
NLRP3 inflammasome

One of the most characteristic of pyroptosis is activation

of inflammasome. BAY 11–7082 is an NF-κB inhibitor that

can inhibit NLRP3 inflammasome activation by inhibiting

NLRP3-ATPase activity, and this effect is independent of its

inhibitory effect on the NF-κB pathway (Juliana et al., 2010).

Multiple studies have shown that BAY 11–7082 can reverse

the activation of NLRP3 inflammasome-mediated

pyroptosis, although this has not been validated in DN

kidney cells (Qiu et al., 2017; Qiu et al., 2019).

Meanwhile, the expressions of NLRP3, caspase-1 and IL-

1β were reduced in db/db mice and HG-induced mesangial

cells by the selective NLRP3 inhibitor MCC950. However,

body weight and blood glucose levels were not affected

(Zhang et al., 2019a). Moreover, it has been confirmed

that the use of MCC950 can reduce the expression of

pyroptosis-related proteins such as GSDMD in HG-

stimulated podocytes (Liu et al., 2021a). Wang et al. also

found that after Fucoidan (FPS) treatment, AMPK/

mammalian target of rapamycin complex 1 (mTORC1)/

NLRP3 signaling axis was regulated and podocyte

pyroptosis was inhibited in DN rats (Wang et al., 2022a).

Geniposide (GE) can effectively reduce the expression of

NLRP3, cleaved-caspase-1 and GSDMD-N in HG-induced

podocytes, and the mechanism may be related to the APMK/

SIRT1/NF-κB signaling pathway (Li et al., 2020a). Another

study found that the effect of saxagliptin in delaying the

progression of DN also seems to be related to the inhibition

of NLRP3 inflammasome activation (Birnbaum et al., 2016).

Additionally, the glucagon-like peptide-1 analog liraglutide,

a drug that can reduce the risk of adverse renal outcomes in

diabetic patients, can also inhibit NLRP3-mediated

pyroptosis in cardiomyocytes (Chen et al., 2018a).

Furthermore, the administration of quercetin and

allopurinol to high-fat diet (HFD) and STZ-induced

diabetic mice significantly reduced the expression of

NLRP3, caspase-1, IL-1β, and IL-18, but their effects on

pyroptosis still require more experimental validation (Wang

et al., 2012). Recently, the experiments in other cells have

also found that Kuijieling (KJL), rosuvastatin (RVS), vitamin

D (VD), and Kanglexin (KLX) can also inhibit

NLRP3 inflammasome-mediated pyroptosis, but whether

these drugs act on pyroptosis in DN kidney is still lacking

specific research (Bian et al., 2020b; Chen et al., 2021; Zhang

et al., 2021f; Jie et al., 2021). Overall, some of the above

studies have demonstrated the inhibitory effect of certain

drugs on NLRP3-mediated pyroptosis in DN kidney cells,

but some only demonstrated the inhibitory effect of drugs on

NLRP3 inflammasome activation, and did not detect

pyroptosis. However, targeting the NLRP3 inflammasome

to treat DN still has certain potential.
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Therapeutic drugs targeting reactive
oxygen species

In DN, the imbalance of oxidation/antioxidant in renal cells

will lead to excessive production of ROS and decreased

expression of Nrf2 and other antioxidant factors, which can

eventually lead to various forms of cell death. Punicalagin (PU) is

a polyphenol that can reduce ROS production and exert

antioxidant effects by promoting the production of SOD. The

activation of TXNIP/NLRP3 axis was inhibited due to reduced

ROS production, suggesting that this may be the mechanism by

which PU inhibited pyroptosis of renal cells in diabetic mice (An

et al., 2020). Besides, the pyroptosis induced by I/R was inhibited

with salvianolic acid B (Sal B) by promoting the accumulation of

Nrf2 through its antioxidant properties, although its effectiveness

has not been demonstrated in DN (Pang et al., 2020). Since

mitochondrial dysfunction is inseparable from the increase of

ROS production, Yang et al. (2019b) treated DN mice with

mitochondria-targeted peptide (MTP)-131/SS31, a

mitochondria-targeted antioxidant peptide. The results showed

that hydrogen peroxide (H2O2) and other free radicals were

eliminated, accompanied by decreased expression of dynamin-

related protein 1 (Drp1), caspase-1, and IL-1β, but whether

GSDMD was cleaved in this process still needs further study.

Moreover, Qu et al. (2022) demonstrated that pyrroloquinoline

quinone (PQQ) can reduce mitochondrial dysfunction and ROS

production, and improved renal fibrosis induced by

hyperglycemia. In addition, Gao et al. (2022b) restored

mitochondrial morphology by culturing podocytes with sialic

acid precursor N-acetylmannosamine (ManNAc) and inhibited

HG-induced pyroptosis by ROS/NLRP3 signaling pathway.

These evidences suggested that DN can be improved by

inhibiting pyroptosis by ameliorating mitochondrial

dysfunction or reducing ROS production.

Therapeutic drugs targeting caspase1/
GSDMD

GSDMD is the most frequently studied protein with pore-

forming characteristic that can be cleaved by cleaved-caspase-1.

In the treatment of multiple sclerosis, when GSDMD reacts with

dimethyl fumarate (DMF) to lead to succination, its reaction with

caspase-1 will be restricted and pyroptosis will be inhibited

(Humphries et al., 2020). Targeting caspase1/GSDMD in DN

has also achieved good results. Han et al. (2021) observed

amelioration of renal injury in stz-induced diabetic mice after

injecting with hirudin, which may be related to the inhibition of

Irf2/GSDMD axis. As an inhibitor of caspase-1, Vx-765 can

improve the dysfunction of renal tubular epithelial cells in DN

and regulate pyroptosis without affecting blood glucose levels or

body weight (Wen et al., 2022). Other studies have shown that

carnosine can inhibit HG-induced podocyte pyroptosis through

its target caspase-1 (Zhu et al., 2021). Additionally, Sodium

butyrate (NaB) can also inhibit pyroptosis by inhibiting

caspase1/GSDMD axis in HG induced glomerular endothelial

cells (GECs) (Gu et al., 2019). Taken together, these evidences

suggested that caspase1/GSDMD axis may serve as one of the

therapeutic targets for DN.

Chinese proprietary medicine targeting
pyroptosis in diabetic nephropathy

Due to the limitations of current drugs for the treatment of

DN, the therapeutic effect of the Chinese proprietary medicine

(CPM) has also begun to attract widespread attention. It has

been reported that ginsenoside compound K (CK) with

hypoglycemic effect can not only inhibit the activation of

TXNIP/NLRP3 signaling pathway and the production of IL-

1β and IL-18, but also reduce blood glucose, serum creatinine,

and 24-h urine protein of the DN mice (Song et al., 2018b).

Meanwhile, the activation of NLRP3 inflammasome and

pyroptosis can be inhibited by ginsenoside Rg1 in

podocytes of diabetic mice via mTOR/NF-κB/NLRP3 axis

(Wang et al., 2020d). Additionally, ginsenoside Rg5 can

also significantly inhibit the activation of NF-κB/
NLRP3 axis and the phosphorylation of the three

subfamilies of MAPK (Zhu et al., 2020). However, although

they demonstrated inhibition of NLRP3 by these drugs,

whether this renoprotective effect is also related to

NLRP3 inflammasome-mediated pyroptosis remains to be

verified. Furthermore, GSDMD-dependent pyroptosis can

be inhibited by regulating TGF-β1 in HK-2 cells treated

with Tanshinone IIA (Li et al., 2022b). Tangshen formula

(TSF) can inhibit pyroptosis by regulating the TXNIP-

NLRP3-GSDMD signaling pathway in HK-2 cells. Yi Shen

Pai Du Formula (YSPDF) can regulate the Nrf2/HO-

1 signaling pathway and reduces the generation of ROS and

the expression of NLRP3, ASC, and caspase-1 in DN (Li et al.,

2020d; Zhang et al., 2021d). Recently, it was also found that

tetrahydroxy stilbene glucoside (TSG), the total flavonoids of

Astragalus (TFA), Huangkwai capsule (HKC), and artificially

cultivated Ophiocordyceps sinensis (ACOS) could improve

kidney injury in DN. Their therapeutic mechanism may be

related to the activation of PTEN/PI3K/Akt axis, TLR4/NF-κB
axis, and the activation of NLRP3 inflammasome associated

with P2X7R (Li et al., 2018a; Wang et al., 2018; Han et al.,

2019; Liu et al., 2021a). Although some of these drugs only

demonstrated an effect on NLRP3 inflammasome or caspase

family and not indicated whether other pyroptosis markers

such as GSDMD were also affected in the processes, the use of

CPM to treat DN by inhibiting pyroptosis still has a lot of

research value. Supplementary Table S1 summarized the

drugs mentioned above related to NLRP3 inflammasome

and pyroptosis.
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Potential drugs that have been evaluated
for diabetic nephropathy treatment

Abnormal glucose metabolism also plays a contributing role

in the development of DN. Impaired glycolysis may lead to

disturbance of podocyte energy supply in DN and affect podocyte

cytoskeletal structure (Luo et al., 2022). It has been reported that

glucose fluctuation (GF) can also induce kidney injury, and

regulation of HIF-1α/miR-210/ISCU/FeS signaling pathway

can antagonize GF-induced kidney damage in glomerular

mesangial cells (GMCs) by regulating aerobic glycolysis (Xu

et al., 2021a). It has also been shown that glycolysis also plays

a key role in pyroptosis of LPS-stimulated macrophages, and

glycolysis inhibitors can inhibit HIF-1α downregulation and

pyroptosis (Aki et al., 2020). Moreover, the use of glycolysis

inhibitor 2-deoxy-D-glucose (2-DG) can also inhibit LPS-

induced pyroptosis in microglial (Li et al., 2021e). However,

the role of glycolysis inhibitors in pyroptosis of DN has not yet

been demonstrated. SIRT3 is a major mitochondrial deacetylase

involved in the activation of many oxidative pathways. In clinical

trials and the diabetic animal models, Li et al. found that

SIRT3 deficiency can promote abnormal glycolysis and HIF-

1α accumulation, and the abnormal glycolysis is associated with

the increased mesenchymal transition rate (Srivastava et al.,

2018). Resveratrol (RES) has the effect of activating

SIRT3 and can effectively reduce blood sugar levels without

any side effects, and RES can also reduce urinary albumin

excretion in DN patients (Sattarinezhad et al., 2019; Gowd

et al., 2020). Moreover, RES can promote mitophagy to

inhibit NLRP3 inflammasome activation and can inhibit

pyroptosis through SIRT1 (Chou et al., 2019; Fan et al., 2021).

Honokiol (HKL) is also an activator of SIRT3 and can inhibit the

expression of NLRP3, caspase-1, GSDMD by activating Nrf2 in

human bronchial epithelial cells (Liu et al., 2021c). Although

these evidences suggest that regulation of SIRT3 has a protective

effect on cells and may also regulate NLRP3 inflammasome-

mediated pyroptosis, there is no direct evidence for the role of

SIRT3 activators in pyroptosis of DN. DPP-4 is a member of

serine proteases and plays a major role in glucose metabolism.

DPP-4 inhibitors are a class of antidiabetic drugs and have

nephroprotective properties (Gupta and Sen, 2019).

Saxagliptin and linagliptin are both DPP-4 inhibitors and

both have the potential to reduce proteinuria in patients with

type 2 diabetes (Groop et al., 2015; Mosenzon et al., 2017). In db/

db mice, linagliptin can also inhibit renal inflammation and

fibrosis induced by C-reactive protein (CRP)/CD32b/NF-κB axis

(Tang et al., 2021). Interestingly, studies have found that

linagliptin can reduce the expression of ASC, NLRP3, IL-1β,
TNF-α, and inhibit apoptosis in db/db mice, and this effect is

dependent on the activation of p38 and the inhibition of

TLR4 expression (Birnbaum et al., 2019). But another study

found that DPP-4i not only activated the ROS/NRF2/HO-1 axis

in breast cancer cells, but also triggered ROS-dependent NF-κB

activation. Moreover, DPP-4i also triggered ROS/NF-κB-
dependent NLRP3 inflammasome activation (Li et al., 2021f).

Although no studies have shown the relationship between DPP-

4i and NLRP3 inflammasome-mediated pyroptosis in DN, these

evidences may provide new insights into the unexpected side

effects of DPP-4i in diabetic patients with other diseases.

Early stages of DN are characterized by elevated glomerular

filtration rate (GFR) and increased filtration fraction (FF)

(Hannedouche et al., 1990; Komers et al., 2011). The RhoA/

ROCK axis plays a role in the control of vascular tone in the

kidney. The Rho-associated kinases (ROCK) inhibitors

Y27632 and fasudil were examined to have renoprotective

effects on DN (Komers et al., 2011). Fasudil also ameliorated

albuminuria and glomerular hypertrophy in DN mice by

downregulating HIF-1α expression (Matoba et al., 2013).

Furthermore, the application of fasudil can reduce proteinuria

and improve renal prognosis by inhibiting ROCK activity in

diabetic patients (Matoba et al., 2021). Studies have also shown

that fasudil can inhibit NF-κB nuclear translocation and TGF-β1
expression in STZ-induced diabetic rats (Xie et al., 2013). ROCK

Inhibitor-Y27632 can also reverse the expression of NF-κB,
NLRP3, ASC, and caspase-1 induced by ventilator-induced

lung injury (VILI) (Zhang et al., 2021e). However, studies on

whether ROCK inhibitors also have an effect on NLRP3-

mediated pyroptosis are still lacking. Mineralocorticoid

receptor (MR) has a role in regulating the transcription of

target genes, and both elevated aldosterone levels and MR

hyperactivation can lead to salt and water retention and

hypertension (Tirosh et al., 2010). Mineralocorticoid receptor

antagonists (MRA) also have therapeutic effects on eGFR,

proteinuria, and hyperkalemia in diabetic rats and patients

with CKD (Bhuiyan et al., 2019; Baran et al., 2021; Patel

et al., 2021). ACE inhibitors (ACEIs) and AT1 receptor

antagonists (ARBs) are thought to reduce the progression of

ESRD in diabetic patients, and their effects have been extensively

validated in DN patients and mouse models (Zheng et al., 2006;

Nakagawa, 2010; Tesch et al., 2019). In clinical trials, the

combination of MRA and ACEI/ARB significantly reduced

urinary albumin excretion and urinary albumin-creatinine

ratio and significantly increased the risk of hyperkalemia (Sun

et al., 2017). Furthermore, N-acetyl-seryl-aspartyl-lysyl-proline

(AcSDKP) is considered to be one of many anti-fibrotic

molecules that ACE inhibitors exert their anti-fibrotic effects,

and the inhibition of AcSDKP can lead to the activation of

mesenchymal transition and renal fibrosis in diabetic mice

(Castoldi et al., 2013; Nitta et al., 2016; Srivastava et al.,

2020). Studies have also shown that AcSDKP can also predict

changes in renal function in normoproteinuric diabetic patients

(Nitta et al., 2019), and AcSDKP levels are also associated with

sodium intake (Kwakernaak et al., 2013). These findings provide

many clues for the anti-fibrotic effect of AcSDKP in human kidney

disease. Interestingly, one study demonstrated that the activation

of MR was involved in the NLRP3/caspase-1 axis-induced
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pyroptosis of UUO model (Ma et al., 2019). Studies have also

shown that AcSDKPwas found to increase Akt phosphorylation in

cancer cells (Hu et al., 2013). Meanwhile, we have previously

described the potential impact of the PI3K/Akt signaling pathway

on pyroptosis. Taking together, although the above-mentioned

drugs have been used clinically, there are still many gaps in the

research on their mechanism.

Future directions and perspective in
diabetic nephropathy

Many of the studies discussed above clearly demonstrated

that NLRP3-dependent pyroptosis occurs during the progression

of DN, and the inhibition of NLRP3 inflammasome activation

through different signaling pathways can inhibit pyroptosis and

ameliorate renal injury. However, several remaining issues must

be addressed. First, NLRP3 inflammasome activation does not

necessarily lead to pyroptosis, so are the protective effects of some

NLRP3 inflammasome inhibitors related to the inhibition of

pyroptosis? What conditions can trigger NLRP3 inflammasome-

mediated pyroptosis? Second, whether some of our proposed

signaling pathways can trigger pyroptosis by activating the

expression of NLRP3 in DN kidneys is still lacking in specific

studies. Meanwhile, are there other signaling pathways that can

also activate NLRP3 inflammasome assembly and trigger

pyroptosis? Furthermore, EMT and EndMT also appear to be

linked to pyroptosis. Therefore, can exploring this potential link

also provide new perspectives for DN treatment and find more

effective therapeutic targets? Finally, many drugs have been

discovered to have therapeutic effects on DN, and they can

inhibit the expression of NLRP3. However, studies are still

lacking to show whether their mechanisms are also related to

pyroptosis. May further investigation of the mechanism of these

drugs and their possible side effects on some concomitant

diseases provide more effective options for clinical application?

Conclusion

In this review, we summarized three mechanisms of

pyroptosis and discussed the relationship between pyroptosis

and NLRP3 inflammasome activation. In addition, we explored

several pathways related to NLRP3 inflammasome activation,

involving NF-κB, TXNIP, Nrf2, PI3K/Akt and other important

signaling molecules. These pathways are linked to each other,

complicating the activation mechanisms of

NLRP3 inflammasome. However, the inhibition of

NLRP3 inflammasome, caspase-1, GSDMD and other proteins

in pyroptosis can alleviate the kidney damage in DN. In

conclusion, the research on the mechanism of

NLRP3 inflammasome-mediated pyroptosis in DN is still

ongoing, and more effective drugs are expected to be found.
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