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Abstract: The improper setting of exposure time for the space camera will cause serious image quality
degradation (overexposure or underexposure) in the imaging process. In order to solve the problem
of insufficient utilization of the camera’s dynamic range to obtain high-quality original images,
an automatic exposure method for plane array remote sensing images based on two-dimensional
entropy is proposed. First, a two-dimensional entropy-based image exposure quality evaluation
model is proposed. The two-dimensional entropy matrix of the image is partitioned to distinguish
the saturated areas (region of overexposure and underexposure) and the unsaturated areas (region of
propitious exposure) from the original image. The ratio of the saturated area is used as an evaluating
indicator of image exposure quality, which is more sensitive to the brightness, edges, information
volume, and signal-to-noise ratio of the image. Then, the cubic spline interpolation method is applied
to fit the exposure quality curve to efficiently improve the camera’s exposure accuracy. A series of
experiments have been carried out for different targets in different environments using the existing
imaging system to verify the superiority and robustness of the proposed method. Compared with
the conventional automatic exposure method, the signal-to-noise ratio of the image obtained by the
proposed algorithm is increased by at least 1.6730 dB, and the number of saturated pixels is reduced
to at least 2.568%. The method is significant to improve the on-orbit autonomous operating capability
and on-orbit application efficiency of space camera.

Keywords: exposure time; two-dimensional entropy; threshold; cubic spline; image details

1. Introduction

With the rapid development of space remote sensing technology, the strong demand
for satellite responsiveness and imaging quality are increasing [1]. The imaging parameters
of space camera are usually determined by the satellite earth station according to factors
such as the solar altitude angle α, the ground object reflectivity ρ, and the weather of the
target location before a conventional space camera system performs a shot task. When
the satellite passes through the border, it is uploaded to the satellite system through an
available satellite earth station. When the satellite reaches the target location, the imaging
parameters are used to set the operative condition of the space camera to detect and collect
the terrain object information. The a priori model is based on ideal conditions and often
cannot get ideal results in the actual imaging process.

Space cameras are different from ubiquitous cameras. It has a high dynamic range
(HDR) and large area of the shooting scene, and the obtained remote sensing image has a
large amount of data and rich details which all lead to higher exposure quality of the space
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camera [2,3]. The current conventional camera automatic exposure method can be divided
into three categories: the determination of imaging parameters based on the prior model,
image fusion and the determination of imaging parameters based on image statistics.

The first method is to use a priori knowledge based on the scene to set imaging
parameters. Wang et al. proposed a prediction method of optimal parameters combination,
i.e., inputting empirical target refraction and image digital number (DN) to radiative
transfer model to output the target radiance expected, thus obtaining an expected absolute
radiometric coefficient before launch, which could be helpful for rational use of relevant
earth observation cameras [4]. Cao et al. proposed a method for autonomous imaging
parameters adjustment based on solar elevation from remote sensing theory [5]. The
factors which influence imaging quality and the relationship between apparent radiance
and solar elevation are firstly discussed. Then, the integral time change under different
roll angles in one orbital period and the internal links among solar elevation, roll angle,
integral grade, and gain are analyzed. Finally, the best grading strategy is obtained and the
two-dimensional lookup table which can be used for the autonomous imaging parameters
adjustment is built. The strain capacity of the method is poor. If the weather conditions of
the target imaging area change, and the camera system still looks up the table according
to the original parameter state, the acquired image data may not achieve the anticipant
imaging effect, and even the imaging task is invalid. The main disadvantage is that the
camera system cannot adjust the imaging parameters adaptively based on the actual image
data acquired.

The method of image fusion does not need to adjust the camera imaging parameters,
but only needs to acquire multiple images. Traditional exposure fusion methods can
generate HDR images based on a set of weight maps of low dynamic range (LDR) images
with different exposures [6]. There are a variety of image fusion algorithms, from simple
weighted average to complex methods based on advanced statistical image models. Ying
et al. first used the illumination estimating technology to calculate the weight matrix for
the image, and then used the camera’s response model to synthesize the multiple exposure
image to get the optimal exposure rate [7]. This method performs well in the underexposed
areas, but performs badly in the overexposed areas of the original image. Mertens et al.
used three quality indices of brightness, contrast, and saturation to determine the effect
of a given pixel on the final composite image. The fusion image has a high contrast, but
still cannot display the details of the brightest and darkest areas of the scene [8]. Effective
image fusion methods require multiple pre-acquired images of different dynamic range [9],
for the shooting target under extreme lighting conditions is poor.

Another method is to establish the mathematical relationships between image quality
indices and imaging parameters through the analysis of image statistics, thereby adjusting
the camera’s imaging parameters such as shutter speed, aperture size, exposure time,
and gain. The adjustment of shutter speed and aperture size usually depends on a high-
precision mechanical structure, and the adjustable imaging parameters of the plane array
space camera are usually exposure time and gain.

The simplest method is to measure the average gray value of the entire image or
a specific area, and adjust the imaging parameters of the camera to make the average
gray value of the image equal to half of the camera’s dynamic range [10,11]. Kuno et al.
calculated the average brightness of the entire image when analyzing the brightness of
the image, and used the average brightness to indicate the brightness level of the entire
image [12]. Then, set a target brightness and adjust the imaging parameters to make the
brightness level of the image gradually consistent with the target brightness. This method
based on the average gray value of the image could cause a large area of overexposure and
underexposure at the same time, resulting in the loss of a large amount of image details.

Later scholars used more advanced image quality evaluation indices such as image
gray histogram, one-dimensional entropy, and gradient to obtain the optimal exposure
image. Montalvo et al. extracted the histogram of the region of interest from the histogram
of the R and G channels in the RGB spectral channel, and then used the brightness of
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this area as the reference brightness to adjust the imaging parameters of the camera by
the histogram matching method [13]. Torres et al. shifted the grayscale histogram of the
image to a specified range by adjusting the imaging parameters of the camera, which can
avoid overexposure or underexposure of the image to a certain extent [14]. Rahman et al.
and Lu et al. proposed an automatic exposure method that uses the maximum image
entropy as the image quality evaluation index [15,16]. Research shows that the size of
entropy changes with the exposure parameters of the imaging system, and the imaging
parameter corresponding to the largest entropy value is taken as the optimal imaging
parameter. Zhang et al. proposed an active exposure control method to maximize the
gradient information in the image [17]. They calculated the derivative of the gradient
square and the photometric response function, and measured the change of the gradient
with the exposure time to determine the optimal exposure time. Shim et al. also used the
gradient information in the image to get the appropriate exposure time [18,19]. The author
defines an information metric based on the size of the gradient at each pixel, and simulates
exposure changes by applying different gamma corrections to the original image to find
the gamma value that maximizes the gradient information, and then adjust the exposure
time according to the gamma value. The above algorithms cannot behave well when both
image details and brightness are concerned.

Recently, Kim et al. proposed a new exposure quality evaluation method, of which
the entropy weighted gradient of the image was used as an image quality evaluation
index [20,21]. They used the index to obtain the optimal exposure time of the camera.
The entropy matrix partitioning threshold is a fixed value in this method because of the
small shooting area with a large target, and it has a better shooting effect on scenes with
less detail. Remote sensing images are rich in details, and the target is usually only a few
pixels in size which can lead to massive loss in image details. Each of these methods has
advantages and disadvantages.

Aiming at these problems above, some research work on automatic exposure methods
for plane array remote sensing images is carried out in this paper. A new image exposure
quality evaluation model for remote sensing and an optimal exposure time determination
method are proposed. We conducted experiments under different conditions to verify
the robustness of the method. Experimental results show that, compared with the current
algorithm, the algorithm is more sensitive to image details, brightness, information, and signal-
to-noise ratio, which perfectly meets the quality requirements of remote sensing images.

The rest of the paper is organized as follows: the automatic exposure method for plane
array remote sensing images based on two-dimensional entropy is proposed in Section 2;
in Section 3, the proposed algorithm is experimentally compared with other algorithms
and related discussions are carried out; Section 4 presents the conclusions of the paper.

2. Proposed Algorithm

The adjustable imaging parameters of the area array space camera are usually exposure
time and gain. The relationship between the exposure quality and the exposure time
of the space camera is mainly studied in this paper, so as to get the optimal exposure
time in the imaging process. Similar to the previous research [20,21], considering the
sensitivity of two-dimensional entropy to image brightness, edges, and information, the
two-dimensional entropy of the image is used as the starting point. Different from previous
studies, an adaptive two-dimensional entropy matrix partitioning threshold based on the
maximum weighted variance is proposed, which can be used to distinguish the saturated
and unsaturated regions of the image. Then, the cubic spline interpolation method is
introduced to calculate the optimal exposure time. The algorithm proposed in this paper
takes the proportion of the saturated area in the image as a measure. With good sensitivity
to image brightness, edges, information, and signal-to-noise ratio, it can also maximize the
reduction of overexposed and underexposed areas in the image. The proposed algorithm
has a good adaptability to remote sensing imaging and important guiding significance to
obtain high-quality original remote sensing images for the space camera.
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It can be clearly seen from Figure 1 that the entropy value of the saturated area
of the image is small, while the entropy value of the unsaturated area is larger. The
image segmentation as shown in Figure 1d can be achieved by getting an appropriate
entropy threshold.

The overall architecture of the algorithm in this paper is shown in Figure 2. The
method consists of two modules: exposure quality evaluation module and exposure curve
fitting module. First, λ is supposed as the exposure time step to acquire multiple images;
then, the exposure quality of the collected images is calculated; then, we perform curve
fitting on the exposure quality of these images; finally, the optimal exposure time is acquired
according to the fitted curve.

(a) (b)

(c) (d)

Figure 1. (a) Original image; (b) three-dimensional view of entropy matrix; (c) top view of entropy
matrix; (d) segmentation of saturated regions.

Figure 2. Overall architecture of the proposed algorithm.

2.1. Two-Dimensional Entropy of Image

The one-dimensional entropy of image, as the information feature of the image,
cannot map the spatial distribution of pixels well. The advantage of using two-dimensional
entropy as an image saturation measure is that the two-dimensional entropy of an image is
more sensitive to features such as brightness, edges, and information. For remote sensing
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images, there are certain grayscale changes in the target areas, while the grayscales of
pixels in the overexposed and underexposed areas are keeping consistent basically which
provides a good prerequisite for using two-dimensional entropy as a saturation measure.

The definition of Shannon entropy is used in this paper [22], the two-dimensional
entropy of the pixel Ii,j in the image is:

Hi,j = −∑ PGSi,j log10PGSi,j (1)

where GSi,j indicates the gray level corresponding to pixel Ii,j, PGSi,j indicates the probability
that the corresponding gray level of the pixel Ii,j in the 9× 9 neighborhood.

2.2. Entropy Matrix Partitioning Threshold

The original image can be divided into region of saturation (ROS) and region of unsat-
uration (ROUS) by choosing an appropriate threshold to partition the two-dimensional
entropy matrix because of the above-mentioned characteristics of the two-dimensional
entropy matrix. The following method is adopted to obtain the partitioning threshold of
the two-dimensional entropy matrix.

Assuming the threshold is th, when Hi,j < th, it is defined as the ROS entropy matrix
element HROSi,j . On the contrary, when Hi,j > th, it is defined as the ROUS entropy matrix
element HROUSi,j . The variances of the two-dimensional entropy matrix of the saturated
and unsaturated regions are calculated respectively:

σ2
ROS = ∑

(
HROSi,j −meanHROS

)2
(2)

σ2
ROUS = ∑

(
HROUSi,j −meanHROUS

)2
(3)

where σ2
ROS and σ2

ROUS respectively indicate the variance of the entropy matrix of the satu-
rated region and the unsaturated region, meanHROS and meanHROUS respectively indicate
the mean value of the entropy matrix elements of the saturated region and the unsatu-
rated region, HROSi,j and HROUSi,j respectively represent the elements of the saturated and
unsaturated regions in matrix H.

Derived from (2) and (3), the total weighted variance of the two-dimensional entropy
matrix H is expressed as:

σ2
H = pROS σ2

ROS + pROUS σ2
ROUS (4)

where pROS and pROUS respectively indicate the proportion of ROS element and the pro-
portion of ROUS element in the whole image when the threshold is th. Substituting (2) and
(3) into (4):

σ2
H = pROS ∑

(
HROSi,j −meanHROS

)2
+ pROUS ∑

(
HRONSi,j −meanHROUS

)2
(5)

For (5), there is a matrix as follows:

thk =
[
minHi,j, minHi,j + 0.0001, minHi,j + 0.0002, · · · , maxHi,j

]
1×n (6)

Traverse each element in thk and calculate all corresponding σ2
H . When σ2

H gets the
maximum value, the corresponding thk is the optimal threshold, which is expressed as:

th = arg max
[
σ2

H(thk)
]

(7)

in the equation, max
[
σ2

H(thk)
]

indicates the maximum value of σ2
H .
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2.3. Ratio of Saturated Area

Based on the results obtained in Section 2.2, a binary mask is defined to partition the
two-dimensional entropy matrix and distinguish ROS and ROUS:

Maski,j =

{
0, th ≤ Hi,j

1, 0 ≤ Hi,j < th
(8)

According to the defined mask matrix Maski,j, the value of the corresponding element
of the ROS area is 1 and the value of the corresponding element of ROUS is 0. The
proportion of ROS elements in the image can be obtained as:

S =
m,n

∑
i,j

Maski,j/(m× n) (9)

where m and n indicate the image size. Obviously, when the S value in (9) is smaller, the
image ROS ratio is lower and the image exposure quality is better; when the S value is
larger, the image ROS ratio is higher and the image exposure quality is worse. In the latter
part of this paper, the S value is used as the image exposure quality evaluation standard,
which is used as the basis for adjusting the camera’s exposure time.

2.4. Exposure Quality Curve Fitting

For a certain scene, the plane array space camera can continuously expose the specified
target when it is in the staring imaging mode. When shooting with an equal step of exposure
time, the corresponding S value can be calculated for each image. We use the exposure
time as the abscissa and the S value as the ordinate for curve fitting. Choosing a suitable
curve fitting algorithm is the key to accurately determine the optimal exposure time. In this
paper, the cubic spline interpolation method is used to fit the discrete points into a curve to
show the relationship between the image exposure quality and the exposure time, so that
the exposure time can be adjusted more accurately and the image with higher exposure
quality can be obtained.

Cubic spline interpolation fits a smooth curve from a series of sample points. Mathe-
matically, it is the process of obtaining a set of curve functions by solving the three-moment
equation. Due to the small computation capacity and low complexity, cubic spline inter-
polation is widely used in various fields. The cubic spline curve about exposure time and
image exposure quality can be expressed as:

Si(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di , i = 1, 2, 3, · · · n− 1, n (10)

in the (10), t is the exposure time, and ti is the abscissa of the sample point. ai, bi, ci and di
are undetermined coefficients. Si(t) is the exposure quality corresponding to the exposure
time t. Different from the conventional cubic spline interpolation method, the boundary
condition of the spline curve in this paper is the Not-A-Knot [23]:{

S
′′′
0 (t0) = S

′′′
1 (t1)

S
′′′
n−1(tn−1) = S

′′′
n (tn)

(11)

where S
′′′
n (tn) indicates the third derivative of the curve at point tn.

Fitting the exposure quality curve based on cubic spline interpolation Not-A-Knot
boundary conditions has the following advantages:

(1) Interpolation can still be performed when there are few sample points;
(2) There will be no excessive errors at the start and end points of the sample;
(3) It can characterize the change of exposure quality with exposure time at different

exposure time steps;
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(4) The second-order smoothness of the curve conforms to the gradual characteristic
of the exposure quality with the exposure time.

2.5. Rules for Determining the Optimal Exposure Time

Generally, the exposure quality curve of the images is a concave curve. The optimal
exposure image corresponds to the lowest point of the curve from the above. When the
accuracy of the target exposure time is λmin, suppose that the exposure time λ = 2λmin
for continuous exposure to obtain multiple sample points. According to the fitted curve,
the optimal exposure time can be extracted. For different shooting scenes, the relationship
between image exposure quality and exposure time does not strictly satisfy the cubic spline
function. Therefore, the following optimal exposure time determining rules are proposed
to avoid the errors:

toptimal =

{
arg min[S(t)], min[S(t)] = min[SP(t)]

arg min[Sa(t), min[SP(t)]], min[S(t)] 6= min[SP(t)]
(12)

where toptimal indicates the optimal exposure time of the scene. minS(t) indicates the
minimum value obtained by sampling in the curve with λmin as the step size. minSP(t)
indicates the minimum value of the sample point, and Sa(t) indicates the S value of the
actual image obtained by configuring the camera parameters with the exposure time
corresponding to the lowest point of the curve.

3. Verification and Analysis

In order to verify the algorithm proposed, we conducted multiple sets of experi-
ments to simulate low ground reflectivity and high ground reflectivity in different scenes.
First, the image exposure quality evaluation model proposed in this paper is verified;
then, the performance of the cubic spline interpolation curve in improving the expo-
sure accuracy of the imaging system and improving the image exposure quality is veri-
fied. In the experiment, the camera’s default method (CDM), average gray level method
(AGLM) [12], one-dimensional entropy method (ODEM) [15], entropy weighted gradient
method (EWGM) [21], gradient-based method (GBM) [19], etc. are used for comparison,
which proves the superiority of the proposed method.

The camera used in the experiment is acA1300-60gm from Basler. The parameter
indices are shown in Table 1.

Table 1. Technical parameters of acA1300-60gm camera.

Model acA1300-60gm

Resolution (H ×VPixels) 1280× 1024
Chip access mode CMOS global and rolling shutter

Pixel size (µm) 5.3× 5.3
Frame rate (fps) 60

Panchromatic/Bayer Panchromatic

In the experiment, the relative aperture value of the camera is 1:1.4 and the image size
is 1280× 1024.

3.1. Experiment under Bright Conditions

Suppose that the exposure time step λ1 = 20 ms under bright conditions to take eight
consecutive shots of target 1. The exposure quality is the highest when the exposure time is
41 ms. The optimal exposure image obtained by other algorithms is also shown in Figure 3.
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(a) Camera’s default automatic exposure method

(b) Average gray level method

(c) One-dimensional entropy method

(d) Entropy weighted gradient method

(e) Gradient-based method

(f) Proposed method

Figure 3. The optimal exposure image, the three-dimensional image entropy matrix, segmentation of
ROS, and the enlarged view of the labeled region of each method under bright conditions from left
to right.

Figure 3 shows that the default automatic exposure algorithm of the camera is similar
to the average gray level method, which has certain advantages in the overall brightness
of the image, but the overexposed area in the image is not effectively limited. The one-
dimensional entropy method pays attention to the overall information of the image. The
result of the gradient-based method is consistent with the one-dimensional entropy method,
the contrast of the image is relatively strong, but the overexposure phenomenon also
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exists. The entropy weighted gradient method comprehensively considers the amount of
information and edge details of the image, which makes overexposure and underexposure
of the image suppressed to a certain extent, but information loss in some areas is still
unavoidable. The optimal exposure image obtained by the proposed algorithm has a
weaker contrast, but the blue part of the entropy matrix is the least. In other words, the
overexposure and underexposure areas in the entire image are minimized so that the image
details are preserved to the maximum extent.

Some other objective indices were used to compare the optimal exposure images of
each method, as shown in Table 2. Table 2 shows that the optimal exposure image taken by
the proposed algorithm has a small gradient, but the number of saturated pixels is much
lower than that of other algorithms, and the signal-to-noise ratio is increased by at least
2.4031 dB.

Table 2. Comparison of quantitative indices of the optimal exposure image of each method under bright conditions.

Index CDM AGLM ODEM EWGM GBM Proposed Method

S 0.0018 0.0012 0.0021 0.0012 0.0021 0.00021439
Average gradient 7.4980 7.1278 7.6342 7.1278 7.6342 5.8384

Ratio of saturated pixel/% 0.65 0.41 0.74 0.41 0.74 0.010529
SNR/dB 12.8128 13.5534 12.7366 13.5534 12.7366 15.9565

The average gradient equation in this paper is expressed as:

G =
1

m× n ∑m
i=1 ∑n

j=1

√√√√(
∂ f
∂x

)2
+
(

∂ f
∂y

)2

2
(13)

where ∂ f
∂x indicates the gradient in the horizontal direction and ∂ f

∂y indicates the gradient in
the vertical direction, m and n indicate the image size.

SNR formula is expressed as:

SNR = 20log10
Imax − Imin

σ
(14)

where Imax and Imin respectively indicate the maximum and minimum values of the image
gray level, and σ represents the standard deviation of the image.

In order to further improve the exposure accuracy and the exposure quality, curve
fitting is performed on the S value of the obtained images. Sampling with λ1

′
= 10 ms in

the curve. The resulting curve is shown in Figure 4.

Figure 4. Curve of exposure quality under bright conditions.
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It can be seen from the curve that the optimal exposure time is 41 ms. Through actual
shooting, the quality of the image taken at exposure timing of 41 ms is better than that at
exposure timing of 31 ms and 51 ms. The determination of the optimal exposure time is
accurate, which verifies the accuracy of the algorithm proposed.

3.2. Experiment under Dark Conditions

Suppose that the exposure time step λ2 = 50 ms under dark conditions to take eight
consecutive shots of target 2. The exposure quality is the highest when the exposure time
is 205 ms. The optimal exposure image obtained by other algorithms is shown in Figure 5.

Figure 5 shows that the experimental results are consistent with the experimental
results under bright conditions, and more intuitively reflecting the superiority of the
algorithm. Figure 5 shows that the experimental results are consistent with the experimental
results under bright conditions, and more intuitively reflecting the superiority of the
algorithm. The camera’s default automatic exposure algorithm is similar to the average
gray scale method. It has certain advantages in the overall brightness of the image, but
the overexposed area in the image is not limited. The one-dimensional entropy method
pays attention to the overall information of the image. The result of the gradient-based
method is consistent with the one-dimensional entropy method. The contrast of the image
is relatively strong, but it also cannot limit the overexposure phenomenon. The entropy
weighted gradient method comprehensively considers the amount of information and
edge details of the image, which makes overexposure and underexposure of the image
suppressed to a certain extent, but information loss in some areas is still unavoidable. The
entropy matrix of the optimal exposure image obtained by the proposed algorithm has the
least blue part and the smallest saturated area of the image, which can clearly show the
detailed information of the marked area and even the whole image.

Some other objective indices were used to compare the optimal exposure images
obtained by each method. As shown in Table 3, the optimal exposure image taken by the
proposed algorithm in this scene has the smallest average gradient, but the number of
saturated pixels is much lower than that of other algorithms. The signal-to-noise ratio is
improved by at least 1.6730 dB.

Table 3. Comparison of quantitative indices of the optimal exposure image of each method under dark conditions.

Index CDM AGLM ODEM EWGM GBM Proposed Method

S 0.0084 0.0108 0.00070877 0.0051 0.00070877 0.00001373
Average gradient 12.1817 12.7600 10.1319 11.2274 10.1319 8.3012

Ratio of saturated pixel/% 4.59 5.61 1.25 3.56 1.25 0.0047302
SNR/dB 11.2633 11.0264 12.4882 11.5696 12.4882 14.1612

According to the curve, the optimal exposure time is 180 ms. However, the actual
quality of the image taken at exposure timing of 180 ms is worse than that at exposure
timing of 205 ms. According to the rules for determining the optimal exposure time defined
in Section 2.5, the optimal exposure time in this scene is 205 ms. It verifies the necessity of
the rules in Section 2.5.

In order to further improve the exposure accuracy and improve the exposure quality,
we fit the S value of the images obtained by the proposed algorithm to a curve, and sample
it with λ2

′
= 25 ms. The resulting curve is shown in Figure 6.



Sensors 2021, 21, 3306 11 of 14

(a) Camera’s default automatic exposure method

(b) Average gray level method

(c) One-dimensional entropy method

(d) Entropy weighted gradient method

(e) Gradient-based method

(f) Proposed method

Figure 5. The optimal exposure image, the three-dimensional image entropy matrix, segmentation of
ROS, and the enlarged view of the labeled region of each method under dark conditions from left to right.
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Figure 6. Curve of exposure quality under dark conditions.

3.3. Experiment Results Analysis

The above experimental results show that there are partial overexposure and underex-
posure in the images taken by the conventional automatic exposure algorithm, resulting
in the loss of information of the image. The algorithm proposed can effectively solve this
problem. Compared with several other algorithms, the algorithm proposed has better
subjective and objective consistency. Subjectively, it can minimize the overexposed and
underexposed areas in the image under the premise of making full use of the camera’s
dynamic range, so as to maximize the detailed information of the image. Objectively,
although the average gradient of the image is relatively smaller compared with other
methods, the number of saturated pixels in the image is the least and the signal-to-noise
ratio is the highest, which exactly meets the quality requirements of remote sensing images.

During the experiment, it was found that other imaging parameters of the camera
would have a certain effect on the accuracy of the algorithm, such as the focal length. In the
series of experiments conducted, the camera was out-of-focus in one of the experiments.
The optimal exposure image obtained is blurred, as shown in Figure 7. The overexpo-
sure area has not been effectively suppressed. After preliminary analysis, the image is
blurred due to the defocus of the camera, which in turn causes the inaccuracy of the two-
dimensional entropy matrix of the image and affects the segmentation of ROS and ROUS.
Therefore, there is an error in the fitted exposure quality curve which ultimately affects the
determination of the optimal exposure time. Research work would be carried out on the
problem of accurate research of optimal exposure time for strong noise imaging systems.

(a) (b)

Figure 7. (a) Image taken with defocus; (b) enlarged view of the marked area.
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4. Conclusions

In summary, a new automatic exposure method of plane array remote sensing image is
proposed in this paper to appropriately evaluate the exposure quality of the image and then
determine the optimal exposure time more accurately. Experiments conducted have proven
that the theoretical model herein has certain advantages for image characteristics in terms
of brightness, edges, information volume, and signal-to-noise ratio. It is more suitable
for remote sensing imaging than current methods nowadays. The automatic exposure
method is suitable for plane array space cameras, and it can also be rolled out to other
types of cameras and applied in other engineering fields to solve the misuse of the camera’s
dynamic range to obtain high-quality original images.
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