
Infectious agents have a long history of causing disease in 
humans and are a major contributor of childhood mortality 
worldwide (Table  1). For many infectious agents, a 
complex interaction between the host and pathogen has 
developed over time as a result of an evolutionary co-
existence and adaptation that is now reflected in both 
human and pathogen genomes. Initial studies have 
looked at these human-pathogen interactions on a broad 
scale, asking what components of the (typically human) 
genome are associated with disease susceptibility [1]. 
However, infectious diseases, unlike many other diseases, 
offer the chance to dissect this more precisely as the non-
host or ‘environmental’ component (the pathogen) has a 
genome that can be assayed just as accurately as the 
human genome. Today, we have the appropriate tools and 
platforms in place to begin examining these adaptations 
from a whole-genome perspective, using samples directly 
from clinical studies. By directly observing this human-
pathogen interaction in natura, we can avoid the require-
ment for artificial models, which tend to be tedious to 
construct and may not reconstitute human physiology 
accurately [2]. This generates a powerful approach, as it 
integrates two complementary (but previously thought to 
be distinct) areas of infectious disease research - host 
genetic susceptibility to infection outcomes and pathogen 
genetic variation leading to differential virulence and 
individual susceptibility.

On the basis of data obtained using biological candidate 
approaches, it has been assumed that broad-based 
responses mediated by B and T cells (both CD4+ and 
CD8+) were the primary defenses against infectious agents 
and that these were sufficient for protection against most 
infecting pathogens [3]. Defects in Interleukin 2 (IL-2) 
signaling resulted in failed clonal expansion of both B 
and T cells, leading to severe combined immune defici-
ency [3]. Other examples include X-linked agamma-
globulin emia - caused by mutations in Bruton’s tyrosine 
kinase - where no mature antibody-producing B cells are 
produced, resulting in no antibody production [4]. 
However, in the majority of common infectious diseases 
studied so far from a genomic and genome-wide asso-
ciation perspective, the evidence has tended to point 
away from a picture of high-penetrance, generalized 
susceptibility caused by critical defects in single genes, 
and instead towards a more complex picture of multiple 
lower penetrance effects implicating individual genetic 
components for each invading pathogen. There are some 
notable exceptions to this, such as the shared human 
leukocyte antigen (HLA) associations (suggesting T-cell 
involvement) in leprosy susceptibility [5] and HIV viral 
set point [6]. As HLA is crucial for recognition of 
processed pathogen molecules and the initiation of the 
CD4+ and CD8+ T-cell response, it was unsurprising that 
some degree of shared susceptibility between pathogens 
is observed.

Recent evidence has suggested an important role for 
innate immune interactions in disease susceptibility [5,7] 
and specific evolution and adaptation of both host and 
pathogen genomes to the current state of mutual co-
existence. Genome-wide association studies (GWASs) 
necessarily assay common genetic variation of mostly low 
penetrance, and this approach is now being used to study 
host genetic susceptibility to infectious diseases (Table 2). 
Some of these recent GWAS data on infectious diseases 
have indeed pointed clearly to surprisingly specific 
pathogen-receptor interactions rather than broad-based 
susceptibilities. Similar advancements have been made 
from the pathogen perspective, in which GWASs on the 
pathogen genome have also yielded unexpected insights. 
The example in Plasmodium falciparum malaria 
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showcases the adaptability of the pathogen genome when 
confronted by the human immune response and anti-
malarial pharmacotherapy [8-10].

In contrast to highly penetrant Mendelian genetic 
defects causing broad-based susceptibilities with severe 
clinical outcomes, more common host genetic determi-
nants of susceptibility of lower penetrance and modest 
effect size could be confined to specific pathogen species 
[11] or even serotypes (and possibly genotypes). A better 
understanding of host-pathogen interactions will allow 
more thorough dissection of the host immune response 
generated by specific pathogen invasion. Because patho-
gens adapt to survival pressures by evading drugs, 
vaccines, and the host immune response and have a 
higher intrinsic mutation rate than humans, this im-
proved understanding will potentially have an impact on 
vaccine design and novel therapy discovery. In this 
review, we focus on three examples of this - dengue, 
Malaria, and meningococcal disease - to reflect the 
literature currently available.

Host-pathogen interactions with dengue virus
Dengue fever is caused by infection from one of four 
serotypes of the dengue (DEN) virus (DEN-1 to DEN-4), 
which belong to the Flaviviridae family (other members 
of which include the yellow fever and Hepatitis C viruses) 
[12,13]. It is an acute systemic viral infection with a wide 
spectrum of disease manifestations, ranging from sub-
clinical infection to severe and fatal disease. The 
common est severe complications are a transient increase 
in vascular permeability and altered hemostasis, which 

could lead to life-threatening hypovolemic circulatory 
shock (called dengue shock syndrome, DSS). It is the 
most common mosquito-borne infection after malaria, 
and its recent resurgence is largely attributed to a 
combination of factors, including exponential population 
growth, rapid urbanization, air travel and lack of proper 
vector control [14]. Previous studies have provided clues 
regarding the importance of pathogen genetic variation 
and severity of the infection. Amino acid variants 
determined from full-genome sequencing of the dengue 
virus revealed different potentials for causing severe 
dengue as opposed to uncomplicated dengue [15]. 
Current evidence also suggests that different serotypes of 
dengue virus are associated with more or less severe 
disease, following infections with DEN-2 [16-19].

From the human perspective, previous studies have 
pointed to several branches of the immune system in the 
pathogenesis of dengue [15-19], including the HLA 
system and dendritic cells, although there are few 
convincing genetic validation studies. However, a recent 
large-scale GWAS and replication study showed very 
strong statistical evidence of association between genetic 
variants at two distinct loci (MICB and PLCE1) and 
increased susceptibility to DSS (Table  2) [20]. MICB 
encodes MHC class I polypeptide-related sequence B, 
which is an inducible activating ligand for the NKG2D 
type II receptor on natural killer (NK) cells. NK cells are 
distinct from B or T cells and are crucial for the early 
response to viral infections and in shaping the subsequent 
adaptive immune response to viral infection [21-23]. 
Interestingly another recent GWAS found that a genetic 
variant in the closely related MICA gene is strongly 
associated with Hepatitis C virus-induced hepatocellular 
carcinoma, suggesting a pivotal role for MIC proteins in 
the pathogenesis of these Flaviviridae infections [24]. 
PLCE1 encodes phospholipase C epsilon gamma, and 
missense mutations in PLCE1 cause nephrotic syndrome 
[25], a kidney disorder in which dysfunction of the 
glomerulus basement membrane results in proteinuria 
and hypoproteinemia that, when severe, leads to reduced 
vascular oncotic pressure and edema. These elements of 
nephrotic syndrome have striking similarities with the 
hypovolemic shock in severe dengue and suggest an 
important role for PLCE1 in maintaining normal vascular 
endothelial cell barrier function. These associations with 
MICB and PLCE1 are not serotype specific, but instead 
are applicable across all four dengue virus serotypes [20].

The GWAS on severe dengue has revealed unexpected 
insights into its pathogenesis, as it points specifically to 
NK cell pathology, shared susceptibility pathways with 
shock, and possibly shared pathology with other Flavi-
viridae [20]. However, the locations of the causal genetic 
variants responsible for the observed associations are still 
unknown and await elucidation through fine-scale 

Table 1. Global causes of childhood deaths

Cause	 %

Pneumonia 18

Malaria 8

Sepsis 6

AIDS 2

Pertussis 2

Meningitis 2

Measles 1

Tetanus 1

Other infections 9

Preterm birth complications 12

Birth asphyxia 9

Congenital abnormalities 3

Diarrhea 15

Injury 3

Others 9

Infections contribute to 49% of childhood deaths globally. Causes that led to 
less than 1% of deaths are not presented. Adapted from [61].
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mapping. What is notable is that these observations 
suggest that subtle genomic differences in members of 
one viral family affect related, yet distinct, components of 
the human immune response. But is this molecular 
pathway of susceptibility the only route to Flaviviridae 
infection or is this shared pathway the only one for a wide 
variety of viruses? The genetic variation at both MICB 
and PLCE1 explained no more than 2.5% of the overall 
heritable variance in susceptibility to DSS, whereas very 
little evidence of disease association was observed 
elsewhere in the genome. Will a finer dissection of the 
infecting pathogen genome reveal more and discover 
some of the ‘missing heritability’? Whole-genome 
sequencing of the dengue virus isolated from patients 
with clinical data has been initiated on a large scale 
[19,26-29], and identification of mutations in dengue 
virus genes and their systematic reconciliation with 
human genotype and clinical phenotype will be possible 
in the near future.

The impact of host and pathogen genetic 
variations on individual susceptibility to 
meningococcal disease
Neisseria meningitidis is a Gram-negative, polysaccharide-
encapsulated bacterium and is the cause of meningo-
coccal meningitis and sepsis, which are potentially fatal 
infections without antibiotic treatment. Five out of the 
twelve identified N. meningitidis serotypes have been 
reported to cause epidemics (A, B, C, W135, and Y) [30]. 
Subgroup analysis with specific meningo coccal serotypes 
has revealed differential virulence capabilities of each 
serotype, with serotypes B and C causing more adverse 
infection outcomes than the others [31-33]. Unlike for 

meningococcal serotypes A, C, Y, and W135, a vaccine is 
yet to be developed for serotype B N. meningitidis, thus 
highlighting the need for improved understanding of the 
host-pathogen interactions involved. Earlier genetic 
studies examining human susceptibility to N. meningitidis 
sepsis were limited to known genes whose biological 
functions have been well characterized [34-36], and many 
were likely to be false-positive findings as they subse-
quently were not successfully validated by independent 
studies [37]. It is hoped that by better defining the critical 
elements at the host-pathogen interface using unbiased 
whole-genome approaches, more definitive answers on 
the susceptibility determinants of overall meningococcal 
infection and the extent of the immunogenic differences 
between serotype B N. meningitidis and the other 
serotypes will emerge.

A recent case-control GWAS study [7] on N. meningi
tidis sepsis (which included serotypes A, B, C, Y, and W-
135) in a UK collection, with validation in sample collec-
tions from Austria, the Netherlands, and Spain, showed 
significant evidence of association between genetic 
markers in Factor H (CFH) and CFH-related genes 
(CFHR3, CFHR1) on chromosome 1 and decreased sus-
cepti bility to meningococcal disease (Table 2). CFH and 
CFHR3 are atypical members of the complement family 
in that they are negative regulators of complement signal-
ing, protecting host cells from destruction through 
comple ment activation in response to infection [38].

Previous human mutation studies had shown comple-
ment deficiency to be a susceptibility factor for many 
Neisseria species [39], so perhaps this study [38] may not 
seem surprising. However, when examined, a new mecha-
nism was revealed. It is not the absence of complement 

Table 2. Host susceptibility genes identified by GWAS studies 

Pathogen	 Phenotype	 Gene	 N	cases/controls	 Effect	size	 P-value	 References

Dengue virus Severe dengue MICB 3,742/4,952 1.34 4.41 × 10-11 [20]

 Severe dengue PLCE1 3,742/4,952 0.80 3.08 × 10-10 [20]

N. meningitidisa Meningococcal disease CFH 1,443/6,079 0.64 2.2 × 10-11 [7]

P. falciparuma Severe malaria ABO 3,906/5,489 1.20 2.0 × 10-7 [49,62]

 Severe malaria HBB 2,045/3,758 0.63 3.7 × 10-11 [62]

M. leprae Leprosy NOD2 3,960/7,180 1.59 3.77 × 10-40 [5]

  RIPK2 3,960/7,180 0.76 1.38 × 10-16 [5]

  HLA-DR 3,960/7,180 0.67 5.35 × 10-27 [5]

  TNFSF15 3,960/7,180 1.37 3.39 × 10-21 [5]

  C13orf31-CCDC122 3,960/7,180 1.68 3.72 × 10-54 [5]

M. tuberculosis Tuberculosis - 3,632/7,501 1.19 6.8 × 10-9 [63]

HIV Viral set pointa HLA-B 486 9.6% 9.36 × 10-12 [6]

 Viral set pointa HLA-C 486 6.5% 3.77 × 10-9 [6]

HBV Chronic infection HLA-DP 2,086/4,301 1.75 6.34 × 10-39 [64,65]
aAnalyzed as a quantitative trait.
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that is important to the occurrence of widespread 
disease, but rather the presence of the factor H comple-
ment regulator. This means that the addition of comple-
ment to patients who were deficient in complement 
pathway components might not prevent them from 
suffering repeated disease, whereas the removal of the 
complement regulator might, because CFH protects the 
bacteria through a complex interaction of the host 
protein and bacteria (Figure  1). This new mechanistic 
under standing of the disease may have other implications 
as well, because the associations observed with CFH and 
CFHR genetic variants were significantly stronger (per-
allele increased risk of disease between 1.6-fold and 
1.8-fold compared with baseline; P-value about 10-5 to 
10-8) in collections that had a variety of N. meningitidis 
serogroup infections (enrolled before wide-spread 
serotype C conjugate vaccination), compared with those 
collections collected after widespread serotype C vacci-
nation was adopted (Spain; per-allele increase in risk 
about 1.3- to 1.4-fold, P -value about 10-2 to 10-3). The 
substantially weaker association at the CFH-CFHR3-
CFHR1 locus in the predominantly serotype B sample 
collection implies that serotype B N. meningitidis has 
subtly distinct mechanisms of host interaction from 
those of other serotypes and may explain why serotype B 
N. meningitidis has been refractory to vaccine develop-
ment attempts.

N. meningitidis defends itself from host complement-
mediated killing through sequestration of human CFH by 
factor H binding protein (fHBP), a surface lipoprotein 
present on all strains of N. meningitidis [40]. Owing to its 
antigenic potential and ability to induce bactericidal 
antibodies, fHBP is one of the antigens incorporated in 
the recombinant vaccine for group B N. meningitidis in 
vaccine trials. This GWAS observation [7] thereby 
confirmed an interaction between N. meningitidis and 
human CFH, mediated in a complex manner through 
fHBP, which was not previously detected in mutation 
studies of patients suffering from recurrent meningo-
coccal infections due to complement deficiency 
(Figure  1). As different allelic variants of CFH itself 
resulted in easily discernable differences in actual human 
susceptibility to meningococcal disease, therapeutic 
designs based on synergistic action targeting both fHBP 
and CFH remain a possibility. Such an approach could be 
more effective than manipulation of either molecule 
alone. The fHBP gene has recently been sequenced in 
various serotypes, revealing significantly higher sequence 
diversity in serotype-B than non-serotype-B N. 
meningitidis. This makes serotype-B N. meningitides 
more challenging to target from the point of view of both 
the host and the vaccinologist [41]. This could in part 
explain the much weaker association signal seen in the 
GWAS and implies a correlation between increased fHBP 

variability and virulence, which needs to be confirmed by 
future work.

Plasmodium falciparum
Malaria is a predominantly tropical disease vectored by 
the Anopheles mosquito, and up to 40% of the worldwide 
population is at risk of infection. Although infection by 
four different species of Plasmodium (falciparum, malariae, 
ovale, and vivax) is causative of malaria, P. falciparum is 
the predominant form globally. It also results in higher 
complication and mortality rates than the other three 
species [42]. Susceptibility to and severity as a result of 
Plasmodium infection are well studied examples of how 
host genetic factors affect the disease process. Natural 
genetic variation resulting in the sickle cell trait and 
Duffy blood group antigens are two clear examples 
whereby the human genome adapts specifically in 
response to an infectious agent. The parasite also exerts 
considerable selective pressure on the human genome 
[43], underlying yet again the importance of under stand-
ing the host-pathogen interface from both perspectives.

Although the immune responses to malaria have been 
extensively documented in both animal and human 
models [44,45], robust evidence on the specific response 
that is critical for protective immunity remains elusive 
[46,47]; often, the induction of a high degree of immuno-
genicity does not correlate with protective immunity 
[48]. GWASs have now made it possible to search 
systematically for strong association between functional 
variation in a given immune gene and susceptibility to (or 
severity of ) infection to identify the specific immune 
responses responsible for protective immunity. All 
genetic studies for human susceptibility to malaria have 
yielded two consistent results: the sickle hemoglobin trait 
is associated with a 5- to 10-fold reduced susceptibility to 
severe malaria, and the ABO blood group is associated 
with a more modest reduction (a per-allele odds ratio of 
1.2-fold increased risk for blood groups A, B, and AB 
compared with blood group O) [49]. Both findings have 
been confirmed by a subsequent GWAS on severe 
malaria in West Africa (Table 2), revealing that the major 
interaction point of interest from the host perspective is 
the red blood cell. Indeed, it is this interaction between P. 
falciparum and the red blood cell that gives rise to all the 
clinical symptoms of malaria, and normally functioning 
erythrocyte physiology has been shown to be crucial to 
parasite survival [50,51]. However, what is surprising is 
that genetic variation in all immune-related genes (such 
as the HLA, tumor necrosis factor (TNF) and 
lymphotoxin alpha (LTA) families), the very genes that 
have been thought to have critical roles in the immune 
response and clearance of P. falciparum infections [52,53] 
do not consistently show association with susceptibility 
in large collections of malaria patients.
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The paucity of findings from the viewpoint of the host 
beyond the red blood cell suggests that for malaria, 
genetic variations in P. falciparum itself might account 
for substantially more disease variance. The genomic 
approach adopted from the perspective of P. falciparum 
has been two-pronged: using genome-wide association 
and detection of natural selection to identify molecules 
crucial at the host-pathogen interface. It has been 
observed that the strong selective pressure exerted by 
P.  falciparum on the erythrocyte has led to increased 
incidence of otherwise rare hematological disorders 
(such as sickle-cell disease, hemoglobin C, and possibly 
thalassemia) [54,55]. A better understanding of the selec-
tive pressure that malaria has exerted on the immune 

system would thus yield considerable insight into the 
process of malaria pathogenesis and severity. Indeed, 
surveys of the P. falciparum genome using sequencing 
and genotyping have revealed it to be highly variable. 
Genes encoding Plasmodium proteins interacting with 
the host immune system, such as P. falciparum erythro-
cyte membrane protein 1 (PfEMP1), are often under 
balancing selection resulting from pressures from the 
host immune system on one hand and the need to 
maintain diversity on the other [8]. The sequencing of 
P.  falciparum virulence genes that interact with the red 
blood cell (var/PfEMP1) and transporters (such as pfcrt 
for chloroquine, pfsurfin for dihydroartemisinin and dfhr 
for cycloguanil) responsible for resistance to anti-malarial 

Figure	1.	The	complement	cascade,	factor	H	(encoded	by	CFH),	and	its	interactions	with	N. meningitidis	factor	H	binding	protein	
(fHBP). The milieux shown here are the host endothelial cells, the interstitium, and invading N. meningitidis cells. Factor H normally binds to 
glycosaminoglycan sugars on host cells. This same region in Factor H is bound by the N. meningitidis through factor H binding protein (fHBP). There 
is significant diversity in fHBP, which is more variable in N. meningitidis serogroup B than in other serogroups. The serum concentration of CFH also 
varies with CFH genotype. Adapted from Tan et al. [66].
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drugs revealed greater than average genomic diversity 
and the presence of positive selection signatures in these 
Plasmodium genes, indicating the continued evolution of 
the parasite in response to survival pressures from both 
the human immune response and to medical inter ven-
tion. Indeed, a GWAS of P. falciparum genetic variation 
using an array of over 17,500 markers obtained by 
parasite genome sequencing revealed very strong asso-
ciations between genetic variations in many drug trans-
porter genes, including the P. falciparum chloroquine 
transporter gene (PfCRT), P. falciparum dihydrofolate 
reductase (PfDHFR) and resistance to anti-malarial 
chemotherapy [9]. Strong evidence of association with 
drug resistance and positive selection was also observed 
at pfsurfin, a gene that had until then not been implicated 
in drug resistance. Curiously, PfSURFIN was reported to 
be co-transported with PfEMP1 to the infected surface of 
the red blood cell and is thought to be part of a protein 
complex involved in binding or transport of chemical 
compounds. The extension of this P. falciparum GWAS 
to severe malaria susceptibility in humans (as opposed to 
uncomplicated infection) will be extremely informative 
[56].

Future challenges
The outcome of a specific episode of infection is strongly 
suspected to depend in part on specific interactions 
between host and pathogen genotypes [57]. The cumula-
tive effect size from the contribution from the host and 
pathogen genomes is likely to be larger than each genome 
alone, and clinical outcomes of infection are unlikely to 
be explained by a reductionist approach that studies 
disparate individual components [58]. Even in less com-
plex organisms than humans, host resistance to patho-
gens has been shown to vary dramatically across different 
combinations of host and pathogen genotypes [59], with 
an even more complicated picture if the host is suscep-
tible to infection by multiple different strains of the same 
pathogen species. To this end, GWASs and pathogen 
sequencing have revealed fresh and often unexpected 
insights for host-pathogen interactions in revealing 
hither to unsuspected molecules (Table 2). In cases of 
both dengue and meningococcal disease, GWASs revealed 
surprising interacting host molecules (the NK cell 
pathway for dengue and complement inhibition by factor 
H for meningococcal disease) that are important in 
disease pathogenesis. In addition, the GWAS on meningo-
coccal disease revealed that pathogen genetic variation 
(in terms of different infecting strains) also contributes 
substantially to overall inter-individual susceptibility to 
disease - and this may also be case with dengue and other 
diseases.

Although the GWAS effort from the human perspective 
has not produced the novel insights for malaria seen for 

other infectious diseases, it is clear that this is more than 
compensated for by approaches from the parasite per-
spec tive, which have already begun to bear fruit. Var 
genes identified from analysis of the sequenced Plasmo
dium genome are already turning up potential antigenic 
sites of interaction with the human genome, with the 
potential for being vaccine targets [8], and combined 
selection and association analysis have revealed PfCRT, 
PfSURFIN, PfMDR and P. falciparum apical membrane 
antigen 1 (PfAMA-1) as crucial molecules interacting 
with both anti-malarial medications and the host 
immune system, respectively, as well as PFE1445c, which 
encodes a Plasmodium conserved protein [9]. So, in this 
case, more detailed work stemming from analysis of P. 
falciparum resequencing data could reveal crucial 
interaction points between host and parasite.

The new challenges in defining host-pathogen inter-
actions are starting to become computational, because to 
comprehensively analyze and integrate whole genome 
data for both humans and pathogens, complex bio-
informatics toolsets are required, as the order of human-
pathogen genotype-phenotype combinations increases 
exponentially. The search is further complicated by the 
well known observations that pathogen genomes are not 
as conserved as the human genome; for example, the per-
nucleotide mutation rate is 5 × 10-4 per generation [8] for 
the P. falciparum genome, compared with about 
2.5 × 10−8 for humans [60].

To aid in these challenges, high-throughput analysis 
pipelines can now be used for alignment and mapping of 
pathogen genomes generated by next-generation sequen-
cing experiments, thus allowing a comprehensive catalog 
documenting all pathogen genetic poly morphisms (not 
unlike the human HapMap project). This effort will 
enable in-depth characterization of pathogen phylogeny 
and measurement of correlations between pathogen 
genetic mutations and virulence, together with key human 
phenotypes of the infection (such as cytokine profile and 
disease severity). In most cases, the integration of 
genomic data obtained from GWASs and resequencing 
efforts from both the host and pathogen should reveal a 
complete catalog of the inter-individual susceptibility to 
infection.
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