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Abstract 

Objective 

  There is a need to increase the performance and longevity of dental composites and 

accelerate the translation of novel composites to the market. This study explores artificial 

intelligence (AI), specifically machine learning (ML), to predict the performance outcomes 

(POs) of dental composites from their composite attributes (CAs).  

Methods 
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An extensive dataset from over 200 publications was built and refined to 233 samples 

with 17 CAs and 7 POs. Nine ML models were evaluated for PO prediction performance using 

classified data, and Five ML models were evaluated for PO regression analysis. 

Results 

The KNN model excelled in predicting flexural modulus (FlexMod), Decision Tree 

model in flexural strength (FlexStr) and volumetric shrinkage (ShrinkV), and Logistic 

Regression and SVM models in shrinkage stress (ShrinkStr). Receiver operating characteristic 

area under the curve (ROC AUC) analysis confirmed these results but found that Random Forest 

was more effective for FlexStr and ShrinkV, suggesting the possibility of Decision Tree 

overfitting the data. Regression analysis revealed that the Voting Regressor was superior for 

FlexMod and ShrinkV predictions, while Decision Tree Regression was optimal for FlexStr and 

ShrinkStr. Feature importance analysis indicated TEGDMA is a key contributor to FlexMod and 

ShrinkV, BisGMA and UDMA to FlexStr, and depth of cure, degree of monomer-to-polymer 

conversion, and filler loading to ShrinkStr. 

Significance 

 There is a need to conduct a full analysis using multiple ML models because different 

models predict different POs better, and for a large, comprehensive dataset to train robust AI 

models to facilitate the prediction and optimization of composite properties and support the 

development of new dental materials. 
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1. INTRODUCTION 

At the 2019 Minamata Convention on Mercury, the World Dental Federation and 

International Association for Dental Research urged for more research on alternatives so dental 

amalgam restorations can be phased out [1]. This is because amalgam restorations still have 

significantly higher survivability and longevity than composites [2]. Composite success rates 

have been reported at 85% over 55 months compared to 92% for amalgam, and longevity is 

estimated at <8 years [3-5]. Main causes of composite failure include polymerization shrinkage 

stress and resin degradation leading to marginal gap and secondary caries formation, and 

restoration fracture [4, 6]. Thus, a longer-lasting restorative is an urgent oral health need. 

There have been numerous publications on the development of novel dental composites 

[7-14]. However, most commercial composites still use the classic bisphenol A glycidyl 

dimethacrylate (BisGMA), ethoxylated bisphenol A dimethacrylate (BisEMA), urethane 

dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) and glass filler 

combination due to the time, effort and expense needed to receive FDA approval for new 

monomers and filler. Also, modifying material composition to improve composite properties 

requires repetitive and inefficient in vitro formulation and testing. And since the relationship 

between composition and material properties is non-linear and multifactorial, it is difficult to 

design an optimal formulation for a specific material property. 

Data driven technologies and artificial intelligence (AI), especially Machine Learning 

(ML) and Deep Learning (DL), are intriguing methods for computational analyses in many 

fields, including computational material science [15]. DL models are better at tackling non-linear 

classification tasks and understanding the contributions of each component and what the model 

is learning. Thus, there is an explosive growth in the literature on ML and DL methods. 
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In dentistry, AI has been used to diagnose periodontally compromised teeth [16] and 

periodontal disease [17], predict dental implant success rate [17], make decisions to extract teeth 

for orthodontic treatment [18], etc., and was often found be as effective as trained specialists 

[19]. 

In dental materials, at the time of this writing, there was only one publication on using 

AI, and that was to determine the effect of composite attributes (CA) on the flexural strength of 

CAD/CAM resin composite blocks (RCB). UDMA, TEGDMA, and filler content were most 

important in predicting strength with high prediction performance and low error [20]. However, 

the utility of this information is limited because 1) only monomer type, filler type and loading 

were used and variables like monomer concentration were not (probably because commercial 

composite formulations are trade secrets); 2) a single source (manufacturer values or one article) 

was used for each product, which may be the reason for the high prediction performance and low 

error, i.e. the model may be overfitting the data; 3) the sample size of 12 is extremely small for 

AI models; 4) CAD/CAM composites are more homogeneous than direct composites; and, 5) 

CAD/CAM RCBs are not nearly as widely used as direct restorative composites. Furthermore, 

this model may not be as useful for direct composites, which would be subject to many more 

variables, such as the method of cure, curing lamp used, curing time, etc. Thus, a more extensive 

literature search for direct dental composites showed a large range of strength values 

(performance outcome, PO) for the same product. Finally, other POs need to be assessed since 

strength is not the only important PO for composites and other POs are needed to better 

determine how effective the AI is in identifying the most important CAs and optimizing 

composite design. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

Thus, the overall objective is to investigate the efficacy of AI models in determining the 

effects of CAs and predicting composite POs to aid in the development of durable composites 

and reduce the time, work and expense needed to translate experimental composites to the 

market. Specifically, for this work, our goal was to build an extensive and unique dataset of CAs 

and POs and determine the efficacy of different ML models in predicting composite POs.  

2. MATERIALS AND METHODS 

2.1. Dataset Construction 

Google Scholar (scholar.google.com) was used to identify scientific articles on dental 

composites. Company brochures were also used to further find composite attributes (CAs) and 

composite performance outcomes (POs). The CAs gathered were monomer type, monomer 

concentration, monomer molecular weight, initiators used, initiator concentrations, degree of 

monomer-to-polymer conversion, filler type, filler loading, filler shape, filler size, viscosity, 

density, and index of refraction. Composite POs gathered were depth of cure (which could also 

be a CA), radiopacity, flexural modulus, flexural strength, compressive strength, fracture 

toughness, fracture work, polymerization volumetric shrinkage, polymerization shrinkage stress, 

wear depth and cycles, water sorption, water solubility, survival rate, survival length, in vitro 

cytotoxicity (ED50), total fluoride ion release, ion release duration, and remineralization. This 

information was recorded in separate columns in a Microsoft Excel sheet, as available. This data 

was then preprocessed before being analyzed using nine AI models. 

2.2. Data Preprocessing 

All string values were changed to either integer or floating values, depending on its type. 

Before performing the AI analysis for each PO, samples that did not have values for that PO 

were removed and from the remaining set of samples, CA’s that only had 0’s were removed and 
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not included in the analysis. Missing values in the dataset’s CAs were imputed with KNN 

imputation for regression analysis [21], and multivariate imputation for classification analysis 

[22, 23]. By imputing the missing values, we enhanced the dataset to be as complete and 

representative as possible, maximizing the amount of usable data, preserving the statistical 

properties of the dataset and ensuring robust and reliable results. All further analyses were 

performed on the imputed data. Finally, since the data is continuous, each PO datum was 

classified and divided into two different classes (high/low) with respect to its mean value, where 

low means that the PO value is smaller or equal to the mean value, and high, means the PO value 

is larger than the mean value. 

2.3. AI Analysis 

After data preprocessing, the curated dataset was small, so (1) feature engineering was 

used to extract meaningful features from the limited data; (2) simple ML models that can work 

with little data were used to prevent overfitting, which would give an artificially and incorrectly 

high accuracy; and, (3) evaluation tools were implemented to assess the model’s performance.  

2.3.1. Classification 

For classification, nine different ML classification algorithms were trained using 80% of 

the curated and imputed data, including Support Vector Machine (SVM), Decision Tree, 

KNeighbors Classifier (KNN), Light Gradient Boosting Machine (LGBM), Random Forest, 

Logistic Regression, Gaussian Naïve Bayes, Extreme Learning Machine (ELM), and Extreme 

Grading Boosting (XGBoost). The remaining 20% of the data was used to test the AI models on 

how well the models predicted each composite PO. To evaluate the classification models’ 

performances, evaluation tools, such as accuracy (the proportion of correctly classified 

instances), precision (the proportion of true positive instances out of all instances predicted as 
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positive), recall (the proportion of true positive instances out of all actual positive instances), and 

F1score (the harmonic mean of precision and recall, i.e. how well those two correlate) were used.  

The Receiver Operating Characteristic Area Under the Curve (ROC AUC) and the AUC 

scores were also computed for each model. The ROC AUC curve plots the true positive rate 

(sensitivity) against the false positive rate (1-specificity) to show the model's performance, and 

the higher the AUC scores the better the model’s performance [24]. 

The dataset was further analyzed using the best performing model with a feature 

importance tool to find and rank the importance of features (CAs) in increasing or decreasing 

each PO: Decision Tree, Random Forest, XGBoost or LGBM [25]. Feature importance tool 

measures the contribution of each CA to the model’s predictions by evaluating how much each 

CA reduces impurity in the decision-making process. In tree architecture models, impurity refers 

to how mixed the data is at a particular node in the tree in terms of the target class (Figure S1). 

High impurity occurs when a node has a mix of different classes, which makes it harder to 

classify the data. Conversely, low impurity occurs when a node contains mostly one class, 

indicating more homogeneous and better-classified data. Note that results do not specify whether 

the CA increases or decreases the PO, just how important it is in changing the PO.  

Permutation importance was also determined. This method randomly shuffles the values 

of each feature (CA), observes its impact on the model’s accuracy and provides an estimate of its 

importance in the model’s accuracy in predicting low or high PO. So, while the overall feature 

importance calculated above shows the contribution of each CA to increasing or decreasing the 

PO, permutation importance shows how important the CA is for the model to correctly predict 

the classification of the PO.  

2.3.2. Regression Analysis 
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Since the original data is continuous, five regression models were trained on 80% of the 

curated and imputed data subset and tested on the remaining 20% to predict those continuous 

values. The five models used were: Support Vector Regression (SVR) [26, 27], Decision Tree 

Regression [28], Histogram Gradient Boosting Regression (HistGradientBoost) [29], Random 

Forest Regression [30], and a voting regressor (an ensemble learning method that combines the 

predictions from multiple regression models by averaging the individual predictions from each 

model to produce a final prediction with improved accuracy and robustness). The voting 

regressor is composed of Linear Regression, Random Forest Regression, KNN regression, SVR, 

HistGradientBoost, and Decision Tree regression.  

To evaluate the regression models’ performances, the explained variance score, R2, was 

calculated. It measures the variance in the PO as well as the influence of the CAs on these 

fluctuations in the model and quantifies how well the model accounts for the variability. 

Additionally, how well a model predicts the POs was assessed by calculating five different 

errors: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Median Absolute Error (MedAE), and Max Error (ME). These errors ensures that 

different aspects of the model's predictive accuracy are evaluated and facilitates model selection, 

refinement and interpretation of results: MAE provides an average of absolute errors [31], MSE 

emphasizes larger errors [31], RMSE gives a measure in the original units of the target variable 

[31], MedAE is robust against outliers [32], and ME highlights the worst-case prediction error 

[33].  
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3. RESULTS 

3.1. Dataset Construction 

200+ publications and company brochures were used to build the database of CAs and 

POs. The initial dataset consisted of 321 samples (composites) with 28 CAs and 17 POs. Despite 

the large number of publications and brochures used, many cells were empty, much of the 

information for commercial products came from brochures, which are not as trustworthy, and 

multiple sources of data for the same PO for the same composite gave deviant values. This 

dataset also included experimental monomers or fillers that were not used in other publications 

or composites. Thus, when the AI analysis was done, their contribution to the POs were 

disproportionately underweighted. So, the dataset was curated to include only commercial light 

cure composites to aid in the evaluation of the AI models.  

The final curated dataset contained 233 composites. Table 1 lists the 17 CAs and Table 2 

lists the 7 POs in this dataset. Table 1 also shows that there are CAs with missing values, so 

values were imputed into CAs, as described above (Section 2.2), to ensure that the model can 

accurately learn patterns and relationships without being biased by missing data.  

Table 1. Composite Attributes (Cas), Sample Sizes and Proportions to All Samples. 
CA Sample Size Proportion (%) 

1. BisGMA Concentration 39 17 
2. UDMA Concentration 11 5 
3. TEGDMA Concentration 44 19 
4. BisEMA Concentration 0 0 
5. DDDMA Concentration 0 0 
6. DX-511 Concentration 0 0 
7. EGDMA Concentration 0 0 
8. EBPDMA Concentration 0 0 
9. BMAEPP Concentration 1 0.4 
10. PEGDMA Concentration 0 0 
11. Silorane Concentration 0 0 
12. TCDUA Concentration 0 0 
13. MDP Concentration 0 0 
14. Filler Loading (Fill) 176 75 
15. Degree of Monomer to Polymer Conversion (DoC) 55 24 
16. Viscosity (Visc) 12 5 
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17. Depth of Cure (DepthCure) 34 15 
 

When each PO was analyzed, samples with no values for that specific PO were further 

removed, resulting in the samples sizes shown in Table 2. FlexStr had the largest sample size 

with 54.9% of all samples and FrackWk had smallest with 3.9%. There was evidence of 

overfitting when analyzing POs with small sample sizes, so CompStr, FracTough and FracWk 

were excluded from further analysis. The overfitting shows the importance of having a large 

sample size for training robust and accurate ML models.  

 

Table 2. Composite Performance Outcomes (POs), Sample Sizes, Proportions to All Samples, 
and Whether They Were Analyzed. 

PO Sample Size Proportion (%) Analyzed? 
1. Flexura Modulus (FlexMod) 103 44.2 Yes 
2. Flexural Strength (FlexStr) 128 54.9 Yes 
3. Compressive Strength (CompStr) 42 18.0 No 
4. Fracture Toughness (FracTough) 40 17.2 Yes 
5. Fracture Work (FracWk) 9 3.9 No 
6. Polymerization Volumetric Shrinkage (ShrinkV) 106 45.5 Yes 
7. Polymerization Shrinkage Stress (ShrinkStr) 45 19.3 Yes 

 
3.2. Classification 

3.2.1. Flexural Modulus 

Table 3 shows the performances of the different AI models for FlexMod. The KNN 

model performed the best in predicting FlexMod classification (i.e. whether a CA increases or 

decreases FlexMod), with an accuracy of 0.90, a precision of 0.92, a recall score of 0.90 and a F1 

score of 0.90, highlighting the balanced performance of the KNN model in accurately identifying 

low and high FlexMod instances while minimizing false positives (low FlexMod miss-predicted 

as high FlexMod) and negatives (high FlexMod miss-predicted as low FlexMod). 

Table 3. AI Model Performance for Flexural Modulus (FlexMod) 

Metric SVM Decision 
Tree KNN LGBM 

Rando
m 
Forest 

Logistic 
Regressio
n 

Gaussia
n Naïve 
Bayes 

ELM XGBoos
t 
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Accurac
y 

0.88 0.71 0.90 0.80 0.85 0.83 0.73 0.54 0.83 

Precisio
n 

0.90 0.74 0.92 0.84 0.89 0.85 0.77 0.57 0.88 

Recall 0.88 0.71 0.90 0.80 0.85 0.83 0.73 0.54 0.83 

F1 score 0.88 0.71 0.90 0.80 0.85 0.82 0.73 0.53 0.83 

 
Figure 1a shows the ROC AUC curves for each model. The KNN model had the highest 

AUC score of 0.97, indicating that the model is very good at distinguishing between high and 

low FlexMod across different probability thresholds and confirming the model’s performance. 
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Figure 1b shows results from the feature importance analysis using the Random Forest 

model, the highest performing model in Table 3 with a feature importance tool. Random Forest 

model reduces impurity by finding splits that make nodes purer, resulting in more accurate 

predictions. The greater the reduction in impurity across all trees in the forest, the higher the 

importance of the CA. The order of the six CAs that most impact FlexMod from highest to 

lowest importance is: TEGDMA (Feature Importance Score (FIC) = 0.39), BisGMA (FIC = 

0.19), Fill (FIC = 0.13), DepthCure (FIC = 0.10), UDMA (FIC =0.09), and DoC (FIC = 0.08) . 

Other CAs had negligible importance, but that could be due only a few composites containing 

those CAs. This means, that the model gives more weight to the values in TEDGMA when 

predicting for FlexMod, followed by BisGMA. 

Figure 1. Flexural Modulus. a) ROC AUC Curve of the 9 algorithms, b) Feature importances for Flexural 
Modulus. c) Feature importances per class.  
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Figure 1c shows the importance of each CA in the ML model predicting whether a 

composite would have low or high FlexMod. Thus, the permutation importance scores for each 

CA (Y-axis) indicate how much the model’s predictive accuracy decreases when the values of 

that CA are randomly shuffled (permuted) for a specific class (low or high FlexMod). If 

permuting a CA causes a significant drop in predictive accuracy, it means that the feature is 

crucial for predicting that class. For example, for low FlexMod (using only samples with below 

average FlexMod), TEGDMA is the most important feature, as permuting this CA presented the 

largest decrease in the model’s accuracy in predicting low FlexMod, with a drop of 0.048 

(4.8%). Similarly, BisGMA is the second most important feature for low FlexMod, with a 

permutation score (PS) resulting in a 0.04 decrease in accuracy, followed by UDMA (PS = 

0.008). For accurately predicting high FlexMod, TEGDMA is also the most important CA (PS = 

0.056). Similarly, BisGMA is the second most important feature for predicting high FlexMod 

(PS = 0.048). Notably, DoC also has a permutation score of 0.048 for high FlexMod. This is 

followed by Fill (PS = 0.020), DepthCure (PS = 0.008), and UDMA (PS = 0.004). These 

numbers are low, but since the model uses the scores from all of the features to make predictions, 

they are still important to note. Thus, when both BisGMA and TEGDMA were permuted 

simultaneously, the accuracy dropped by 20%. This also means that in the design of composites, 

the CAs that have the highest PS must be controlled the most to produce composites with low or 

high FlexMod. 

3.2.2. Flexural Strength 

For predicting low or high classification of FlexStr, the Decision Tree model performed 

the best (Table 4), with an accuracy, a precision, a recall score, and an F1 score of 0.73, each. 

While not high, these numbers are acceptable. 
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Table 4. Performance Scores for Flexural Strength (FlexStr) 

Metric SVM Decision 
Tree KNN LGBM Random 

Forest 
Logistic 
Regression 

Gaussian 
Naïve 
Bayes 

ELM XGBoost 

Accuracy 0.71 0.73 0.65 0.69 0.69 0.58 0.48 0.58 0.69 

Precision 0.72 0.73 0.65 0.69 0.70 0.58 0.47 0.58 0.69 

Recall 0.71 0.73 0.65 0.69 0.69 0.58 0.48 0.58 0.69 

F1 score 0.71 0.73 0.65 0.69 0.69 0.57 0.43 0.58 0.69 

Figure 2a shows the ROC AUC curves for each AI model in predicting FlexStr. Despite 

the Decision Tree having highest performance scores in Table 4, it only had the third-highest 

AUC score of 0.73. The Random Forest model had the highest AUC score of 0.802, followed by 

XGBoost (AUC score = 0.797). This indicates that while the Decision Tree model performed 

well overall, Random Forest and XGBoost demonstrated superior abilities in distinguishing 

between low and high FlexStr across various thresholds.  
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Feature importance analysis measured with the Decision Tree model (Figure 2b) showed 

that the six important CAs for predicting FlexStr in order of highest to lowest importance are: 

BisGMA (FIS = 0.42), DepthCure (FIS = 0.25), DoC (FIS = 0.14), Fill (FIS = 0.08), UDMA 

(FIS = 0.05), and TEGDMA (FIS = 0.04). The other CAs had negligible importance. 

Figure 2c shows the importance of CAs in predicting low and high FlexStr. For low 

FlexStr, BisGMA is the most important CA, as permuting this feature in the samples with below-

average FlexStr (low classification) presented the largest decrease in the model’s accuracy (PS = 

0.31). DepthCure is the second most important feature for classifying low FlexStr (PS = 0.29), 

followed by DoC (PS = 0.19), Fill (PS = 0.08), TEGDMA (PS = 0.034), and UDMA (PS = 

0.031). For high FlexStr we observe a similar pattern (Figure 2c). BisGMA is the most important 

Figure 2. Flexural Strength. a) ROC AUC Curve of the 9 algorithms, b) Feature importances for Flexural 
Strength. c) Feature importances per class.  
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(PS = 0.22), followed by DepthCure (PS = 0.16), DoC (PS = 0.11), Fill (PS = 0.026), TEGDMA 

(PS = 0.024), and UDMA (PS = 0.023). 

3.2.3. Compressive Strength 

Table 5 shows the performance metrics for the AI models in predicting CompStr. There 

was overfitting with the Decision Tree model, with scores of 1.0, probably due to the limited 

sample size. Also, in the dataset, of the 17 CAs, only Fill, DoC and DepthCure CAs had values; 

The rest of the CAs where empty. And from the 42 samples, Fill had 37 values, but DoC had 

only 11 values and DepthCure 4 values. With only one column having anything close to 

sufficient data, the models lack enough data to learn from. That leads to generalization, poor 

performance and overfitting. Imputing missing values may introduce bias or noise, especially in 

a small dataset, and result in unreliable models. Thus, further analysis was abandoned. More data 

is needed to ensure robustness and reliability of future analyses of CompStr. 

Table 5. Performance Scores for Compressive Strength (CompStr) 

Metric SVM Decisio
n Tree KNN LGBM 

Rando
m 
Forest 

Logistic 
Regressio
n 

Gaussia
n Naïve 
Bayes 

ELM XGBoos
t 

Accurac
y 

0.71 1.00 0.53 0.71 0.88 0.76 0.88 0.76 0.71 

Precision 0.85 1.00 0.58 0.50 0.88 0.82 0.90 0.87 0.85 

Recall 0.71 1.00 0.54 0.71 0.88 0.76 0.88 0.77 0.71 

F1 score 0.72 1.00 0.55 0.58 0.88 0.70 0.87 0.77 0.72 

 
 
 
3.2.4. Fracture Toughness 

Table 6 shows the performance metrics for the AI models in predicting FracTough. The 

Random Forest model seems to be overfitting the data, probably due to the limited sample size. 

Thus, further analysis was abandoned. More data is needed to ensure robustness and reliability of 

future analyses of FracTough. 

Table 6. Performance Scores for Fracture Toughness (FracTough) 
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Metric SVM Decisio
n Tree KNN LGBM 

Rando
m 
Forest 

Logistic 
Regressio
n 

Gaussia
n Naïve 
Bayes 

ELM XGBoos
t 

Accurac
y 0.88 0.63 0.81 0.75 1.00 0.75 0.63 0.56 0.69 

Precision 0.89 0.68 0.85 0.56 1.00 0.56 0.68 0.65 0.66 
Recall 0.88 0.63 0.81 0.75 1.00 0.75 0.63 0.56 0.69 
F1 score 0.86 0.65 0.77 0.64 1.00 0.64 0.65 0.59 0.67 
 
3.2.5. Volumetric Shrinkage 

Table 7 shows that the Decision Tree model had the best performance in predicting 

ShrinkV classification (accuracy of 0.81, precision of 0.82, recall score of 0.81, and F1 score of 

0.82). 

Table 7. Performance Scores for Polymerization Shrinkage Volume (ShrinkV) 

Metric SVM Decision 
Tree KNN LGBM Random 

Forest 
Logistic 
Regression 

Gaussian 
Naïve 
Bayes 

ELM XGBoost 

Accuracy  0.81 0.81 0.77 0.74 0.79 0.79 0.72 0.65 0.81 

Precision 0.81 0.82 0.77 0.76 0.79 0.79 0.73 0.67 0.81 

Recall 0.81 0.81 0.77 0.74 0.79 0.79 0.72 0.65 0.81 

F1 score 0.81 0.82 0.77 0.75 0.79 0.78 0.72 0.66 0.81 

 
Figure 3a shows the ROC AUC curves for each model in predicting ShrinkV. Despite the 

Decision Tree having the highest performance in Table 3, it had the fourth-highest AUC score of 

0.81. The highest AUC score was achieved by the Random Forest model (AUC score = 0.910), 

followed by XGBoost (AUC score = 0.889) and Gaussian Naïve Bayes (AUC score = 0.861). 

This indicates that while the Decision Tree model performed well overall, other models 

demonstrated superiority in distinguishing between low and high ShrinkV across various 

thresholds.  

Feature importance analysis measured with Decision Tree (Figure 3b) showed that the 

most important CAs for predicting ShrinkV in order of highest to lowest importance were: 

TEGDMA (FIS = 0.32), Fill (FIS = 0.19), DoC (FIS = 0.17), UDMA (FIS = 0.16), and BisGMA 

(FIS = 0.14).  
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Figure 3c shows the importance of CAs in predicting low or high ShrinkV. For low 

ShrinkV, DoC is the most important CA (PS = 0.17), followed by Fill (PS = 0.14), UDMA (PS = 

0.05), DepthCure (PS = 0.17), and TEGDMA (PS = 0.01). For high ShrinkV TEGDMA was the 

most important CA (PS = 0.28), followed by DepthCure (PS = 0.18), DoC (PS = 0.12), BisGMA 

(PS = 0.11), UDMA (PS = 0.07), and Fill (PS = 0.04). 

 

 

3.2.6. Shrinkage Stress 

Figure 3. Volumetric Shrinkage. a) ROC AUC Curve of the 9 algorithms, b) Feature importances for 
Volumetric Shrinkage. c) Feature importances per class.  
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Table 8 shows that Logistic Regression, SVM and XGBoost models had the best 

performance in predicting ShrinkStr, all with an accuracy of 0.89, a precision of 0.91, a recall 

score of 0.89, and a F1 score of 0.89. 

Table 8. Performance scores for Shrinkage Stress classification. 

Metric SVM Decision 
Tree KNN LGBM Random 

Forest 
Logistic 
Regression 

Gaussian 
Naïve 
Bayes 

ELM XGBoost 

Accuracy 0.89 0.56 0.78 0.50 0.61 0.89 0.83 0.61 0.89 

Precision 0.91 0.56 0.79 0.25 0.63 0.91 0.84 0.63 0.91 

Recall 0.89 0.56 0.78 0.50 0.61 0.89 0.83 0.61 0.89 

F1 score 0.89 0.55 0.78 0.33 0.60 0.89 0.83 0.60 0.89 

 
Figure 4a shows the ROC AUC curves for each model in predicting ShrinkStr. Logistic 

Regression had the highest AUC score of 0.963), followed by SVM (AUC score = 0.899). 

However, XGBoost only had an AUC score of 0.444, despite its high-performance scores. 

Feature importance analysis measured using XGBoost (Figure 4b) shows that the six 

most important CAs for the prediction of ShrinkStr were, in order of highest to lowest 

importance: Fill (FIS = 0.43), DoC (FIS = 0.37), DepthCure (FIS = 0.15), BisGMA (FIS = 0.04), 

and UDMA (FIS = 0.01). The other CAs had negligible importance. 

 Figure 4c shows the importance of the CAs in predicting low or high ShrinkStr. For low 

ShrinkStr, BisGMA and TEGDMA were the most important features (PS = 0.08 for both CAs), 

followed by DoC (PS = 0.04), DepthCure (PS = 0.03) and UDMA (PS = 0.008). For high 

ShrinkStr, DoC was the most important feature (PS = 0.10), followed by DepthCure (PS = 0.02). 

3.3. Regression 
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Table 9 shows the R2 scores for each of the analyzed POs. The Voting Regressor model 

demonstrated superior performance in predicting ShrinkV and FlexMod, achieving R2 scores of 

0.83 and 0.91, respectively. In contrast, the Decision Tree Regression model was best for 

predicting FlexStr and ShrinkStr, with R2 scores of 0.82 and 0.93, respectively.  

Table 9. R2 measure for regression. 
Model FlexMod FlexStr ShrinkV ShrinkStr 
SVR 0.83 0.32 0.72 0.77 

Decision Tree Regression 0.77 0.82 0.74 0.93 
HistGradientBoostingRegressor 0.84 0.70 0.79 -0.21 

Random Forest Regressor 0.77 0.41 0.77 0.84 
Voting regressor 0.91 0.64 0.83 0.91 

 
Figure 5 confirms the R2 results showing how well the actual values match the predicted 

values. Most of the data points are clustered closely around the ideal (dotted) line, indicating that 

Figure 4. Shrinkage Stress. a) ROC AUC Curve of the 9 algorithms, b) Feature importances for Shrinkage 
Stress. c) Feature importances per class.  
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the predicted values are very close to the actual values for most instances for the four POs 

analyzed. 

Table 10 shows the errors of the best regression models used to predict the different POs 

to assess the models’ performances. Overall, ShrinkStr has the lowest error metrics with MAE = 

0.49 MPa, MSE = 0.36 MPa, RMSE = 0.6 MPa, MAE = 0.34 MPa, and ME = 1.15 MPa, 

indicating that the model predicts ShrinkStr values close to the actual measurements. However, 

for FlexStr, despite achieving a relatively high R2 score of 0.82, the error metrics had the highest 

discrepancies between predicted and actual values, underscoring the challenges in accurately 

predicting FlexStr using the current models. Model refinement or alternative approaches may be 

 

Figure 5. Model fit: Predicted vs Actual Values from a) Voting Regressor for FlexMod, b) Decision Tree for 
FlexStr, c) Voting Regressor for ShrinkV, and d) Decision Tree for ShrinkStr. 
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necessary to improve prediction accuracy. For algorithms with lower performance, detailed error 

scores are provided in Supplemental Tables 1-4.  

 

Table 10. Error of the Best Regression Models 

Error 
FlexMod: 

Voting regressor 
(GPa) 

ShrinkV: 
Voting 

regressor (%) 

FlexStr: 
Decision Tree 

Regression 
(MPa) 

ShrinkStr 
Decision Tree 

Regression (MPa) 

Mean Absolute Error 1.08 0.87 11.86 0.49 
Mean Squared Error 2.17 2.01 318.22 0.36 

Root Mean Squared Error 1.47 1.42 17.83 0.6 
Median Absolute Error 0.55 0.28 7.19 0.34 

Max Error 3.77 4.07 55 1.15 
  Feature importance analysis using the regression models for each of the four predicted 

POs showed that for FlexMod, TEGDMA (FIS = 0.68), DoC (FIS = 0.15), and Fill (FIS = 0.13) 

 

Figure 6. Feature importances for a) FlexMod, b) FlexStr, c) ShrinkV, and d) ShrinkStr. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

were the most important (Figure 6a). For FlexStr, the most important CAs were UDMA (FIS = 

0.33), TEGDMA (FIS = 0.23), BisGMA (FIS = 0.17), DepthCure (FIS = 0.11), DoC (FIS = 

0.09) and Fill (FIS = 0.04) (Figure 6b). For ShrinkV, the most important features were 

TEGDMA (FIS = 0.52), DoC (FIS = 0.24), DepthCure (FIS = 0.18), BisGMA (FIS = 0.04), Fill 

(FIS = 0.01) and UDMA (FIS = 0.01) (Figure 6c). For ShrinkStr, the most important features 

were DepthCure (FIS = 0.57), DoC (FIS = 0.30), Fill (FIS = 0.12) and BisGMA (FIS = 0.007) 

(Figure 6d). 

4. DISCUSSION 

The specific objectives of this work were to build a larger dataset of composite attributes 

(CAs) and composite performance outcomes (POs) from an extensive literature search of dental 

composites and use that to determine the efficacy of different machine learning (ML) models in 

predicting POs so we can optimize composite design and develop durable composites. Despite 

the use of 200+ publications and gathering data for 321 composites, there were many empty cells 

due to the different data that was presented and the fact that much of the dental composites 

literature is focused on novel monomers and filler systems that are not widely used. Thus, only 

data on commercial composites were used, and after processing, a final dataset of 233 composite 

samples consisting of 17 CAs and 7 POs were analyzed with different ML models.  

As mentioned above, the only other published article on using AI to predict POs at the 

time of the writing of this manuscript only contained 12 samples, and most of that data was 

derived from company brochures [20]. While the results seemed to be very good, there is a 

danger of overfitting due to the small sample size. This was also evident in the present study for 

the results on compressive strength, fracture toughness and fracture work, which had perfect AI 

performance scores, but probably due to small samples sizes and overfitting. Thus, these POs 
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were deemed unreliable and excluded from further analyses. Furthermore, it was found that the 

reported PO data on the same commercial composite differed markedly from publication to 

publication, probably due to the different methods and instruments used to determine the POs. 

Thus, the first part of this work was a first attempt at gathering this data. Nonetheless, as can be 

seen from the POs that were excluded from all the analyses and the values that needed to be 

imputed, there is a need for more complete data on dental composites. Unlike in other fields and 

applications of AI, where there are tens of thousands of datasets, that is not the case here. 

In addition, the current dataset needs to be expanded to include data from experimental 

composites. The difficulty with this is that those composites tend to use unique monomers or 

fillers, leading to small sample sizes and making their contribution to POs more difficult to 

determine. Regardless, this is a necessary step if novel composites are to be developed. Thus, a 

future goal of the authors is to create an opensource dataset, where researchers can contribute 

their research data in exchange for the use of the dataset for their research. Another potential way 

to mitigate the small sample set for unique monomers and fillers, and a future goal, is to use 

chemical formulas as CAs instead of simply monomer name and/or concentration.  

For classified data (contribution to above average or below average POs), KNN 

performed the best in predicting low or high flexural modulus (FlexMod, Table 3 and Fig. 1a), 

Decision Tree performed the best for flexural strength (FlexStr, Table 4) and shrinkage volume 

(ShrinkV, Table 7), and Logistic Regression and SVM performed the best for shrinkage stress 

(ShrinkStr, Table 8). KNN’s superior performance for classifying FlexMod (Table 3 and Fig.1a), 

can be attributed to two factors: 1) KNN is good at identifying local patterns within the data. 

This is done by evaluating how similar the CA values are for two or more samples that belong to 

the same class, or the proximity of CA data points in the same PO class. Thus, it is called Nearest 
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Neighbors. Despite this, KNN may not outperform other models for all the POs, as the 

effectiveness of each model can depend on the specific characteristics and relationships between 

each PO and the CAs.  

2) Unlike linear models, such as Logistic Regression and Gaussian Naïve Bayes, KNN is 

a non-parametric model. This means it does not assume a specific form of relationship between 

features (CAs) and the target variable (PO), and that allows it to handle complex, non-linear 

relationships without needing prior knowledge about the data distribution [34]. This flexibility 

becomes evident when comparing KNN’s performance metrics with those of linear models 

(Table 3). For instance, KNN achieved a higher accuracy (0.90), precision (0.92), recall (0.90) 

and F1 score (0.90) compared to Logistic Regression (accuracy: 0.83, precision: 0.85, recall: 

0.83, F1 score: 0.82) and Gaussian Naïve Bayes (accuracy: 0.73, precision: 0.77, recall: 0.73, F1 

score: 0.73). Thus, KNN can better identify local patterns when handling complex, non-linear 

relationships in the data. 

On the other hand, Decision Tree performed best in predicting low or high FlexStr and 

ShrinkV. Decision Tree is based on classification trees, a tool that uses a tree-like model of 

decisions and their possible consequences. It splits the data into subsets based on the values of 

input features, creating branches that lead to different outcomes or class labels [35]. However, 

despite achieving the highest accuracy, precision, recall and F1 scores, the Decision Trees AUC 

scores were not the highest (Figures 2a and 3a), probably due to the its tendency to overfit the 

training data, especially when the model becomes too complex. The classification tree for 

FlexStr had 31 nodes and a depth of 6, and the tree for ShrinkV had 21 nodes and depth of 9 

(Figures S2 and S3) [36], which may be too complex for the data size. This complexity can lead 

the model to overfit the data, i.e. memorize the training data and perform very well on the 
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training data but struggle to generalize to new data because it has memorized instead of 

identifying patterns. This can affect the model’s ability to distinguish between low and high 

FlexStr and ShrinkV across different AUC decision thresholds, affecting the AUC score. This 

inconsistency in ranking means that the model struggles to maintain a high true positive rate (real 

high FlexStr values correctly predicted) across various AUC decision thresholds, leading to a 

lower AUC score.  

Alternatively, ensemble methods, like Random Forest and XGBoost, aggregate 

predictions from multiple decision trees [37], allowing them to identify more relationships within 

the data and produce predictions that are more robust across a range of AUC decision thresholds. 

Specifically, Random Forest builds multiple trees using different subsets of the data and features, 

which reduces variance and improves generalization [30]. XGBoost enhances the performance 

by iteratively refining predictions through a series of models that focus on correcting previous 

errors, using gradient descent for optimization and incorporating regularization to prevent 

overfitting [38]. In contrast, the Gaussian Naïve Bayes model, even though it is simpler, assumes 

independence between features which works well when the data (CAs and PO) is not too 

complex [39].   

Despite this, the Decision Tree remains a good choice. Although it has a lower AUC 

score, it achieved higher performance metrics (accuracy, precision, recall, and F1 score), and it is 

highly interpretable. This interpretability comes from the tree’s structure, where each decision 

node represents a feature split based on a certain threshold, and the branches represent different 

outcomes or decisions (Figures S2 and S3). This structure allows users to trace the path from 

features to final class labels, making it easy to understand how the predictions are made. For 

example, for FlexStr we can see that BisGMA was the most influential feature for classification, 
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and how it interacts with the other CAs to lead to the model’s final prediction (Figure S2). For 

ShrinkV we can see that TEGDMA was the most influential feature for classification (Figure 

S3). 

For ShrinkStr, the Logistic Regression, SVM and XGBoost models had high performance 

metrics (Table 8). However, only Logistic Regression and SVM models had high AUC scores 

(Figure 5a). Logistic Regression stands out in its probabilistic interpretation and simplicity, 

making it well-suited for tasks where understanding the impact of individual features is crucial, 

since it calculates the probability of an individual event happening [40]. SVM's strength lies in 

its ability to handle complex, non-linear relationships through kernels, by mapping data into 

higher-dimensional spaces for better separation of classes [41]. XGBoost's lower AUC score 

suggests challenges with generalization or overfitting, despite its robust overall performance. 

Finally, in the regression analysis, the Voting Regressor, an ensemble approach, 

benefited from combining multiple models' predictions, leading to robust performance across 

FlexMod and ShrinkV, which may involve complex interactions among features (Table 9, Figure 

5). On the other hand, the Decision Tree Regression demonstrated its capacity to capture 

complex relationships when predicting FlexStr and ShrinkStr (Table 9, Figure 5), because 

Decision Trees are good at modeling non-linear relationships and interactions between CAs.  

The variability in model performance across different POs can be attributed to the 

specific characteristics of each PO and how they relate to the CAs. For instance, POs with more 

straightforward or linear relationships with the CAs may benefit from the probabilistic and direct 

nature of models like the Voting Regressor. In contrast, POs that involve more complex 

interactions might fare better with models that can handle non-linear data, such as the Decision 

Tree Regression. This comprehensive analysis (performance metrics and error rates) highlights 
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the efficacy of ensemble methods like the Voting Regressor for linear and generalizable 

predictions (Tables 9 and 10), and the predictive power of Decision Tree Regression for 

capturing complex interactions across CAs within dental composite materials (Tables 9 and 10).  

 Our study’s results for FlexStr demonstrate greater robustness and reliability compared to 

the findings of Li et al. [20], primarily due to the significantly larger sample size used in our 

analysis (128 samples versus 12 samples in their study) improving the ability to detect patterns 

and relationships within the data. A larger sample size generally provides a more accurate and 

generalizable representation of the data, enhancing the validity of the results [42]. Despite this, 

for both studies, the highest R2 scores are achieved by Decision Tree based algorithm. In 

contrast, the smaller sample size in Li et al.'s study may limit the generalizability of their 

findings and increase the risk of overfitting. 

In short, the evaluation of the predictive capabilities of various ML models for dental 

composite properties underscores the importance of dataset size and model selection in achieving 

accurate and reliable predictions for PO. One model does not fit all the POs best because the 

relationship between CAs and POs may or may not be linear. Thus, as the dataset grows, and the 

results become more robust, different models may need to be used to best predict composite POs. 

Table 11: Comparison of Important CAs in Feature Importance Analysis 
FlexMod FlexStr ShrinkV ShrinkStr 

Classified 
Data 

Regression 
Analysis 

Classified 
Data 

Regression 
Analysis 

Classified 
Data 

Regression 
Analysis 

Classified 
Data 

Regression 
Analysis 

TEGDMA TEGDMA BisGMA UDMA TEGDMA TEGDMA BisGMA DepthCure 
BisGMA DoC DepthCure TEGDMA BisGMA DoC DepthCure DoC 

Fill Fill DoC BisGMA Fill Fill DoC Fill 
DepthCure DepthCure Fill DepthCure DepthCure DepthCure Fill BisGMA 

DoC UDMA UDMA DoC DoC UDMA UDMA  
UDMA  TEGDMA Fill UDMA  TEGDMA  

 
Table 11 shows a summary of results of the feature importance analyses using classified 

data and regression analysis. Feature importance analysis demonstrated some consistency 

between the regression and classification models. First, both analyses identified TEGDMA as the 
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most important feature for FlexMod (Table 11, Figure 1b, 6a) and for ShrinkV (Table 11, Figure 

3b, 6c). These results are plausible. Due to TEGDMA’s small molecular weight, increase in 

TEGDMA concentration would increase crosslink density and increase composite modulus. 

However, it is interesting that filler loading did not have more of an effect, since inorganic filler 

has higher modulus than resins. TEGDMA’s importance in polymerization shrinkage volume is 

also logical, as its low molecular weight is the main cause of increased polymerization shrinkage. 

Interestingly, it is not listed as a major contributor to shrinkage stress, since increased shrinkage 

generally leads to increased shrinkage stress. Nonetheless, composites with higher depth of cure 

and higher filler loading tend to be in low-shrinkage bulk cure composites, so that may have 

overshadowed the effect of TEGDMA. 

For FlexMod, both analyses also identified Fill, DepthCure, DoC and UDMA as 

important features, although not in the same order of importance (Table 11, Figure 1b, 6a). For 

FlexStr, BisGMA, DepthCure, DoC, Fill, UDMA, and TEGDMA were recognized as important 

features in both analyses, but not in the same order of importance (Table 11, Figure 2b, 6b). 

BisGMA (most important feature for classification) and UDMA (for regression) are usually the 

largest and strongest components of the monomer system, so it is not surprising that it is 

recognized as a main contributor to FlexStr. Both analyses of ShrinkV also identified Fill, 

DepthCure, DoC and UDMA as important features, in different order of importance (Table 11, 

Figure 3b, 6c). And both analyses of ShrinkStr identified DepthCure, DoC, Fill and BisGMA as 

important features in different order of importance (Table 11, Figure 4b, 6d). Again, DepthCure 

may be identified as important due to the low shrinkage and shrinkage stress of bulk fill 

composites overshadowing the effects of other CAs, and it is known that high filler loading is 

important in reducing shrinkage and shrinkage stress. It is interesting that UDMA and BisGMA 
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were not identified as more important in the regression analysis, even though BisGMA was 

identified as one of the most important CAs. 

However, there were also discrepancies between the classification and regression 

analyses. BisGMA was identified as the second most important feature for FlexMod 

classification but was not identified as an important feature in regression. For ShrinkV, 

DepthCure was identified as the third most important feature in regression, while for 

classification it was not recognized as an important feature. Finally, for ShrinkStr, UDMA was 

identified as the least important feature for ShrinkStr, but still considered important, for 

classification analysis, but it was not recognized as important for the regression analysis. These 

discrepancies are due to the two models having different goals. While regression is trying to 

estimate a PO value from the CA values, classification is just indicating if the PO will be low or 

high. Thus, some difference is expected.  

Finally, while filler loading should have also been a major contributor, it is possible that 

most of the samples were filled and hence, its variability is limited, and its effect underestimated. 

Furthermore, sometimes highly filled composites can be more brittle and lead to lower flexural 

strength. 

Our results indicate a need to create a massive database of commercial and experimental 

CAs and POs that our AI models can use to better predict POs for new dental composites and 

predict optimal CAs needed to produce specific POs. With more data, optimized AI models 

would allow dental materials researchers and manufacturers to input the CAs of their 

experimental composites and get a prediction of various POs before they fabricate and test their 

first composite. Our present work consists in the development of such a tool. This will 

significantly reduce development time because it would narrow the starting groups for testing. 
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5. CONCLUSIONS 

An extensive database of 321 dental composites with 28 composite attributes (CA) and 

17 performance outcomes (PO) was built using 200+ publications. However, many CA and PO 

values were missing due to a lack of data in the literature. This data was curated down to 233 

composites with 17 CAs and 7 POs. A larger database is needed to train more effective AI 

models. This dataset was preprocessed and used to train and test nine machine learning (ML) 

models to predict POs using the CAs. For classified data, the KNN model performed the best in 

predicting flexural modulus (FlexMod), the Decision Tree model performed the best for flexural 

strength (FlexStr) and volumetric shrinkage (ShrinkV), and the Logistic Regression and SVM 

models performed the best for classifying shrinkage stress (ShrinkStr). Receiver Operating 

Characteristic Area Under the Curve (ROC AUC) analysis concurred with the KNN, Logistic 

Regression and SVM results but found the Random Forest model to be more effective for 

FlexStr and ShrinkV, possibly due to overfitting by the Decision Tree model. For continuous 

data, regression analysis showed that the Voting Regressor was best for FlexMod and ShrinkV, 

and the Decision Tree Regression was best for predicting FlexStr and ShrinkStr. One model does 

not work best for all POs and need to be selected based on full analysis. Feature importance 

analysis on classified data showed some consistency to both the classified and regression 

analyses. For FlexMod and ShrinkV, TEGDMA contributed the most, for FlexStr, BisGMA and 

UDMA contributed the most, and for ShrinkStr, depth of cure and degree of monomer-to-

polymer conversion were the most important CAs. These CAs need to be controlled carefully to 

produce composites with the desired POs. AI can be used to predict composite POs based on 

CAs and be used to design dental composites, but the right model needs to be chosen and a more 

extensive database of CAs and POs is needed. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

6. ACKNOWLEDGEMENTS 

This work was supported by National Institutes of Health grants NIDCR DE031477 

(Y.S.K.), and NS128574 (Y.S.K.), Rising STAR Award (Y.S.K.) from the University of Texas 

System. NIH Artificial Intelligence/Machine Learning Consortium 1OT2OD032581-1-24 (M.F.) 

and HUB SPECIFIC PILOT 1OT2OD032581-1-31 (M.F) 

 

 

 

 

 

REFERENCES 

[1] E. N. Bulletin, "Summary of the Third Meeting of the Conference of the Parties to the Minamata 
Convention on Mercury," Earth Negotiations Bulletin, vol. 28, no. 59, 2019. 

[2] M. W. Araujo, R. D. Lipman, and J. A. Platt, "Amalgam: Impact on oral health and the 
environment must be supported by science," The Journal of the American Dental Association, 
vol. 150, no. 10, pp. 813-815, 2019. 

[3] F. Beck et al., "Survival of direct resin restorations in posterior teeth within a 19-year period 
(1996–2015): A meta-analysis of prospective studies," Dental Materials, vol. 31, no. 8, pp. 958-
985, 2015. 

[4] J.-P. Van Nieuwenhuysen, W. D'Hoore, J. Carvalho, and V. Qvist, "Long-term evaluation of 
extensive restorations in permanent teeth," Journal of dentistry, vol. 31, no. 6, pp. 395-405, 2003. 

[5] V. Moraschini, C. K. Fai, R. M. Alto, and G. O. Dos Santos, "Amalgam and resin composite 
longevity of posterior restorations: A systematic review and meta-analysis," Journal of dentistry, 
vol. 43, no. 9, pp. 1043-1050, 2015. 

[6] I. A. Mjör, J. E. Moorhead, and J. E. Dahl, "Reasons for replacement of restorations in permanent 
teeth in general dental practice," International dental journal, vol. 50, no. 6, pp. 361-366, 2000. 

[7] N. Satsangi, H. R. Rawls, and B. K. Norling, "Synthesis of low�shrinkage polymerizable 
methacrylate liquid�crystal monomers," Journal of Biomedical Materials Research Part B: 
Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society 
for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for 
Biomaterials, vol. 74, no. 2, pp. 706-711, 2005. 

[8] R. Danso et al., "Development of an oxirane/acrylate interpenetrating polymer network (IPN) 
resin system," Dental Materials, vol. 34, no. 10, pp. 1459-1465, 2018. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

[9] T. A. Whang K, Furman B, "Effect Of Boron Nitride Nanosheets On OASys Composite 
Properties," Journal of Dental Research (Special Edition IADR Abstracts), 2019. 

[10] J. H. Sathissarat, L. Chu, R. Danso, H. R. Rawls, and K. Whang, "Development of a difunctional 
oxirane and multifunctional acrylate interpenetrating polymer network composite system with 
antimicrobial properties," Journal of Applied Polymer Science, vol. 138, no. 31, p. 50773, 2021. 

[11] C. Bergeron, C. Ballard, Y. Li, W. Zhang, Z. Zhong, and K. Whang, "A low-shrinkage, 
hydrophobic, degradation-resistant, antimicrobial dental composite using a fluorinated acrylate 
and an oxirane," Journal of Applied Biomaterials & Functional Materials, vol. 20, p. 
22808000221087337, 2022. 

[12] M. Liao, H. Tong, X. Huang, F. Liu, J. He, and S. Mai, "Mechanical properties, biocompatibility 
and anti-bacterial adhesion property evaluation of silicone-containing resin composite with 
different formulae," Journal of Renewable Materials, vol. 10, no. 12, p. 3201, 2022. 

[13] Y. Sun et al., "Preparation and evaluation of novel bio-based Bis-GMA-free dental composites 
with low estrogenic activity," Dental Materials, vol. 38, no. 2, pp. 281-293, 2022. 

[14] S. K. Usul et al., "Investigation of antimicrobial and mechanical effects of functional 
nanoparticles in novel dental resin composites," Journal of Dentistry, vol. 123, p. 104180, 2022. 

[15] M. Flores et al., "Deep learning tackles single-cell analysis—a survey of deep learning for 
scRNA-seq analysis," Briefings in bioinformatics, vol. 23, no. 1, p. bbab531, 2022. 

[16] J.-H. Lee, D.-h. Kim, S.-N. Jeong, and S.-H. Choi, "Diagnosis and prediction of periodontally 
compromised teeth using a deep learning-based convolutional neural network algorithm," Journal 
of periodontal & implant science, vol. 48, no. 2, pp. 114-123, 2018. 

[17] R. S. Moayeri, M. Khalili, and M. Nazari, "A hybrid method to predict success of dental 
implants," International Journal of Advanced Computer Science and Applications, vol. 7, no. 5, 
2016. 

[18] S.-K. Jung and T.-W. Kim, "New approach for the diagnosis of extractions with neural network 
machine learning," American Journal of Orthodontics and Dentofacial Orthopedics, vol. 149, no. 
1, pp. 127-133, 2016. 

[19] N. Ahmed et al., "Artificial intelligence techniques: analysis, application, and outcome in 
dentistry—a systematic review," BioMed research international, vol. 2021, no. 1, p. 9751564, 
2021. 

[20] H. Li et al., "Interpretable AI explores effective components of CAD/CAM resin composites," 
Journal of Dental Research, vol. 101, no. 11, pp. 1363-1371, 2022. 

[21] O. Troyanskaya et al., "Missing value estimation methods for DNA microarrays," Bioinformatics, 
vol. 17, no. 6, pp. 520-525, 2001. 

[22] S. Van Buuren and K. Groothuis-Oudshoorn, "mice: Multivariate imputation by chained 
equations in R," Journal of statistical software, vol. 45, pp. 1-67, 2011. 

[23] S. F. Buck, "A method of estimation of missing values in multivariate data suitable for use with 
an electronic computer," Journal of the Royal Statistical Society: Series B (Methodological), vol. 
22, no. 2, pp. 302-306, 1960. 

[24] Z. H. Hoo, J. Candlish, and D. Teare, "What is an ROC curve?,"  vol. 34, ed: BMJ Publishing 
Group Ltd and the British Association for Accident …, 2017, pp. 357-359. 

[25]  A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch, "The feature importance ranking measure," 
in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML 
PKDD 2009, Bled, Slovenia, September 7-11, 2009, Proceedings, Part II 20, 2009: Springer, pp. 
694-709.  

[26] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support vector machines," ACM transactions 
on intelligent systems and technology (TIST), vol. 2, no. 3, pp. 1-27, 2011. 

[27] J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized 
likelihood methods," Advances in large margin classifiers, vol. 10, no. 3, pp. 61-74, 1999. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

[28]  M. Dumont, R. Marée, L. Wehenkel, and P. Geurts, "Fast multi-class image annotation with 
random subwindows and multiple output randomized trees," in International conference on 
computer vision theory and applications (VISAPP), 2009.  

[29] M. Mayer, S. C. Bourassa, M. Hoesli, and D. Scognamiglio, "Machine learning applications to 
land and structure valuation," Journal of Risk and Financial Management, vol. 15, no. 5, p. 193, 
2022. 

[30] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001. 
[31] C. J. Willmott and K. Matsuura, "Advantages of the mean absolute error (MAE) over the root 

mean square error (RMSE) in assessing average model performance," Climate research, vol. 30, 
no. 1, pp. 79-82, 2005. 

[32] P. Aristodemou, N. E. K. Cartwright, J. M. Sparrow, and R. L. Johnston, "Statistical analysis for 
studies of intraocular lens formula accuracy," American Journal of Ophthalmology, vol. 160, no. 
5, pp. 1085-1086, 2015. 

[33]  H. A. Dau, V. Ciesielski, and A. Song, "Anomaly detection using replicator neural networks 
trained on examples of one class," in Simulated Evolution and Learning: 10th International 
Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, 2014. Proceedings 10, 2014: 
Springer, pp. 311-322.  

[34] E. Fix, Discriminatory analysis: nonparametric discrimination, consistency properties. USAF 
school of Aviation Medicine, 1985. 

[35] T. Thomas, A. P. Vijayaraghavan, S. Emmanuel, T. Thomas, A. P. Vijayaraghavan, and S. 
Emmanuel, "Applications of decision trees," Machine learning approaches in cyber security 
analytics, pp. 157-184, 2020. 

[36] M. Bramer, "Avoiding overfitting of decision trees," Principles of data mining, pp. 119-134, 
2007. 

[37] A. A. Khan, O. Chaudhari, and R. Chandra, "A review of ensemble learning and data 
augmentation models for class imbalanced problems: combination, implementation and 
evaluation," Expert Systems with Applications, p. 122778, 2023. 

[38] T. R. Noviandy, G. M. Idroes, and I. Hardi, "Machine Learning Approach to Predict AXL Kinase 
Inhibitor Activity for Cancer Drug Discovery Using XGBoost and Bayesian Optimization," 
Journal of Soft Computing and Data Mining, vol. 5, no. 1, pp. 46-56, 2024. 

[39] M. Ontivero-Ortega, A. Lage-Castellanos, G. Valente, R. Goebel, and M. Valdes-Sosa, "Fast 
Gaussian Naïve Bayes for searchlight classification analysis," Neuroimage, vol. 163, pp. 471-479, 
2017. 

[40] P. Ranganathan, C. Pramesh, and R. Aggarwal, "Common pitfalls in statistical analysis: logistic 
regression," Perspectives in clinical research, vol. 8, no. 3, pp. 148-151, 2017. 

[41] A. Babu, S. G. Ghatnekar, A. Saxena, and D. Mandal, "Can Entanglement-enhanced Quantum 
Kernels Improve Data Classification?," arXiv preprint arXiv:2406.01948, 2024. 

[42] D. Rajput, W.-J. Wang, and C.-C. Chen, "Evaluation of a decided sample size in machine 
learning applications," BMC bioinformatics, vol. 24, no. 1, p. 48, 2023. 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24314998doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary file 

 

Table S1. Error scores for Shrinkage Volume. 

Error SVR Decision Tree 
Regression 

Hist Gradient 
Boosting 

Regressor 

Random Forest 
Regressor 

Voting 
regressor 

Mean Absolute 
Error 1.24 0.85 0.89 1.07 0.87 

Mean Squared 
Error 3.23 3.06 2.4 2.65 2.01 

Root Mean 
Squared Error 1.79 1.75 1.55 1.63 1.42 

Median 
Absolute Error 0.73 0.13 0.46 0.62 0.28 

Max Error 5.66 5.29 5.4 5.18 4.07 
 

Table S2. Error scores for Flexural Modulus. 
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Error SVR Decision Tree 
Regression 

Hist Gradient 
Boosting 

Regressor 

Random Forest 
Regressor 

Voting 
regressor 

Mean Absolute 
Error 1.27 1.19 1.48 1.61 1.08 

Mean Squared 
Error 3.96 5.19 3.63 5.37 2.17 

Root Mean 
Squared Error 1.99 2.28 1.91 2.32 1.47 

Median 
Absolute Error 0.64 0.4 1 1.19 0.55 

Max Error 6.15 8.89 4.28 7.49 3.77 
 

Table S3. Error scores for Flexural Strength. 

Error SVR Decision Tree 
Regression 

Hist Gradient 
Boosting 

Regressor 

Random Forest 
Regressor 

Voting 
regressor 

Mean Absolute 
Error 23.14 11.86 15.32 22.87 17.02 

Mean Squared 
Error 1180.08 318.22 521.12 1028.27 626.41 

Root Mean 
Squared Error 34.35 17.83 22.82 32.07 25.03 

Median 
Absolute Error 11.39 7.19 6.05 16.59 10.22 

Max Error 98.64 55 0.7 119.46 93.18 
 

 

 

 

 

 

 

 

Table S4. Error scores for Shrinkage Stress. 

Error SVR Decision Tree 
Regression 

Hist Gradient 
Boosting 

Regressor 

Random Forest 
Regressor 

Voting 
regressor 

Mean Absolute 
Error 0.97 0.49 2.12 0.77 0.61 

Mean Squared 
Error 1.19 0.36 6.25 0.85 0.47 
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Root Mean 
Squared Error 1.09 0.6 2.5 0.92 0.6

Median 
Absolute Error 0.92 0.34 2.61 0.74 0.5

Max Error 1.71 1.15 3.66 1.75 1.2
 

Figure S1. Random Forest of two the one hundred estimators, where gini is the impurity score. 

Figure S1. FlexStr Decision Tree. 31 nodes and Depth of 6.  
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Figure S2. ShrinkV Decision Tree. 21 nodes and Depth of 9. 
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