
Functionalized Hyaluronic Acid for “In Situ” Matrix
Metalloproteinase Inhibition: A Bioactive Material to Treat the Dry
Eye Sydrome
Susi Burgalassi, Marco Fragai, Oscar Francesconi, Linda Cerofolini, Daniela Monti, Gemma Leone,
Stefania Lamponi, Giuseppe Greco, Agnese Magnani,* and Cristina Nativi*

Cite This: ACS Macro Lett. 2022, 11, 1190−1194 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Hyaluronic acid (HA) is a naturally occurring
polysaccharide with many molecular functions, including main-
taining the structure and physiology of the tissues, tissue
remodeling, and inflammation. HA is found naturally in
physiological tear fluid, possesses excellent mucus-layer-adhesive
properties, and is successfully employed in the treatment of dry eye
syndrome (DES). However, HA has as major drawback: its rapid in
vivo degradation by hyaluronidase. We report on a unique material,
namely, HA-3, obtained by the functionalization of HA with the
metalloproteinase inhibitor 3 (MMPI). This material is charac-
terized by an increased resistance to hyaluronidase degradation,
associated with MMP inhibition properties. The ability of HA-3 to
prevent dehydration of human corneal epithelial cells in vitro and in vivo may accelerate the development of more efficient DES
treatment and broaden the application of HA in human diseases.

The highly diversified biochemical and biological roles of
metalloproteinases (MMPs) have been known and

investigated since the end of the 20th century. Their major
action is extracellular matrix (ECM) remodeling; thus, it is not
surprising that MMPs are widespread in most connective
tissues. However, MMPs have also been localized in many cell
types (i.e., endothelial, vascular, and muscular), suggesting this
family of proteins is also involved in cell signaling and
molecular pathways.1

MMPs are a family of Zn2+-containing endopeptidases. In
human tissues the 23 different MMPs currently identified are
structurally highly conserved. A major difference is in the S1′
hydrophobic pocket, located near the enzyme catalytic domain,
which presents different depths and dimensions and affects
MMP−substrate specificity.2

Under physiological conditions, MMPs are essential for the
maintenance of healthy states. Conversely, the overproduction
of active MMPs, due to an imbalance of natural MMP
inhibitors (i.e., tissue inhibitors of MMPs and TIMPs),
correlates to disease initiation and progression.3

In past years, the development of MMP inhibitors (MMPIs)
has represented a promising therapeutic approach to counter-
balance the abnormal activation of MMPs, and a plethora of
efficient synthetic compounds have been reported.4−8

However, the low selectivity affecting all the inhibitors
proposed, along with their poor physiological solubility and
bioavailability, caused the failure of the clinical trials

conducted.9,10 Thus, MMP inhibition was classified as an
elusive task, and synthetic MMPIs lost therapeutic interest.11

Some years ago, we developed a new family of MMPIs,12

structurally related to the nanomolar inhibitor NNGH13 but,
unprecedentedly, soluble in water (Figure 1). For example,
Figure 1 shows inhibitors 1 featuring a hydrogen (1a) or a
polar group (1b, PES_103) replacing the apolar sec-butyl
residue displayed by NNGH and conferring water solubility.
As we showed, polar groups do not affect the affinity of the
inhibitors (in the nanomolar range) vs a panel of MMPs
(Figure 1).14,15 Although innovative, water-soluble MMPIs
enable us to overcome the problem of bioavailability, but they
do not address the lack of selectivity.
In recent years, exosite targeting inhibitors, neutralizing

antibodies, or molecules able to inhibit MMP interactions with
cell surface binding counterparts have been proposed as
workarounds to selectively modulate MMP activity.11 Topical
application of MMPIs is another strategy successfully used to
overcome inhibitors’ lack of selectivity.16 In this context, we
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have proved the efficacy of water-soluble inhibitors PES_103
and 2 in “in situ” treatment of dry eye syndrome (DES), an
orphan pathology characterized by an increase of MMP-9
expression.17,18 In particular, we reported the effectiveness and
therapeutic potential of the PAMAM-based divalent MMP
inhibitor 2 (Figure 1) when locally administered in an
experimental model of dry eye.18

Undoubtedly, the inhibition of locally overexpressed,
detrimental MMPs is an effective strategy to overcome
problems associated with their indiscriminate inhibition.
Nonetheless, under these circumstances, the possible tissue
absorption of the locally administered inhibitor is a major
concern. Moving a step forward, in this manuscript we propose
a nontoxic new hyaluronan as a bioactive material to treat DES
“in situ”.
Hyaluronic acid (HA), a naturally occurring polysaccharide

consisting of the repetition of a disaccharide composed of D-
glucuronic acid (GLCA) and N-acetyl D-glucosamine
(GlcNAc), plays a role in numerous molecular functions that
contribute to the structure and physiology of the tissues,
modulating cell behavior during morphogenesis, tissue
remodeling, and inflammation.19,20 HA is found naturally in
physiological tear fluid and possesses excellent moisturizing
and mucus-layer-adhesive properties. The inherent biocompat-
ibility together with the susceptibility to chemical modifica-
tions have made HA particularly attractive for the development
of viscoelastic tools with a broad clinical potential, including
ophthalmology.21,22 HA has been studied extensively for its
applications for the treatment of DES. Dry eye is the disease of
the tears and ocular surface that results in symptoms of
discomfort, visual disturbance, and tear film instability.23

Between 5 and 34% of people are affected by dry eye, with
symptoms ranging from redness, burning, stinging, foreign
body sensation, pruritus, and photophobia.24 Currently, the
most popular therapy to treat DES is the use of artificial tears
made up of poly(vinyl alcohol), povidone, hydroxypropyl guar,
cellulose derivatives, and HA. These components collectively
have been shown to increase tear film stability, reduce surface

stress, and improve contrast sensitivity and optical surface
quality.
HA possesses excellent viscoelastic properties that can

lubricate the ocular surface, reducing friction during blinking
and ocular movements.25 Thus, the water retention and
lubricant properties of HA are applied directly to the benefit of
dry eye.26 The major drawback of HA is its rapid in vivo
degradation by hyaluronidase. However, cross-linking and
functionalization are reported to increase the resistance to HA
against enzymatic degradation by hyaluronidase.
In this scenario, the proposed unique material, obtained by

the covalent functionalization of hyaluronic acid with the
nanomolar inhibitor 3 (Figure 1 and Scheme S1), is
characterized by an increased resistance to hyaluronidase
degradation, associated with MMP inhibition properties. In
addition, since 3 is covalently linked to the polysaccharide, no
release of the inhibitor can occur.
Inhibitor 3 was efficiently synthesized27 (see SI) and

properly armed to be linked to hyaluronic acid (see SI).28

Since DES is characterized by an ocular overexpression of
MMP-9, the inhibition property of 3 vs MMP-9 (Ki = 16.4 ±
1.7 nM) was assessed by an enzymatic assay (see SI for
details). We also evaluated the interaction of inhibitor 3 with
the catalytic domain of MMP-12 (selected as model MMP) by
NMR (Figure S1, Supporting Information). 2D 1H−15N
HSQC NMR spectra were recorded on a sample of 15N
isotopically enriched MMP-12 in the absence and presence of
an equimolar concentration of 3. The analysis of the residues
experiencing the largest effects proved that the binding of the
inhibitor 3 occurs at the active site and involves the amino
acids usually affected by the arylsulfonamide scaffold14,15,29

(Figure S1). The 2D 1H−15N HSQC NMR experiments were
recorded on a sample of an 15N isotopically enriched MMP-12
catalytic domain at the concentration of 0.1 mM, in 10 mM
Tris-HCl buffer with 10 mM CaCl2, 0.1 mM ZnCl2, 0.3 M
NaCl, 200 mM acetohydroxamic acid at pH 7.2, and 10% D2O.
The measurements were performed at 298 K on a Bruker
AVANCE III 950 MHz spectrometer, before and after the
addition of an equimolar concentration of the inhibitor 3
dissolved in DMSO-d6.
The functionalization of hyaluronic acid (MW 2000 kDa)

was performed as previously reported.28 The synthesis is
however briefly described in the Supporting Information
(Scheme S1).
The chemical composition, the rheological properties, the

nontoxicity, as well as the inhibition properties vs MMPs and
the increased enzymatic stability in vitro of the new material
with respect to the native hyaluronan has been proved by
physicochemical tests, as previously reported.28

The ability of HA-3 to prevent dehydration of human
corneal epithelial cells was first investigated by an in vitro test
and compared to a commercial product (OPTO yal A − Sooft
Italia S.p.A.). As shown in Figure 2, the treatment of HCECs
(human corneal epithelial cells) with the commercial tear
substitute (OPTO yal A) and the HA-3 derivative reduces the
viability of cells after exposure of the cell monolayer to 30 min
of continuous air flow compared to untreated cells (complete
medium), but to a significantly lesser extent than with PBS.
Furthermore, cell viability after 30 min of contact with OPTO
yal A is not statistically different from that observed after
contact with HA-3. This result is important considering that
the commercial product which contains amino acids, in
addition to hyaluronan that positively contributes to the

Figure 1. Structure of NNGH, of water-soluble inhibitors 1a,b of
PES_103, and of PAMAM-based inhibitor 2.
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lubricating effect of the polysaccharide, shows the same
effectiveness as HA-3.
The activity of functionalized HA, HA-3, on DES was then

tested on rabbits in an experimental model that is accompanied
by the increase in MMP-9 expression.30 The Schirmer test
scores (reported as millimeters of wet strip 3 min after
insertion) obtained before (basal values) and after (dry eye)
treatment with AS, and relevant to the treatment with the
formulation under test, are reported in Figure 3. A decreasing

trend of the tear production was observed after beginning AS
administration, even if statistically different (p < 0.05, unpaired
t test with Welch’s correction) from the basal value (17.19
mm) only at the fourth and fifth day of treatment. Eyes treated
with HA-3 showed greater scores with respect to control dry
eyes at all experimental times, with values of about 20 mm and
with statistically significant differences on the third, fourth, and
fifth days of treatment (p < 0.05, unpaired t test with Welch’s
correction). Despite that antimuscarinic drug administration
causes reduction of tear secretion, functionalized HA is able to
maintain the normal hydration degree on the corneal surface.
We believe that this ability is due to the well-known property
of the HA of water being retained by virtue of spreading as a
film over the cornea during the blinking.31−33

The slit-lamp examination of the fluorescein-stained corneas
revealed no occurrence of dotted staining in HA-3 treated eyes
(Figure S3, Supporting Information), differently from what
happens in the control dry eyes where dry spots appear in 50.0
and 62.5% of the examined eyes on the fourth and fifth day,

respectively. These results indicate that HA-3 treatment
protects against the appearance of defects of the corneal
epithelium due to induced DES. In ophthalmology, HA is
basically known as a product that keeps the ocular surface
moistened,31−33 and its dispersions are considered the best
artificial tear treatment. HA has a great capacity to bind water,
protecting the corneal epithelium cells from desiccation.
However, this effect is concentration dependent,34 and only
polymeric concentrations higher than 0.15% significantly
reduce the dry eye diseases. A role in ocular MMP expression
has never clearly been demonstrated for HA: in many papers
the protective effects of HA toward the corneal epithelium are
reported, but these are limited to a good wetting.33,35−38

Recently, this effect has been well analyzed by some authors,
on different experimental models and also on humans, who
found that the HA-based artificial tears were able to keep the
ocular surface well hydrated but not able to prevent the
appearance of corneal areas of fluorescein uptake.36,39,40

Conversely, the functionalized hyaluronic acid under inves-
tigation is not only able to prevent corneal dryness but also
corneal fluorescein staining. This behavior is attributable to its
conjugation with the MMP inhibitor, whose activity in DES
had already been proven in a previous study.18 After HA
addition, the molecule still manifests to protect the cornea
against the appearance of AS-induced dry spots (see Figure S3,
SI).
The influence of the presence of HA on the wetting and

mucoadhesive properties of the solution used on the ocular
surface was investigated by means of contact angle measure-
ments, as these can well detect both the properties. A thin layer
of mucin in solid form was used as substrate so that both the
wettability of the surface by the solution and the possible
contribution of mucoadhesive interactions to the measured
value could be evaluated. A contact angle value of 44.91° (SE
± 0.41) was measured for the MMP inhibitor solution,
showing that it already has a good wetting capability due to the
presence of a saline solution as the vehicle. The value
decreased to 42.09° (SE ± 0.59) and 42.92° (SE ± 0.63) for
the solutions containing HA and functionalized HA-3,
respectively, with statistically significant differences (p < 0.05,
unpaired t test; n = 10). This phenomenon can be attributed to
the mucoadhesive interactions that hyaluronic acid is able to
establish with the substrate of mucin. After all, hyaluronic acid
is known as a polymer with good mucoadhesive properties,41

and the mucoadhesion is a phenomenon highly linked to the
wetting abilities of the mucoadhesive toward the mucous
substrate; indeed, according to the wetting theory, the
wettability by the polymeric dispersion (and then its spreading
ability) has a primary importance in establishing mucoadhesive
interactions.42,43

Thanks to these characteristics and to the considerable
hydrogen bonding ability of the corneal epithelial surface,44 it
is reasonably possible that the presence of HA extends the
residence time of the MMP inhibitor in the precorneal area,
producing a longer-lasting activity. Further studies will aim to
evaluate the correct dosage of the product, especially about the
number of required daily administrations.
It can be concluded that the functionalized hyaluronic acid

HA-3 is able to maintain the activities of both its components
after ocular administration: preservation of the integrity and
hydration of the corneal surface in the induced DES model.

Figure 2. Viability of HCECs after contact with test samples and
exposure to continuous airflow for 0 and 30 min. Each sample was
tested in triplicate. Complete medium: cells not subject to air flow.
PBS: cells in contact with PBS for 20 min and subsequently exposed
to the air flow for 0 and 30 min. OPTO yal A: cells in contact with the
tear substitute for 20 min and subsequently exposed to the air flow for
0 and 30 min. HA-3: cells in contact with the HA-3 derivative for 20
min and subsequently exposed to the air flow for 0 and 30 min.
*Values are statistically different versus complete medium, p < 0.05.
#Values are statistically different from PBS.

Figure 3. Schirmer test scores obtained using a 1 mg/mL solution of
functionalized hyaluronic acid in the rabbit dry eye model (1 group, n
= 8). *Significantly different from control dry eye (p < 0.05, unpaired
t test with Welch’s correction).
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These unprecedented results open a new way for DES
treatments and increase the interest in HA to counteract
inflammation-induced tissue degradation.
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