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Abstract

Traditional molecular methods have been used to examine bacterial communities in gin-
seng-cultivated soil samples in a time-dependent manner. Despite these efforts, our under-
standing of the bacterial community is still inadequate. Therefore, in this study, a high-
throughput sequencing approach was employed to investigate bacterial diversity in various
ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second
rounds of cultivation. We used non-cultivated soil samples to perform a comparative study.
Moreover, this study assessed changes in the bacterial community associated with soil
depth and the health state of the ginseng. Bacterial richness decreased through years of
cultivation. This study detected differences in relative abundance of bacterial populations
between the first and second rounds of cultivation, years of cultivation, and health states of
ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria,
Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In
addition, we found that pH, available phosphorus, and exchangeable Ca* seemed to have
high correlations with bacterial class in ginseng cultivated soil.

Introduction

In East Asian traditional medicine, Panax ginseng (Korean ginseng) has been considered to be
an “adaptogen” for thousands of years. Korean ginseng displays significantly potent pharmaco-
logical activities, such as enhancing immune system function, central nervous system activities,
and physical and sexual functions. More specifically, these activities include anti-stress, anti-
aging, anti-fatigue, anti-oxidative, anti-diabetes, anti-cancer [1], anti-atopic, and anti-inflam-
matory actions [2], benefiting liver function and preventing liver disease [3,4], and preventing
osteoporosis [5]. Korea has become one of the leading producers of ginseng worldwide, as
described in a previous study [6]. The production of harvestable ginseng roots requires a culti-
vation period, which is the time required for ginseng roots to reach maturity, of 4 to 6 years.
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The use of long-term ginseng monoculture may lead to changes in the bacterial community in
ginseng-cultivated soil. Ginseng is also known to become susceptible to disease after 4 years of
cultivation, as described by Ohh et al. [7]. In Korea, disease in ginseng has been demonstrated
to cause yield losses of up to 30%-60% [8], and more severe diseases, caused either by physio-
logical disorders or infectious microorganisms, are known to appear in replanted ginseng crops
[9]. This crop failure can occur during the second round of cultivation, even if fertilizers are
supplied after harvest to restore soil nutrient balance. Therefore, the microorganisms resident
in these soil samples are of great importance because they perform vital processes such as
decomposition, mineralization, aeration, and recycling. Cumulatively, these processes increase
the amount of available nutrients for plants, increase the extent of soil aggregation, and are
important for suppressing disease. To date, several studies have attempted to investigate the
resident bacterial communities in ginseng soil. For example, rhizobacteria belonging to the
phyla Actinobacteria and Firmicutes were isolated from 1- to 3-year-old ginseng rhizosphere
soil samples using a culture-dependent method [10]. However, small factions of bacterial pop-
ulations exist in soil can be cultured in laboratory. Traditional molecular methods, such as
amplified polymorphic DNA [11,12] and denaturing gradient gel electrophoresis [13], have
also been extensively used to study the bacterial and fungal populations in ginseng soil. Despite
the use of these methods, only certain predominant microbial groups can be detected. There-
fore, the full extent of microorganism diversity in ginseng soil is still poorly understood. Recent
advances in the 454 pyrosequencing method have shown great promise in increasing our
understanding of the extent of bacterial diversity in soil [14-18].

Therefore, this study investigated the bacterial diversity, community structure and core bac-
terial populations in various Korean ginseng soil samples via amplification of the bacterial 16S
rRNA gene V1-V3 region and analyzed the amplification products using the 454 GS FLX Tita-
nium platform (454 Life Science, Rosche) in Chunlab, Inc. (Korea). Our goals were to construct
a comprehensive summary of bacterial diversity and community structure in Korean ginseng
cultivated soil and to investigate changes in the bacterial population over multiple years of cul-
tivation (0, 2, 4, and 6 years of cultivation), multiple rounds of cultivation (non-cultivated, first
round, and second round), different soil depths (0-10 cm, 10-20 cm, and 20-30 cm), and dif-
ferent health states of ginseng (healthy and unhealthy).

We hypothesized that the soil bacterial reservoir would become less diverse over time. Since
ginseng roots grow to depths of approximately 10-25 cm, the exudates of those roots may
affect the surrounding soil bacterial population. Consequently, we hypothesized that the bacte-
rial community would be different at different soil depths. Finally, it was hypothesized that the
microbial taxonomy would be different in healthy and unhealthy ginseng soil samples.

Materials and Methods

Field sampling and molecular research permits were granted by Gyeonggi do Agricultural
Research & Extension Services (project no. PJ008813042014). All necessary permits were
obtained for the field study, and the study did not involve endangered or protected species. No
other permissions were required.

Site description and soil sampling

In April 2012, 30 soil samples were collected from different ginseng cultivation areas in the
northern part of South Korea. Information of soil is shown in S1 Table. In these areas, the
famers cultivated the same commercialized Panax ginseng seeds. During ginseng cultivation,
artificial fertilizers and pesticides were not apply to soil. Soil samples were collected in the first
round of ginseng cultivation at years 2, 4, and 6 and in the second round of cultivation in years
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2,4, and 6 (designated R2, R4, and R, respectively). The soil samples without ginseng cultiva-
tion before, but prepared for ginseng cultivation, were collected for using as control or year 0 of
cultivation. After removing organic debris from the soil surface, samples were collected from
depths of 0-10, 10-20, and 20-30 cm. The ginseng plants with dark green leaves, normal stem,
light colored fleshy root, and no lesion on the surface of root, were considered as healthy gin-
seng (A). The ginseng plants with disease phenomenon such as wilt stem, not dark green col-
ored leaves, root rots, and black holes on the surface, were considered as unhealthy (B). The
soil samples taken from healthy (A) and unhealthy (B) ginseng plants were responded as
healthy (A) and unhealthy (B), respectively. The 3x3 m” subplots were collected, and 10 sam-
ples from each site were pooled. Soil samples were kept in Ziploc bags in icebox and then trans-
ferred to the laboratory, where they were stored in -50°C until further analysis.

Analysis of soil characteristics

Soil samples were air-dried and passed through a 2-mm sieve. Selected chemical properties of
these samples were analyzed according to the standard methods of the Rural Development
Administration, South Korea [19]. Soil pH and electrical conductivity (EC) were measured
with a pH meter (Thermo, Orion 900A) and an Orion 162A conductivity meter, respectively,
at a soil-to-water ratio of 1:5. Soil organic matter (OM) content, phosphorus content, and the
levels of available cations (K*, Ca®*, Mg**, and Na*) were assessed using the Tyurin method,
the Lancaster method, and the IN-NH,OAc (pH 7.0) method, respectively. The amount of
NO;-N was determined using an automatic wet chemical analyzer (Bran Luebbe- AA3).

DNA extraction and pyrosequencing

DNA was extracted using a Soil DNA Isolation Kit (MO BIO Laboratories, CA, USA) accord-
ing to the manufacturer’s instructions. Extracted DNA was stored at -20°C until analysis. The
V1-V3 region of the bacterial 16S rRNA gene was amplified from each sample using the 27F
and 518R primers. Fusion primers included the 454 pyrosequencing adapters, keys, linkers,
and barcodes, with the latter present only in the 518R-fusion primers. PCR reactions were car-
ried out as previously described [20]. DNA sequencing was performed by ChunLab, Inc.
(Seoul, South Korea) using a Roche/454 GS FLX Titanium platform, according to the manufac-
turer’s instructions.

Processing of sequencing data and taxonomic analysis

Sequences were processed and analyzed according to the bioinformatics procedures described
by Chun et al. [21] and Singh et al. [22]. Raw sequencing reads from different soil samples were
separated by unique barcode sequences. Sequences with short lengths (<300 bp) or including
>2 ambiguous bases (Ns) were removed before analysis. Primer, linker, and barcode sites were
then trimmed by pairwise alignment. Nonspecific PCR amplicons that showed no matches in
the 16S rRNA gene database using either the Hidden Markov Model or the EzTaxon database
were discarded. All sequence reads were additionally screened for chimeras using the BLAST
program. Taxonomic assignment was carried out by comparing the sequence reads against the
EzTaxon-e database, using a combination of the initial BLAST-based searches and additional
pairwise similarity comparisons. The following criteria were applied for the taxonomic assign-
ment of each read (x = distance values): species (x<0.03), genus (0.03<x<0.05), family
(0.05<x<0.1), order (0.1<x<0.15), class (0.15<x<0.2), and phylum (0.2<x<0.25) [23-26]. If
the distance was greater than the cutoff value, the read was assigned to an unclassified group. If
the sequence cluster could not be identified with a valid name, the accession number of the
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GenBank sequence entry sharing the highest sequence similarity with the sequence cluster was
used as a provisional name.

The sequences obtained in this study have been deposited into the NCBI short-read archive
database under accession number SRP047259.

Statistical analysis

Operational taxonomic units (OTUs), defined as units with 97% sequence similarity, were used to
generate rarefaction curves and to estimate the richness of these units using the abundance-based
coverage estimate (ACE), Chaol, and Shannon non-parametric indices using the MOTHUR pro-
gram [27]. The un-weighted pair group method with the arithmetic mean (UPGMA) was also
performed on the weighted-normalized UniFrac calculation [28]. These analyses were carried out
using the CLcommunity software (ChunLab Inc.). Comparative richness and diversity indices
were determined using the Tukey post hoc test, in ANOVA (XLSTAT). Non-metric multidimen-
sional scaling (NMDS) ordination, permutational analysis of variance (PERMANOVA), and sim-
ilarity percentage (SIMPER) tests for significant differences in bacterial community structure
were conducted using the Past3 software [29] based on the Bray-Curtis matrix of relative abun-
dance data. Boxplots showed significant differences in relative abundances of bacterial popula-
tions between rounds of cultivation were also conducted using the Past3 software [29]. Heat maps
of core bacterial classes and families were generated using the MeV software version 4.9.0 [30]. A
network of correlations of soil chemical compositions and core classes was constructed using the
Cytoscape software version 3.2.1 [31]. Bubble charts and other statistical analyses were performed
in the R2.15.3 software. All statistical tests were considered significant at p<0.05.

Results
Soil edaphic properties

The soil chemical compositions of the soil samples are shown in S1 Fig and S2 Table. The rela-
tionships between pH and all of the measured variables are shown in S1 Fig (first row and col-
umn). The data in S1 Fig indicates that the amounts of phosphorus (P,Os) and exchangeable
Ca’* vary according to soil pH. After planting, soil pH and level of exchangeable Ca** decreased,
albeit to varying extents, in the second round of cultivation. The levels of exchangeable Na* and
available NO;-N exhibited strong positive correlations with electrical conductivity (EC). The
amounts of organic matter (OM) and available P,O5 were also positively correlated with each
other and negatively correlated with the level of exchangeable Mg>". In addition, the levels of
exchangeable Ca®" and exchangeable Mg** were also positively correlated with each other.

Bacterial diversity indices are significantly different between 2- and
6-year-old ginseng soil samples

After quality filtering, trimming, and removal all chimeric reads, a total of 158,635 sequence
reads of the bacterial 16S rRNA were obtained from 30 soil samples, with an average of 5,287
reads per sample. The OTUs ranged from 1,299 to 5,453.

Rarefaction curves (Fig 1) indicated that the number of detected OTUs increased with the
number of sequences sampled in each of the soil samples. Moreover, none of the curves reached
an asymptote. In the same sampling area, rarefaction curves may be shifted by years of ginseng
cultivation, which increased more slowly than those in soil samples of long cultivation times.

The richness (OTUs) and diversity estimators (Ace, Chaol, and Shannon) are summarized
in Table 1. The number of estimated OTUs was on average 2 to 3-fold greater than the number
of observed OTUs. There were no significant differences in the richness and diversity
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Fig 1. Rarefaction curves depicting the effect of sequencing on the number of operational taxonomic units (OTUs) within 30 soil
samples. OTUs are shown at the 3% genetic distance levels.

doi:10.1371/journal.pone.0155055.g001

estimators among geographic areas, soil depths, rounds of cultivation, or health states of gin-
seng (data not shown), which may demonstrate similar diversity between soil samples based on
these factors. These indices (except valid reads) were able to demonstrate significant differences
between 2-year-old (Y2) and 6-year-old (Y6) samples, with the Y2 samples showing the highest
diversity and the Y6 samples showing the lowest diversity (p<0.01, Tukey’s test, Fig 2).

The time of cultivation may derive significantly bacterial diversity in 30 soil samples. An
unweighted-pair group method using an arithmetic means (UPGMA) tree was generated from
1,000 jackknife iterations based on the non-normalized weighted UniFrac calculation (Fig 3).
The 4-year-old soil samples from Juwonri (4-JW-A) were an out-group relative to the other
samples, possibly due to the predominance of the phylum Chloroflexi. The level of branching
was strongly categorized by years of ginseng cultivation, such as group I included the non-culti-
vated (Y0) and the 2-year-old (Y2) samples, and group II included 4-year-old (Y4) and 6-year-
old (Y6) soil samples. Based on hierarchical clustering, no significant differences were observed
between the bacterial communities present in soil samples obtained at different depths.

Overall bacterial communities

Pyrosequencing data revealed great bacterial diversity in the 30 soil samples examined. The
bacterial sequences were affiliated with 20 formally described phyla, 18 candidate phyla, and
several unclassified lineages. Candidate phyla are those that lack cultivated members and are
typically known only from 16S rRNA gene sequence data [24]. The most diverse
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Table 1. Diversity indices obtained at a genetic distances of 3%.

Sample
0-JJG-10
0-JJG-20
0-JJG-30
2-JW-A10
2-JW-A20
2-JW-A30
4-JW-A10
4-JW-A20
4-JW-A30
4-WD-B10
4-WD-B20
4-WD-B30
6-WD-A10
6-WD-A20
6-WD-A30
6-WD-B10
6-WD-B20
6-WD-B30
R2-JJK-A10
R2-JJK-A20
R2-JJK-A30
R4-YP-A10
R4-YP-A20
R4-YP-A30
R4-YP-B10
R4-YP-B20
R4-YP-B30
R6-YP-B10
R6-YP-B20
R6-YP-B30

doi:10.1371/journal.pone.0155055.t001

Valid reads

4009
4489
4043
9471
6817
3693
5164
5654
6564
4328
6528
6497
3638
6087
6275
5478
5568
4953
4981
4074
4615
4843
5842
4778
4229
5489
4260
5348
4981
5939

OTUs Ace Chao1 Shannon
2660 14647 8915 7.60
2873 15478 8622 7.67
2582 14470 8298 7.48
5453 32110 16676 8.13
4224 23708 12882 8.03
2486 14472 8209 7.55
2508 12401 6999 6.92
2476 12144 7036 6.38
2825 12037 6949 6.83
2723 18076 8937 7.57
4020 24534 12379 7.95
4376 27260 14114 8.13
1299 4522 3047 6.41
2507 11581 6638 6.62
2912 14904 8335 717
2890 15339 7988 7.40
2917 15110 8172 7.50
2446 13454 6921 6.92
3329 22830 11002 7.85
2762 17486 9221 7.67
3229 21301 11129 7.86
2682 16782 9393 7.38
3263 20048 10124 7.62
2684 15597 7425 7.45
2371 14848 7626 7.30
2918 16863 8495 7.42
2647 16588 8356 7.50
2444 11694 6477 7.05
2414 12380 6764 7.16
2857 14369 7868 7.29

Proteobacteria, Acidobacteria, and Chloroflexi phyla were detected in the 30 soil samples (aver-
age relative abundance 30.16%, 29.16%, and 18.15% of all samples, respectively), followed by
the phyla Gemmatimonadetes (5.59%), Actinobacteria (2.28%), Verrucomicrobia (2.34%),
Nitrospirae (2.09%), Bacteroidetes (2.07%), OD1 (1.52%), and Planctomycetes (1.40%) (Fig 4
and S3 Table). Other phyla, such as Chlorobi, Firmicutes, TM7, WS3, and AD3, were found at
>1% in relative abundance in only one of the 30 soil samples. All remaining phyla were found
at <1% in relative abundance in all of the samples. Chloroflexi was the dominant phylum in
the 4-JW-A group (48.84%). Acidobacteria was the most abundant phylum in the R4-YP-A,
R4-YP-B, and R6-YP-B groups, which were collected from the Yulpori area.

Correlation of bacterial classes with soil chemical properties

The “core microbiome”, as described by Shade & Handelsman [32], consists of microbial taxa
present in all soil samples. This study found 38 classes that were present in all soil samples.
These classes represented 90.07% to 97.60% of the relative abundance of all sequence reads
(Fig 5 and S4 Table). The bacterial communities were dominated by Acidobacteria (average of
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doi:10.1371/journal.pone.0155055.g002

14.91%) followed by Betaproteobacteria (12.74%), Anaerolineae (9.23%), Alphaproteobacteria
(9.47%), and Solibacteres (8.08%).

To test and verify the effects of environmental variables on bacterial classes, correlation
analyses of these factors and the relative abundance of 38 classes were performed using Spear-
man’s correlation (S5 Table). Soil pH strongly correlated with the prevalence of 24 of the 38
classes; in particular, pH correlated with Deltaproteobacteria, Sphingobacteria, Acidobacteria,
and Caldilineae at r = 0.82, r = 0.81, r = -0.74, and r = -0.72, respectively. Available phosphorus
(P,0Os) correlated significantly with the prevalence of 23 of the 38 classes, with the highest cor-
relations found with Sphingobacteria (r = 0.80) and Deltaproteobacteria (r = 0.77). Exchange-
able Ca®* exhibited a correlation with prevalence of 11 of the 38 classes, with the highest
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correlation to the class Acidobacteria (r = -0.86). Thus, we selected three factors (pH, available
phosphorus (P,0Os), and exchangeable Ca*) to delineate the network of correlation of these
factor to the bacterial classes, as shown in Fig 6.

Only Actinobacteria showed a significant difference between soil depths of 0-10 cm and
20-30 cm, with the highest observed population at the 0-10 cm soil depth.

Core OTUs

Only three individual OTUs were found in all soil samples (S6 Table), accounting for 3.38% to
7.81% of the community reads in each sample. OTU-1 and OTU-2 belong to the family Soli-
bacteraceae (phylum Acidobacteria), and the OTU-3 belongs to the genus Pseudolabrys (class
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Alphaproteobacteria). Interestingly, the numbers of these OTUs were similar between soil sam-
ples. Only OTU-2 demonstrated a significant difference between the healthy and unhealthy
groups (p = 0.01, F = 7.2; PERMANOVA test).

Core and distinct families

A total of 74 bacterial families were detected, including 27 assigned families and 47 uncultured
families present, which contributed to 45.70% and 28.18%, respectively, of the relative abun-
dance of all sequences (Fig 7 and S5 Table). These assigned families belong to the Acidobacteria
(21.87%), Proteobacteria (15.65%), Chloroflexi (5.20%), Verrucomicrobia (1.29%), Nitrospirae
(1.11%), Bacteroidetes (0.63%), Actinobacteria (0.51%), Planctomycetes (0.51%), and Armati-
monadetes (0.14%) phyla. The top ten assigned families are Acidobacteriaceae (14.10%), Soli-
bacteraceae (6.49%), Anaerolinaceae (5.35%), Methylophilaceae (3.93%), Bradyrhizobiaceae
(3.13%), Rhizomicrobium (1.47%), Pedosphaera (1.34%), Rhodospirillaceae (1.24%), Xantho-
monadaceae (0.96%), and Steroidobacter (0.85%).

Rare families were defined as those present only in one sample site. There were 34 rare fami-
lies from 10 sample sites, including Beutenbergiaceae, Alysiosphaera, Paludibacter, Demequina-
ceae, Thiobios, Luteolibacteria, Tsukamurellacea, Marivirga, Meganema, Syntrophomonadaceae,
Microthrix, Bacteriovoraceae, Rhodobacteraceae, and Planktophila (S8 Table).

Core bacterial communities are affected by geographic area, years of
cultivation, rounds of cultivation, and health states of the plant

Non-metric multidimensional bacterial composition scaling plots showed a clear separation in
the ordination space based on time (Fig 8A) and geographic area (Fig 8B). We, therefore,
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doi:10.1371/journal.pone.0155055.g005

suggested that geographic area and time of cultivation may be the main factors resulting in a
shift in bacterial community structure. This was supported by statistical significance in PER-
MANOVA analyses (Table 2). The largest differences were found between the Jajangri and
Yulpori soil samples (p<0.01, F = 15.68) and between the 2-year-old and 6-year-old soil sam-
ples (p<0.001, F = 8.397). PERMANOV A analyses also revealed that the bacterial communities
may be significantly distinct between rounds of cultivation and based on the health states of
the ginseng. No significant difference associated with soil depth was detected.

SIMPER analyses of the core bacterial communities were calculated based on the overall
percent contribution of each taxon to the average dissimilarity between groups. The list of taxa
is shown in decreasing order with respect to its importance in discriminating samples (S9
Table). The SIMPER results showed that the average dissimilarity between different geographic
groups was 37.26%. The first and the second rounds of cultivation had an average dissimilarity
of 30.05%. The average dissimilarities between healthy and unhealthy soil samples, and year of
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doi:10.1371/journal.pone.0155055.g006

cultivation were 35.01% and 37.02%, respectively. The highest level of dissimilarity was attrib-
uted to the family Acidobacteriaceae, which contributed approximately 20% of the dissimilarity
between samples.

Bacterial groups showed changes through cultivation time

To obtain more insight into changes in the bacterial populations over cultivation time, we com-
pared the relative abundances of the core classes and families. The bacterial groups comprising
of at least 1% of the total sequences in at least one sample, on average, were examined.

First, shifts in the bacterial populations based on the round of cultivation were considered,
including non-cultivated soil (R0), the first round soil (R1) and the second round soil (R2). At
the class level (Fig 9A), Acidobacteria was found to have a significantly high relative abundance
in R2 (average of 19,55%) and R1 (13.32%) samples compared to RO (4.28%) samples (p<0.05,
Tukey’s test). Solibacteres was found to be slightly more abundant in R2 (10.17%) samples
than in R1 (8.96%) and RO (7.54%) samples (p<0.05, Tukey’s test). Meanwhile Deltaproteobac-
teria, Gammaproteobacteria, and Sphingobacteria were determined to be more abundant in RO
(7.94%, 5.89%, and 2.86%, respectively) samples than in R1 (3.85%, 3.88%, and 1.41%, respec-
tively) and R2 (3.31%, 3.25%, and 1.16%, respectively) samples (p<0.05, Tukey’s test). At the
tamily level (Fig 9B), Acidobacteriaceae, Bradyrhizobiaceae, and Rhizomicrobium levels

PLOS ONE | DOI:10.1371/journal.pone.0155055 May 17,2016 11/27



el e
@ ' PLOS | ONE Bacterial Diversity and Community in Korean Ginseng Soil

Relative abundance (%)

0.54206 340

........

[ 0.5665624

- 0.7832812

[ -0.19923449

- 0.40038276

L 1.0
Methylophilaceae
Solibacteraceas
Acidobacteriaceae
Rhizomicobion
Bradyrhuzobiaceae
Acetobacteraceas
Anaerolinaceas
Hanchomonadaceae
Magnetobacternun_f
Solmonus _f
Oxalobacteraceae
Pedosphaera_f
Polymgiaceae
Halingiaceae

Caulobacteraceae
Gaiellaceae
Conexabacteraceas
Taniaceas

Fig 7. Heat map visualization of the distributions of core assigned families. The assigned families composing the core
microbiota of the ginseng soil samples, with up to 46.9% relative abundance.
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increased after ginseng cultivation, especially during the second round of cultivation. The levels
of Sphingomonadaceae and Chitinophagaceae decreased after R1 and R2 ginseng cultivation
compared to the RO non-cultivated soil samples RO (p<0.01, Tukey’s test).

The ginseng cultivation times of soil could be divided as 2-year-old (Y2), 4-year-old (Y4),
6-year-old (Y6) and control non-cultivated (Y0). At the class level (Fig 10A), Acidobacteria
increased significantly with increased cultivation time; however, Deltaproteobacteria, Gamma-
proteobacteria, Sphingobacteria, and Nitrospira decreased over time. The highest relative
abundance of Solibacteres occurred in Y4 samples. On the other hand, Chloracidobacterium
and Thermodesulfovibrio demonstrated higher relative abundance in Y2 samples compared to
Y4 and Y6 samples. At the family level (Fig 10B), Acidobacteriaceae increased significantly
over time. In constrast, Chitinophagaceae showed a successional decrease. Solibacteraceae, Bra-
dyrhizobiaceae and Rhizomicrobium were most abundant in Y4 samples. The relative abun-
dances of Sphingomonadaceae and Xanthomonadaceae showed were highest in Y0 and Y2
samples, respectively.
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Fig 8. Non-metric multidimensional scaling (nMDS) plots of the core bacterial families in 30 soil
samples. (A) nMDS plots show dissimilarities between cultivation years: non-cultivated (black), 2-year-old
(aqua), 4-year-old (blue), and 6-year-old (red) samples. (B) nMDS plots show dissimilarities based on
geography: Jajangri (JJG, black), Jajakri (JJK, pink), Wondangri (WD, darkgreen), Juwonri (JW, violet), and
Yulpori (YP, orange).

doi:10.1371/journal.pone.0155055.g008

Bacterial taxa in soil related to health states of ginseng

To evaluate comparative differences between healthy and unhealthy ginseng soil samples, we
utilized bacterial groups comprising at least 1%, on average, of the total sequence in at least one
sample. At the class level (Fig 11A), Acidobacteria, Solibacteres and Alphaproteobacteria
seemed significantly higher relative abundance in unhealthy soil samples than in healthy soil
samples (p<0.05, Tukey’s test); Anaerolineae attained significant higher relative abundances in
healthy soil samples than in unhealthy soil samples (p = 0.012, Tukey’s test). At the family level
(Fig 11B), Acidobacteriaceae, Solibacteraceae, and Rhizomicrobium had significantly higher rel-
ative abundance in unhealthy soil samples, compared to healthy soil samples.

The bacterial species associated with healthy ginseng soil samples that were not detected in
unhealthy ginseng soil samples may be considered to be beneficial bacteria. In contrast, species
present in unhealthy ginseng soil samples that were not present in healthy ginseng soil samples
possibly considered to be detrimental bacteria. Of the 341 total assigned species detected in this
study, 244 species were found only in healthy ginseng soil samples, and 97 species were found
only in unhealthy ginseng soil samples (510 Table).
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Table 2. PERMANOVA analysis of the effect of geographic area, years of cultivation, rounds of cultivation, depths, and health states of plant

samples.
Variations

Geography (Jajangri, Juwonri, Wondangri, Jajakri, and Yulpori)

Time (year 0, 2, 4, or 6 of ginseng cultivation)

Rounds of cultivation (Non-cultivated, first, second round)

Depths (0-10, 10-20, 20—-30 cm)

Health states of ginseng (healthy and unhealthy)

Target
Jajangri-Juwonri
Jajangri-Wondnagri
Jajangri-Jajakri
Jajangri-Yulpori
Juwonri-Wondangri
Juwonri-Jajakri
Juwonri-Yulpori
Wondangri-Jajakri
Wondangri-Yulpori
Jajakri-Yulpori

0-2

04

0-6

2-4

2-6

4-6
Non-cultivated-first

Non-cultivated-second

First-second
0-10 cm vs.10-20 cm

0-10 cm vs. 20—-30 cm
10-20 cm vs. 20—30 cm

Healthy-Unhealthy

p-value

0.02538*
0.0061**
0.0999
0.0045**
0.0002***
0.024*
0.0001***
0.0044**
0.0002%**
0.0041**
0.048*
0.0047**
0.0046**
0.0003***
0.0003***
0.0166*
0.0269*
0.0051**
0.0002***
0.9955
0.7244
0.9774
0.0048**

F-value

4.04
6.84
2.97
15.68
517
3.96
7.72
6.94
4.45
15.70
1.92
6.04
8.03
5.95
8.40
2.80
2.73
15.68
4.83
0.16
0.64
0.28
3.19

PERMANOVA tests were conducted using a Bray-Curtis similarity matrix of relative abundance of core bacterial composition with 9999 permutations.

*p<0.05
*¥5<0.01
**%p<0.001

doi:10.1371/journal.pone.0155055.t002

Pathogenic Potential Bacteria Detected By Pyrosequencing

Based on the previously published list of phytopathogenic-related bacteria in plants [33-35], we
could identify the family Ralstonia, in addition to the genera Clostridium, Arthrobacter, Bacillus,
Rhizobacter, Herbaspirillum, Streptomyces, Pseudomonas, Burkholderia, (Janthinobacteium,
Nocardia, Rhodococcus, Acidovorax, Leifsonia, and Corynebacterium in our data (S11 Table). In
general, pathogenic potential bacteria were present at extremely low prevalence (0.5%-2.5%).
Moreover, some genera only existed in one soil sample, such as Acidovorax (in 2-JW-A20), Leif-

sonia (in R2-JJK-A10), and Corynebacterium (in R2-JJK-A20).

Discussion

The primary purpose of this study was to construct a comprehensive catalog of bacterial diver-
sity and community structure in Korean ginseng cultivated soil. Soil is known to be one of the
most diverse environments [36]. In addition, plants present in agricultural soil provide carbon,

root exudates, and plant secondary metabolites [37] which require an enormous reservoir of
soil bacteria. As expected, we obtained excellent data from 454 pyrosequencing (Table 1).
Indeed, 454 pyrosequencing has been shown to be an efficient method to quantify the extent of

microbial diversity in agricultural soil [15,38-39].
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Fig 9. Changes in bacterial populations according to rounds of cultivation. (A) Boxplots indicate bacterial
classes, (B) Boxplots indicate bacterial families. RO, non-cultivation; R1, first round of cultivation; R2, second
round of cultivation. The p-values were generated by one-way ANOVA, post hoc Tukey’s test. “a” and “b”
indicate significant differences between the round of cultivation (p<0.05).

doi:10.1371/journal.pone.0155055.9009

Our diversity analysis revealed a decreasing trend from 2-year-old to 6-year-old samples
which supported the hypothesis that bacterial diversity would decrease over longer cultivation

PLOS ONE | DOI:10.1371/journal.pone.0155055 May 17,2016 15/27



@’PLOS ’ ONE

Bacterial Diversity and Community in Korean Ginseng Soil

@ o2
[} 0]
value
® 09
® 57
—
o
® -
@ 0o o
i)
15 €
2
33 32 =
=
8
20@
® 23 =
N’

)

‘ 214

A)
Thermodesulfovibrio - @
Chloracidobacterium- 29
Nitrospira - 27
Sphingobacteria - 29
Gammaproteobacteria - f%..s’f,
Deltaproteobacteria - \79
Solibacteres - :e;s;
Acidobacteria- 43)
YO
B)
Chitinophagaceae - e
Sphingomonadaceae - i
Xanthomonadaceae - (4]
Rhizomicrobium- a3
Bradyrhizobiaceae - 14
Solibacteraceae - (5
Acidobacteriaceae - 88
YO

Y2

Y4 Y6
[0 a5
@ 1

value

(¢)]

-
o

o
(¢/,) dduepuUNqe IANBEPY

N
o

1 ‘
©

Y4 Y6
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doi:10.1371/journal.pone.0155055.9010
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periods. This can be explained by the finding that older roots excreted low amounts of organic
matter [11.40], or perhaps that soil nutrients such as carbon and nitrogen, were depleted by
long-term cultivation. Therefore, long-term ginseng monoculture may cause nutrient-defi-
ciency stress in the bacterial populations, which ultimately culminated in a decrease in diver-
sity. On the basis of this study, we suggest that additional factors, such as phosphorus
deficiency and lower pH in 6-year-old samples, may lead to less bacterial diversity compared to
that in 2 and 4-year-old samples. Lower diversity after long-term ginseng monoculture suggests
that only a few populations are able to adapt to changes in the soil environment. These findings
are consistent with previous observations [11,40] which reported similarly reduced diversity in
ginseng cultivated soil samples over time. The same pattern was observed in soil samples, eval-
uated using a high-throughput sequencing method, over a 7-year gradient of potato monocul-
ture [41]. However, the numbers of OTUs and valid reads in this study were significantly
greater than a previous study [40], which included 200 clones with cumulative counts of fewer
than 50 OTUs. In addition, the Shannon index (6.38-8.13) in this study was significantly
higher than the Shannon index in non-rhizosphere ginseng soil samples (0.21-0.57) [11] and

PLOS ONE | DOI:10.1371/journal.pone.0155055 May 17,2016 17/27



@’PLOS ‘ ONE

Bacterial Diversity and Community in Korean Ginseng Soil

in rhizosphere soil samples (0.54-0.67) [40]. The number of observed bacterial OTUs in gin-
seng soil (1,299-5,453 OTUs) was higher than that observed in a previous study by Eilers et al.
(320-520 OTUs) [18] but lower than that in a study of German grass soil samples (4,78-6,231
OTUs) [16]. Consequently, the results presented here are in accordance with other studies
[14-15,42].

The rarefaction curves in our study did not reach asymptotes. This indicates that the maxi-
mum detection limit of bacterial diversity was not achieved. In this study, the pyrosequencing
of the 30 soil samples was conducted in parallel, therefore reducing the number of sequences
read per sample and perhaps limiting the number of detectable OTUs. This pattern is in con-
trast to the earlier study of Li et al. [40], which demonstrated rarefaction curves near saturation
(using an amplified ribosomal DNA restriction analysis method).

We detected 38 phyla in this study, which is higher than the number of phyla found in pre-
vious studies on rhizospheres as well as in bulk ginseng cultivated soil samples. The domi-
nances of the phyla Proteobacteria and Acidobacteria were predicted since these groups have
been detected as the majority phyla in other soil environments, such as forest soil [43-44], agri-
cultural soil [39,45], and in ginseng soil [40]. As suggested by Smit et al. [46], the ratio between
Proteobacteria and Acidobacteria may be indicative of the nutrient status in the soil ecosystem.
In this study, the ratio between Proteobacteria and Acidobacteria in ginseng cultivated soil
samples (approximately <1.6) was lower than in non-cultivated soil (approximately 1.9).This
ratio was even lower in 4-year-old samples and 6-year-old samples during the second round of
cultivation (0.8 and 0.5, respectively). These data may indicate that more oligotrophic condi-
tions in the second round compared to the first round and to non-cultivated soils. In general,
these results were consistent with the notion of Smit et al. [46] regarding the correlation
between the ratio of Proteobacteria to Acidobacteria and nutrient status in soil. In this study,
long-term ginseng cultivation may decrease a number of nutrients in the soil. The acidobacter-
ial groups can utilize a broad range of substrates [47] and tend to prefer oligotrophic niches
[48]. Therefore, the phylum Acidobacteria, including the classes Acidobacteria and Solibac-
teres, showed a particularly evident increase over time during ginseng cultivation. However,
some acidobacterial groups have been reported to prefer copiotrophic condition in the grass-
land and forest soils [49], and the snow-accumulating soils [50]. Therefore the increasing of
Acidobacteria can be explained based on their acidic tolerance or preference. In this study gin-
seng soil undergoes slight acidification over time (S2 Table). The more acidic is the environ-
ment, the more abundant are the Acidobacteria, since they prefer living in such conditions.
This raises the question of which nutrient deficiency is related to the relative abundance of the
acidobacterial groups. Available phosphorus and exchangeable Ca** showed significant nega-
tive correlations with class Acidobacteria (S5 Table and Fig 6). In contrast to Acidobacteria,
Deltaproteobacteria and Gammaproteobacteria, which dominated phylum Proteobacteria,
decreased over time with ginseng cultivation. The decreased abundance of Gammaproteobac-
teria in ginseng soil is assumed to be due to its preferred lifestyle, because this bacterial group is
considered a copiotrophic bacterium that grows slowly in low nutrient conditions [51].

Interestingly, the abundant presence of the phylum Chloroflexi in this study was not
reported in previous studies [13,40] that employed traditional methods to investigate bacterial
communities in ginseng cultivated soil samples. Members of this phylum were found to be the
major bacterial population in paddy soil [45,52]. The soil samples in this study were originally
paddy soil samples that were later used to cultivate ginseng. Therefore, a decipherable prevision
of the presence of Chloroflexi was expected in our samples. However, the abundance of this
phylum in the 4-JW-A and R6-YP-B groups was unexpected. The major classes of Caldilineae
and Anaerolineae within the Chloroflexi phylum are known to mediate anaerobic ammonium
oxidation (anammox). Kindaichi et al. [53] reported the coexistence of uncultured Caldilineae
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and Anaerolineae in an anammox reactor fed with synthetic nutrient medium (without organic
carbon compounds) over a 2-year period. These classes also can degrade and utilize cellular
compounds derived from dead biomass and metabolites of anaerobic ammonium oxidation
bacteria. Since ginseng soil is a poor source of nutrients, Caldilineae and Anaerolineae may be
useful bacteria in that they can increase the levels of nutrients in the soil. Moreover, the preva-
lence of Anaerolineae has been shown to be significantly increased upon co-culture with
methanogens [54]; since the 30 soil samples we analyzed contained a large amount of archaeal
methanogens (data not shown), the prevalence of Anaerolineae in ginseng soil was high. We
also believe that the abundance of Chloroflexi could be related to other factors, such as syn-
trophic oxidation of butyrate [55] and presence of hydrogen-consuming methanogens [56].

Other bacterial phyla, including Gemmatimonadetes, Planctomycetacia, Actinobacteria,
Verrucomicrobia, Firmicutes, and Bacteroidetes which were found in previous studies [13,40]
were also present with relative abundance >1% in our data. The other newly identified cultured
representative phyla in ginseng soil include Nitrospirae, Armatimonadetes, Chlorobi, Cyano-
bacteria, Elusimicrobia, Spirochaetes, Fibrobacteres, Lentisphaerae, Tenericutes, Aquificae, and
Caldiserica, as well as 18 additional candidate phyla.

Some previous studies have detected core OTUs in bacterial soil communities [57-59]. The
core OTUs in this study belonging to Solibacteraceae and Alphaproteobacteria were in agree-
ment with previous studies. However, at the lower level, the family Solibacteraceae and the
genus Pseudolabrys seemed to be distinct for ginseng soil samples. The families Acidobacteria-
ceae, Sphingomonadaceae, Anaerolinaceae, Rhodospirillaceae, Nitrospiraceae, Chitinophaga-
ceae, and Planctomycetaceae were identified as part of the core microbiome in samples from
pristine forest and 8-year-old grasslands surrounded by the same forest [57], Bradyrhizobia-
ceae and Xanthomonadaceae have been identified as part of the core phyllosphere microbiome
in neotropical forests [59]. Therefore, it is not surprising that these particular families appeared
in ginseng cultivated soil. Interestingly, Sphingomonadaceae belonging to the order Sphingo-
monadales was also found in 1- to 4-year-old ginseng rhizospheres [40]. Therefore, Sphingo-
monadaceae is likely a resident taxon in ginseng soil samples and is easy to isolate either by
culture- or nonculture-dependent methods.

We expected that soil depth from 0-30 cm would influence the bacterial communities. How-
ever, only Actinobacteria was observed to have significant differences between the 0-10 cm and
20-30 cm soil depth samples. Actinobacteria are known as decomposers of dead plant biomass
[60-62]. Therefore, members of the actinobacterial group likely prefer the upper subsoil (0-10
cm), which contains more dead plant biomass compared to the lower subsoil (20-30 cm).

To our knowledge, this is the first study that identified significant differences in bacterial
community structure between geographic areas, cultivation rounds in ginseng fields, and the
health state of the ginseng. These results are generally consistent with many previous studies
that have examined bacterial communities in soil based on geographic area [63-66]. Some
studies have focused on the effect of time on soil microbial communities, especially with mono-
culture methods. Habekost et al. [67] discovered a few significant effects four years after the
establishment of their experiment, and Liu et al. [41] found significant correlations between
bacterial taxa and the year of monoculture in potato soil samples. Soil microbial communities
were affected by the continuous cropping of rice [68], peas [69], watermelon [68], and peanut
[70]. Our study provides additional support for the hypothesis of Chen et al. [71], who sug-
gested that “successional changes in soil microbial communities with continuous cropping
could be a common feature.” Healthy and unhealthy ginseng soil samples across residences
harbor different bacterial communities. This result supports our knowledge of bacterial popu-
lations related to good and poor soil, as described by Figuerola et al. [72]. The composition of
bacterial communities was similar between soil samples. Therefore, we only considered the
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effect of these factors based on changes in relative abundance. Our explanations for the differ-
ent relative abundances of Acidobacteria (dominated by the family Acidobacteriaceae), Delta-
proteobacteria, and Gammaproteobacteria (included Xanthomonadaceae) over cultivation
time are described above. The observed decrease in Sphingobacteria (included Chitinophaga-
ceae) over cultivation time can be explained by their copiotrophic lifestyle [48]. Interestingly,
we observed the different trend for bacterial groups of the class Alphaproteobacteria. The fam-
ily Sphingomonadaceae was found to have decreased in number after ginseng cultivation com-
pared to non-cultivated soil; however, both Bradyrhizobiaceae and Rhizomicrobium increased
in abundance. This finding can be explained as the ginseng root exudate favored nitrogen-fix-
ing bacterial groups (Bradyrhizobiaceae and Rhizomicrobium) but not those groups that utilize
aromatic compound degradation (Sphingomonadaceae). The soil chemical compositions found
in our results were in agreement with the range of soil chemical properties for ginseng cultiva-
tion reported by Yeon et al. [73]. The correlation network demonstrated that many of the
abundant classes strongly responded to pH, available phosphorus, and exchangeable Ca** (Fig
6). Soil pH was shown to be the strongest driver shaping bacterial community structure, and
these results correspond to previous studies of soil samples [17, 42,44,48,74-78]. Available
phosphorus has been shown to have effects on microbial community structure [42,79]. Long-
term cultivation of ginseng is known to generate acidic soil, which can cause phosphorus
absorption by Fe-Al and Ca>" [80-82], leading to low soil concentrations of phosphorus (<100
mg P,05 kg™, S2 Table). The amount of available phosphorus limits microbial activity [83],
biomass [84-86], and microbial growth [85,87]. Therefore, the amount of available phosphorus
in soil is likely one of the crucial factors in shaping microbial communities in ginseng soil and
that phosphorus should be adequately supplied in the cultivation of ginseng. Exchangeable
Ca" was one of the most important factors affecting bacterial composition. This result is sup-
ported by Singh et al. [88], where exchangeable Ca®* showed a greater effect on bacterial popu-
lation than did pH. Another study by Sridevi et al. [79] showed that the bacterial community
structure in calcium-supplemented soil samples was significantly different from that of refer-
ence soil samples.

Using this high throughput sequencing method, the individual taxa present in soil that
could not be observed by previous methods were investigated. Based on the list of target
healthy species and unhealthy species, researchers can potentially design a management
approach to control the presence of bacterial species in the soil and improve ginseng productiv-
ity. In addition, many species are still not classified as either pathogenic or non-pathogenic.
Therefore, information on the bacterial sources in healthy and unhealthy soil samples is impor-
tant for overcoming this problem. However, additional research is needed to evaluate the path-
ogenic or beneficial properties of these species to ginseng.

Among the phytopathogenic potential bacteria identified in this study, the genera Sphingo-
monas, Arthrobacter, Bacillus, and Pseudomonas have been frequently isolated under labora-
tory conditions in the previous studies [89-92]. Many species belonging to the genus
Sphingomonas have been shown to be able to convert ginsenosides [89-90]. Consequently, gin-
seng soil appears to be an ideal habitat for Sphingomonas. In addition to causing disease, bacte-
ria in the genus Sphingomonas can also cause microbiological corrosion, produce
exopolysaccharide polymers, and biodegrade refractory organic compounds [91]. Therefore,
further study should be conducted to determine the correlation of Sphingomonas spp. with the
health state of ginseng. The genus Clostridium was detected in almost all of our soil samples;
however, members of this genus are anaerobic and could therefore not be detected under our
aerobic isolation conditions. The genera Acidovorax, Leifsonia, and Corynebacterium were
rarely observed in the 30 soil samples, a finding that is in agreement with the isolation data
[92]. Of the top 10 plant pathogenic bacteria [93] and the common bacterial diseases known to
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affect ginseng [94-95], only the genus Pseudomonas and the family Ralstonia were found in
our samples. It is speculated that additional pathogenic bacteria do exist in ginseng soil, but
that these bacteria could not be isolated by our culture-dependent methods.

Conclusion

This study highlighted the bacterial diversity and community structure in ginseng cultivated
soil samples. Bacterial diversity richness decreased over the years of cultivation. Bacterial com-
positions fluctuated depending on cultivation time and the health state of the ginseng. These
bacterial reservoirs responded to changes in the soil conditions after long-term monoculture of
ginseng (e.g., nutrient deficiency, low pH, changes in exudates). This process occurred more
rapidly in the second round of cultivation. Based on the presence of different bacterial popula-
tions between healthy and unhealthy ginseng soil samples, as well as with different cultivation
time, we were able to determine the specific bacterial taxa related to the health state of soil sam-
ples. However, additional studies will be needed to elucidate how these bacteria affect ginseng
roots. The ability to detect beneficial and detrimental bacterial populations could be a promis-
ing advance for the development of ginseng soil management programs for the improvement
of sustainable ginseng production.

Supporting Information

S1 Fig. Pairplot of chemical explanatory variables. The lower diagonal panels contain the
(absolute) correlation coefficients, and the upper diagonal panels contain scatterplots (and
smoothing line was added). The font size of the cross-correlation is proportional to the value.
Black, green and red circles indicated non-cultivation, first round and second round soil sam-
ples, respectively.

(TIF)

S1 Table. Description of the 30 soil samples. Soil samples were collected in the city of Paju
city and in Yeoncheon County (Gyeonggi-do, South Korea).
(DOCX)

S2 Table. Edaphic properties of all soil samples. EC, electrical conductivity; OM, organic
matter.
(DOCX)

S3 Table. Relative abundance of bacterial phyla in 30 soil samples. Relative abundances are
reported as the percent of total bacterial sequences observed per samples.
(XLSX)

S4 Table. Bacterial classes present in all soil samples. Relative abundances are reported as the
percent of total bacterial sequences observed per samples.
(XLSX)

S5 Table. Spearman’s rank correlations between the relative abundances of bacterial classes
and the soil chemical compositions in all soil samples. EC, electrical conductivity; OM,
organic matter. Bold number: p<0.05; Bold and single underline numbers p<0.01; Bold and
double underline numbers p<0.001.

(DOCX)

$6 Table. Core OTUs occurring in all soil samples. The total number of reads of OTUs and
taxonomic assignment are reported for each OTU.
(DOCX)
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S7 Table. Shared assigned bacterial families present in all soil samples. Relative abundances
are reported as the percent of total bacterial sequences observed per samples.
(XLSX)

S8 Table. Rare assigned families at each site. 0, 2, 4, 6, R2, R4 and R6 indicate 0, 2, 4, and 6
years at first and second cultivation, respectively. JJG, Jajangri; JW, Juwolri; WD, Wondangri;
JIK, Jajakri; YP, Yulpori; A, healthy soil; B, unhealthy soil.

(DOCX)

S9 Table. SIMPER analyses. Results of SIMPER analyses indicating the contribution of the
core families to observed differences in community structure among geographic area (S7A
Table), cultivation round (S7B Table), time (S7C Table), and health states of the plant (S7D
Table).

(XLSX)

$10 Table. Bacterial species related to the health states of ginseng. 0, 2, 4, 6, R2, R4 and R6
indicate non-cultivated; 2, 4, and 6 years of cultivation at first and second round (re-cultiva-
tion), respectively. JJG, Jajangri; JW, Juwolri; WD, Wondangri; JJK, Jajakri; YP, Yulpori; A,
healthy soil; B, unhealthy soil. 10, 20 and 30 indicate soil samples collected from 0-10, 10-20,
and 20-30 cm depths, respectively. Relative abundances are reported as the percent of total

bacterial sequences observed per samples.
(XLSX)

S11 Table. List of pathogenic related bacteria in ginseng soil. 0, non-cultivated; 2, 4, 6, R2,
R4 and R6 indicate 2, 4, and 6 years of cultivation at first and second round (re-cultivation),
respectively. JJG, Jajangri; JW, Juwolri; WD, Wondangri; JJK, Jajakri; YP, Yulpori; A, healthy
soil; B, unhealthy soil. 10, 20 and 30 indicate soil samples were taken from 0-10, 10-20, and
20-30 cm in depths, respectively. Relative abundances are reported as the percent of total bac-
terial sequences observed per samples.

(XLSX)
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