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Depression is a common and serious complication following traumatic brain injury
(TBI). Both depression and TBI have independently been associated with pathologically
elevated extracellular brain glutamate levels. In the setting of TBI, blood glutamate
scavenging with pyruvate has been widely shown as an effective method to provide
neuroprotection by reducing blood glutamate and subsequent brain glutamate levels.
Here we evaluate pyruvate as a novel approach in the treatment and prevention of
post-TBI depression-like behavior in a rat model. Rats were divided into five groups: (1)
sham-operated control with pyruvate, (2) sham-operated control with placebo, (3) post-
TBI with placebo, (4) post-TBI given preventative pyruvate, and (5) post-TBI treated
with pyruvate. These groups had an equal number of females and males. Rats were
assessed for depressive-like behavior, neurological status, and glutamate levels in the
blood and brain. Post-TBI neurological deficits with concurrent elevations in glutamate
levels were demonstrated, with peak glutamate levels 24 h after TBI. Following TBI, the
administration of either prophylactic or therapeutic pyruvate led to reduced glutamate
levels, improved neurologic recovery, and improved depressive-like behavior. Glutamate
scavenging with pyruvate may be an effective prophylactic and therapeutic option for
post-TBI depression by reducing associated elevations in brain glutamate levels.

Keywords: depression, glutamate scavenging, neuroprotection, pyruvate, traumatic brain injury

Abbreviations: ADC, apparent diffusion coefficient; CSF, cerebrospinal fluid; EAATs, excitatory amino acid transporters;
MRI, magnetic resonance imaging; NSS, Neurological severity score; NMDA, N-methyl-D-aspartate; TR/TE, repetition
time/echo time; TR/TM/TE, repetition time/mixing time/echo time; SENSE, SENSitivity Encoding; STEAM, STimulated
Echo Acquisition Mode; TBI, traumatic brain injury; TSE, turbo spin echo.
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INTRODUCTION

The majority of survivors of moderate and severe traumatic
brain injury (TBI) suffer from chronic neuropsychiatric
consequences, including cognitive defects, depression, anxiety,
social withdrawal and aggression (Tateno et al., 2003; McAllister,
2008; Jorge and Arciniegas, 2014; Hicks et al., 2019; Rauen
et al., 2020). While these behavioral sequelae may at first be
attributable to the emotional burdens of physical disability,
these symptoms are not correlated with the severity of the initial
injury or with pain (Bodnar et al., 2019) and can persist for
decades (Hoofien et al., 2001; Koponen et al., 2002). Despite their
significant impacts on functional recovery, quality of life, and
resumption of employment (Rivara et al., 2011), these chronic
neuropsychiatric conditions following TBI are often overlooked,
undiagnosed and untreated.

Depressive disorders are generally treated by targeting the
serotoninergic, adrenergic, and/or dopaminergic systems
with medication that increases synaptic access of these
neurotransmitters (Robinson et al., 1984; Currier et al., 1992;
Andersen et al., 1994; Wiart et al., 2000). However, treatment
for depressive disorders is effective in approximately two thirds
of patients. For those suffering from depression following TBI,
the selective serotonin reuptake inhibitor Sertraline (Zoloft)
was found to be no more effective than placebo (Fann et al.,
2017). As post-TBI depression remains difficult to manage, novel
therapeutic approaches that specifically target this and related
neuropsychiatric conditions have been of great clinical interest.

A growing body of evidence points to the involvement
of the glutamatergic system in the etiology and treatment
of TBI and depression, both independently and in parallel
(O’Neil et al., 2018). Glutamate levels in the brain have been
shown to contribute to the pathophysiology and neurological
dysfunction seen after TBI (Zauner et al., 1996b; Koura
et al., 1998; Zhang et al., 2001; Shutter et al., 2004; Mao
et al., 2019). Post-TBI excess extracellular glutamate release
leads to cell swelling, apoptosis, and neuronal death (Zauner
et al., 1996a; Koura et al., 1998), and the maintenance of
glutamate homeostasis is critical in improving neurological
outcome (Zauner et al., 1996b; Hong et al., 2001; Zhang
et al., 2001; Shutter et al., 2004; Mao et al., 2019). Depression
and many mood disorders are similarly affected by the
glutamatergic system (Levine et al., 2000; Krystal et al., 2002;
Sanacora et al., 2003, 2012; Mitani et al., 2006; Maeng and
Zarate, 2007; Pittenger et al., 2007; Mitchell and Baker, 2010;
Zarate et al., 2010; Machado-Vieira et al., 2012; McCarthy
et al., 2012; Tokita et al., 2012) of evidence indicates that
future therapeutic options for depression will be comprised
of modalities based on this system (Sanacora et al., 2008;
Gruenbaum et al., 2020). Recent literature suggests that a
susceptibility to depression may be caused by glutamatergic
disturbances after TBI (O’Neil et al., 2018). Therefore, limiting
excess glutamate concentrations following TBI may be a vital
strategy to target both the neurologic and psychiatric progression
of the condition.

Neurological motor symptoms of TBI have been shown to
be attenuated by decreasing glutamate levels or function in

the brain with dextorphan (Faden et al., 1989), N-methyl-D-
aspartate (NMDA) antagonists (Mei et al., 2018), stimulation
of excitatory amino acid transporters (EAATs) (Goodrich et al.,
2013), or antibiotics and other drugs that block calcium channels
or glutamate release (McConeghy et al., 2012; Hicks et al., 2019).
However, these treatments can also limit the essential effects
of glutamate, leading to adverse side effects (Ikonomidou and
Turski, 2002; Hardingham and Bading, 2003; Muir, 2006). For
example, human clinical trials of NMDA receptor antagonists
have not only failed to demonstrate clinical neuroprotective
efficacy but led to worsened neurological outcome and an
increased mortality rate following TBI (Morris et al., 1998;
Muir, 2006). Moreover, other preclinical studies have found that
direct or indirect stimulation of NMDA receptors mitigated the
severity of neurological deficits in hippocampal-based memory
in adult rats (Temple and Hamm, 1996; Biegon et al., 2004) and
in rat pups (Sta Maria et al., 2017; Biegon et al., 2018) after
TBI.

An alternative approach is to eliminate excess toxic glutamate,
rather than interfering with ongoing excitatory transmission via
receptor antagonists. This can be accomplished by enhancing
the brain-to-blood glutamate efflux, which occurs naturally via
the endothelial transport systems, to eliminate excess glutamate
from the brain’s interstitial fluid (Teichberg, 2007; Teichberg
et al., 2009). Glutamate co-substrates pyruvate and oxaloacetate
convert glutamate into its inactive form 2-ketoglutarate via
blood resident enzymes glutamate-pyruvate transaminase and
glutamate-oxaloacetate transaminase (Gonzalez et al., 2005;
Leibowitz et al., 2012; Gray et al., 2014). Previous studies
have established an association between brain glutamate
and blood glutamate levels (Shaw et al., 1995; Ferrarese
et al., 2001). A reduction in blood glutamate helps to
form an ideal glutamate concentration gradient that causes
excess glutamate to move from the brain’s extracellular
fluid into the blood (Zlotnik et al., 2011a, 2012a; Rogachev
et al., 2012; Boyko et al., 2014). This process impedes
secondary brain injury that can occur as a result of glutamate
neurotoxicity (O’Kane et al., 1999; Teichberg et al., 2009;
Boyko et al., 2014).

Glutamate reduction, unlike the use of NMDA receptor
antagonists, does not impact glutamate receptors or glutamate-
mediated synaptic activity. Instead, this process only removes
pathologically-elevated glutamate levels in the brain without
impeding the function of neural circuits that depend on
glutamate transmission (Leibowitz et al., 2012; Boyko et al.,
2014; Zhumadilov et al., 2015). Known as blood glutamate
scavenging, this method for reduction of excess glutamate has
been proposed as an effective method to ameliorate neurological
conditions after TBI (Zlotnik et al., 2007, 2008, 2009, 2010,
2012b) and depressive symptoms after stroke (Frank et al.,
2019a; Gruenbaum et al., 2020). The aim of this study was
to employ a novel approach of blood glutamate scavenging
with pyruvate for the prevention and treatment of post-TBI
depressive-like behaviors in a rat model. We further analyzed
the impact of gender differences on the development of post-
TBI depressive-like behaviors and on subsequent treatment with
blood glutamate scavenging.
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MATERIALS AND METHODS

Animals
The experiments were conducted in accordance with the
recommendation of the Declarations of Helsinki and Tokyo
and the Guidelines for the Use of Experimental Animals of
the European Community. The experiments were approved by
the Animal Care Committee of Ben-Gurion University of the
Negev (Beer-Sheva, Israel). A total of 134 male and 133 female
Sprague-Dawley rats were used in this experiment. All rats
weighed between 300 and 350 g. Purina Chow and water were
made available ad libitum. The temperature in the room was
maintained at 22◦C, with a 12 h light–dark cycle. All the tests
were conducted in the dark phase between 8 am and 4 pm.

Experimental Design
The timeline of the experiment is illustrated in Figure 1. All
rats were divided into two main groups, sham-operated and TBI.
The rats were randomly assigned, but each group had an equal
number of females and males (Table 1). 24 h after induction of
TBI or sham surgery, all rats were divided into five groups: (1)
sham-operated control group given pyruvate, (2) sham-operated
control group given placebo, (3) post-TBI control group given
placebo, (4) post-TBI group given preventative pyruvate, (5)
post-TBI group treated with pyruvate (Table 1). Each of the
five groups was randomly divided into two subgroups: (A) a
group for behavioral tests and (B) a group for testing blood
and cerebrospinal fluid (CSF), and outcomes from magnetic
resonance imaging (MRI) with anesthesia (Table 1). At 24 h
after TBI or sham protocol, we collected a sample of CSF and
blood from the rats in subgroup B. On day 3 of the study, two
groups (the post-TBI group given preventative pyruvate and the
sham-operated control group given pyruvate) began to receive
pyruvate for 30 days (Figure 1, Axis A). Within subgroup A,
behavioral tests were performed after the completion of treatment
at 1-month post-TBI, and 2 months after the completion of
treatment. After the TBI induction or sham operation, the rats
from the therapeutic protocol received no treatment for a month.
After 1-month, behavioral tests (subgroup A) or blood CSF
measurements (subgroup B) were taken, followed by treatment
with pyruvate (Figure 1, Axis B) at a dose described below.
Behavioral tests at 6 months were performed only for the sham-
operated control group given placebo and post-TBI rats given
placebo (Figure 1).

Drugs and Doses
Pyruvate (Sigma Israel Chemicals, Rehovot, Israel, catalog
number P2256) was kept at a temperature of 2–4◦C prior to use.
Immediately before administration, it was dissolved in drinking
water. Doses of 180 mg/kg/day were administered to rats in the
experimental groups divided into two daily doses of 90 mg/kg
for 30 days. A fresh solution of pyruvate was made every 12 h.
The placebo groups received an equal dose of water without
pyruvate. The dose of pyruvate was based on previous data that
demonstrated by magnetic resonance spectroscopy that a dose

of 180 mg/kg/day was optimal for reducing blood and brain
glutamate by about 25–35% (Frank et al., 2019a).

Traumatic Brain Injury
Traumatic brain injury was performed, as previously described
(Jones et al., 2008; Kabadi et al., 2010; Frank et al., 2021a,b). Rats
received inhaled isoflurane as anesthetic with 5% for induction
and 1.5–2.5% for maintenance, with equal parts medical air and
oxygen. Prior to incision, the scalp was infiltrated with 0.5%
bupivacaine. It was then perforated and reflected laterally with
the left temporal muscle, while the underlying periosteum was
dissected to reveal the skull. Craniotomy was performed at 5-mm
using a trephine (Roboz Surgical Instrument Co., Gaithersburg,
MD, United States) fastened to the drill bit of an electrical drill
(Stoelting, Wood Dale, IL, United States). The center of the
craniotomy was positioned 4 mm lateral and 4 mm posterior
to bregma. A Luer 3-way stopcock was fixed and additionally
held in place by cyanoacrylate adhesive and dental acrylic. The
injury was then effected by a pressure pulse of 2.2 atmospheres
(Jones et al., 2008; Kabadi et al., 2010). TBI was induced by
a fluid-percussion device over 21–23 ms through the 3-way
stopcock. The fluid pulse from the piston plunger, through
involvement by the pendulum, was enacted via continuous
saline fluid into the dura to allow for efficient transmission of
the pressure pulse. Rats in the sham-operated control groups
underwent the same procedure but without the administration
of the fluid pulse.

Rats were monitored by a pulse-oximeter during the surgery
to ensure uninterrupted measurements of heart rate and blood
oxygen levels. After TBI induction, the incision was sutured, and
the rats were allowed to recover from anesthesia.

Neurological Severity Score
Two blinded observers calculated Neurological Severity Score
(NSS), as previously described (Boyko et al., 2011a, 2013a;
Ohayon et al., 2012; Zlotnik et al., 2012a; Frank et al., 2021b).
Points were assigned for motor function and behavioral changes
for an overall score between 0, indicating an intact neurological
state, and 25, representing highest neurological impairment. The
following criteria were evaluated: the ability to exit a circle (3-
point scale), gait on a wide surface (3-point scale), gait on a
narrow surface (4-point scale), effort to remain on a narrow
surface (2-point scale), reflexes (5-point scale), seeking behavior
(2-point scale), beam walking (3-point scale), and beam balance
(3-point scale).

Sucrose Preference Test
The sucrose preference test was performed as described
previously as a method to evaluate anhedonia, which reflects
depressive-like symptoms, in a rodent model (Boyko et al.,
2013a, 2015). Two bottles of sucrose solution were placed in
each rat’s cage, consisting of 1% (w/v) solution. The rat became
acclimated to having two bottles in the cage, which allowed
the rat to avoid neophobia during the sucrose preference test,
for which two bottles were necessary. Similarly, one of the
bottles was replaced by water for 24 h so that the rat could
adjust to having one bottle of water and one bottle of sucrose.
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FIGURE 1 | A timeline of the protocol for preventative (axis A) and treatment (axis B) approach. CSF, Cerebrospinal fluid; NSS, Neurological severity score; PLAC,
Placebo; PYR, Pyruvate; TBI, Traumatic brain injury.

TABLE 1 | The total number of rats in each of the experimental groups.

Study groups Experimental procedures Number of rats

MRI, CSF, and blood collection Neuro-behavioral tests Female Male

Sham-operated controls given pyruvate 10f 15f 25 25

10m 15m

Sham-operated controls given placebo 10f 15f 25 25

10m 15m

Post-TBI rats given placebo 10f 15f 25 25

10m 15m

Post-TBI rats given preventative pyruvate 10f 15f 25 25

10m 15m

Post-TBI rats treated with pyruvate 10f 15f 25 25

10m 15m

The total number of rats 125 125

After this habituation, the rats were deprived of food and
water for 12 h. At 9:00 am, the sucrose preference test was
performed. The rats were housed in individual cages with free
access to two bottles, one with 100 ml of sucrose solution
(1% w/v) and the other with 100 ml of water, for 4 h. After
this period, the volume (ml) of the consumed sucrose solution
and water was recorded. Sucrose preference was calculated as
sucrose preference (%) = sucrose consumption (ml)/[sucrose
consumption (ml)+water consumption (ml)] × 100% (Boyko
et al., 2013b, 2019b).

Open Field Test
The standard open field test evaluates locomotor, exploratory,
and anxiety-related depressive-like behaviors in animal models
based on novel conditions (Boyko et al., 2013a). The open
field test measures exploratory activity in a novel environment.
The open field boxes were round black plastic arenas 2 m in
diameter, 60 cm high walls situated in a darkened room. For
analysis, the arena was cleaned with 10% ethanol after each
behavioral recording.

A video camera was mounted 200 cm above the open field
arena and recorded all experiments. Locomotor activity was
recorded for 5 min by a Logitech HD Pro Webcam C920. Analysis
after the recording was performed with Ethovision XT software
(Noldus, Wageningen, Netherlands) (Frank et al., 2019b). The
recordings were analyzed based on total distance traveled.

Magnetic Resonance Imaging
Diffusion-weighted imaging and T2 MRI were performed
at 48 h following TBI, as described previously (Frank
et al., 2019a). The rats underwent general anesthesia and
were maintained with 1.5% isoflurane in oxygen. A 3T
MRI was used (Ingenia, Philips Medical Systems, Best,
Netherlands) using an eight-channel receive-only coil. Localizing
T2w turbo spin echo (TSE) sequences were obtained in
sagittal and coronal planes with TR/TE = 3,000/80 ms,
turbo factor = 15, water-fat shift = 1.6 pixels, resolution
(freq × phase × slice) = 0.47 mm × 0.41 mm × 2.0 mm
and one average for a scan time of 1:00 min. In
the axial direction the scan parameters included
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FIGURE 2 | Neurological outcome (A,B) and MRI-determined lesion volume (C,D) and brain edema (E,F). Compared to sham-operated controls, the NSS at 24 h
was significantly greater in male [p < 0.01 (A)] and female [p < 0.01 (B)] rats after TBI. The data are measured as a count and expressed as median and 25–75
percentile range. Compared to sham-operated rats, the lesion volume at 24 h was significantly greater in the male [p < 0.01 (C)] and female [p < 0.01 (D)] TBI
groups. The data is expressed as a mean percentage of the contralateral hemisphere ± SD. Compared to sham-operated rats, the brain edema at 24 h was
significantly greater in the male [p < 0.01, (E)] and female [p < 0.01 (F)] TBI groups. The data are expressed as a mean percentage of the contralateral
hemisphere ± SD. TBI: Traumatic brain injury.

repetition time/echo time (TR/TE) = 3,000/80 ms, turbo
factor = 14, water-fat shift = 1.6 pixels, resolution
(freq × phase × slice) = 0.37 mm × 0.33 mm × 2.0 mm.
Four averages were acquired for a scan time of 4:54 min.
Diffusion tensor imaging in 6 directions was performed in the
axial direction using a multi-shot STimulated Echo Acquisition
Mode (STEAM) spin-echo, echo-planar sequence with repetition
time/mixing time/echo time (TR/TM/TE) = 1,355/15.0/143 ms,
SENSitivity Encoding (SENSE) reduction factor = 1.5,
turbo factor = 19, b = 1,000 s/mm2, resolution
(freq × phase × slice) = 0.55 mm × 0.55 mm × 2.0 mm

with spectrally-selective fat suppression. Five signal averages
were acquired for a scan time of 8:40 min. T2 perfusion
studies were obtained using a dynamic, single-shot gradient-
echo epi sequence with spectrally-selective fat suppression.
The scan parameters were TR/TE = 1,300/40 ms, resolution
(freq × phase × slice) = 0.64 mm × 0.69 mm × 2.0 mm, and
one signal average giving a scan time of 1.3sec/dynamic. A total
of 150 dynamics were acquired for a scan time of 3:19 min. We
utilized the Intellispace Portal workstation (V5.0.0.20030, Philips
Medical Systems, Best, Netherlands) for the post-processing of
the perfusion studies.
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Magnetic Resonance Imaging Analysis
An expert blinded to the groups performed image analysis.
We generated quantitative apparent diffusion coefficient
(ADC) maps, in units of square millimeters per second, in
Philips software package (Ingenia, Philips Medical Systems,
Best, Netherlands). Analysis was performed using ImageJ
software (version 1.50i, National Institutes of Health, Bethesda,
Maryland), as previously described (Boyko et al., 2019c). These
thresholds indicated all pixels of ADC characteristics on each
slice. The viability thresholds were 0.53X10-3mm2/s for ADC
images (Bardutzky et al., 2005; Boyko et al., 2019c). Calculation
of lesion volume was performed by the RICH method and
included the correction for tissue swelling, according to the
following formula (Boyko et al., 2013b):

Corrected lesion volume =
Lesion volume × Contralateral hemisphere size

Ipsilateral hemisphere size

Calculation of brain edema was also performed by the
RICH method. The calculation of brain edema by the RICH
technique was done by comparing the contralateral and ipsilateral
hemispheres, and performed using the following formula (Boyko
et al., 2011a):

Brain edema =
Volume of the right hemisphere− Volume of the left hemisphere

Volume of the left hemisphere

The lesion volume and brain edema were measured as a
percentage of the total brain (Boyko et al., 2019a).

Determination of Blood Glutamate
Whole blood (200 µl aliquot) had its protein removed by adding
an equal volume of ice-cold 1 M perchloric acid, followed by
utilization of a centrifuge at 10,000 × g for 10 min at 4◦C. The
supernatant was obtained for future analysis if necessary, and
adjusted to pH 7.2, with 2 M K2CO3, and stored at−80◦C.

To measure the glutamate concentration, the fluorometric
method of Graham and Aprison (1966) was used (Graham
and Aprison, 1966). A 60 µl aliquot from the perchloric acid
supernatant was combined with 90 µl of a 0.3 M glycine;
0.25 M hydrazine hydrate buffer adjusted to pH 8.6 with 1 M
H2SO4 and containing 11.25 U of glutamate dehydrogenase in
10 mM Nicotinamide adenine dinucleotide. After incubation
for 30 to 45 min at room temperature, the fluorescence was
measured at 460 nm with excitation at 350 nm. A glutamate
standard curve was established with concentrations ranging from
0 to 6 µM. All determinations were done at least in duplicates
(Boyko et al., 2011b).

Blood Sample Collection
Blood was collected from the tail vein for the determination
of blood glutamate levels via a 24- guage Neoflon (Becton
Dickinson, Helsingborg, Sweden) catheter. After the blood
sample was collected, the catheter was removed from the vein
(Boyko et al., 2012).

Cerebrospinal Fluid Sample Collection
Rats were anesthetized and the cisterna magna was cannulated, as
previously described (Boyko et al., 2012), and 0.1 to 0.2 ml of CSF
were gently aspirated.

Determination of Cerebrospinal Fluid
Glutamate
Fresh CSF (110 µl) was mixed with perchloric acid (25 µl) of
0.3 M, and then centrifuged at 10,000× g for 10 min at 4◦C. The
pellet was discarded and the supernatant was collected, adjusted
to pH 7.2 with 12.5 µl of 2 M K2CO3 and stored at −80◦C for
later analysis (Boyko et al., 2012). Analysis was performed by
fluorometric method as described above for blood samples.

Statistical Analysis
Statistical analysis was performed with the SPSS 20 package (SPSS
Inc., Chicago, IL, United States). The Kolmogorov–Smirnov
test was used, to consider the number of rats in each group
for deciding the appropriate test for the comparisons between
the different parameters. For non-parametric data, we used
the transformation test or other suitable tests. The significance
of comparisons between groups were determined using the
Kruskal–Wallis and Mann–Whitney (for nonparametric data)
and one-way ANOVA with Bonferroni post hoc test or the
Student’s t-tests (for parametric data). Mortality rate was
analyzed with chi-square and Fisher’s exact tests. Results were
considered statistically significant when P < 0.05, and highly
significant when P < 0.01.

RESULTS

Mortality
The survival rate was calculated in the first 3 days following
TBI or sham-operated procedure. During this period, the rats
were not administered pyruvate. The mortality rate in sham-
operated control rats was 0% in both gender groups, which was
significantly lower than male (10.71%, p = 2.6E-02, chi-square
and Fisher’s exact test, 2-sided) and female (9.64%, p = 2.5E-02,
chi-square and Fisher’s exact test, 2-sided) rats following TBI.

Neurological Severity Score
There were no baseline neurological deficits observed in any
of the rats before TBI or sham-operated procedure. The sham-
operated control groups did not show any neurological deficit at
any time point throughout the experiment. Compared to sham-
operated controls, the NSS at 24 h was significantly greater in
male [4(2–5) n = 75 vs. 0(0-0) n = 50, U = 45, p = 2.7E-21, r = 0.85]
and female [4(3–6) n = 75 vs. 0(0-0) n = 50, U = 0, p = 4.5E-
22, r = 0.86] rats after TBI, according to Mann–Whitney test
(Figures 2A,B). No statistically significant differences were found
between the 15 male and female groups, at time points of 30, 90,
and 180 days, according to Kruskal–Wallis one-way analysis (see
Figure 1 and Table 1). The data are measured as a count and
expressed as median and 25–75 percentile range.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2022 | Volume 16 | Article 832478

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-832478 February 11, 2022 Time: 11:49 # 7

Frank et al. Pyruvate for Post-traumatic Brain Injury Depression

Magnetic Resonance
Imaging-Determined Lesion Volume
Compared to sham-operated rats, the lesion volume at 24 h
was significantly greater in the female [2.71% ± 1.29%
vs.0.46% ± 0.24%, t(48) = −7.21, p = 3.4E-09] and male
[2.68% ± 1.32% vs. 0.45% ± 0.28%, t(48) = −7.26, p = 3E-
09] TBI groups, according to Student’s t-test (Figures 2C,D).
The data are expressed as a mean percentage of the contralateral
hemisphere± SD.

Magnetic Resonance
Imaging-Determined Brain Edema
Compared to sham-operated rats, the brain edema at 24 h
was significantly greater in the female [5.98% ± 2.83% vs.
0.57% ± 0.29%, t(48) = −5.5, p = 1.4E-06] and male
[6.15% ± 3.26% vs. 0.41% ± 0.24%, t(48) = −5.6, p = 1E-06]
TBI groups, according to Student’s t-test (Figures 2E,F). The
data are expressed as a mean percentage of the contralateral
hemisphere± SD.

Concentration of Cerebrospinal Fluid
Glutamate
Compared to sham-operated rats, the concentration of CSF
glutamate at 24 h was significantly greater in the female
[25.27 µM/L ± 13.13 µM/L vs. 3.6 µM/L ± 6.28 µM/L,
t(48) = −6.9, p = 1.2E-08] and male [26.27 µM/L ± 16.39 µM/L
vs. 2.1 µM/L ± 5.76 µM/L, t(48) = −6.4, p = 6.1E-08] TBI
groups, according to Student’s t-test (Figures 3A,B). The data are
measured in µM/L and expressed as mean± SD.

Concentration of Blood Glutamate
At baseline, there were no significant differences in blood
glutamate concentration between treatment groups.

Compared to sham-operated rats, the concentration of blood
glutamate at 24 h was significantly greater in the female
[121% ± 20% vs. 100% ± 18%, t(48) = 3.87, p < 0.01] and male
[114%± 18% vs. 100%± 17%, t(48) = 2.75, p < 0.01] TBI groups,
according to Student’s t-test. The data are measured in µM/L
presented as a percentage from sham-operated rats and expressed
as mean± SD.

For male rats, at day 10 after pyruvate administration
or placebo protocol, there were significant differences in
blood glutamate levels between sham-operated rats given
placebo (107% ± 8.6%), sham-operated rats given pyruvate
(80.4% ± 4.4%), post-TBI given placebo (109.5% ± 9.4%),
post-TBI rats given preventative pyruvate (77.6% ± 4.5%), and
post-TBI rats treated with pyruvate (80.3% ± 6.1%) [Kruskal–
Wallis, χ2 (4) = 12.9, p = 1.2E-02]. A subsequent Mann–
Whitney test indicated that male blood glutamate levels were
significantly decreased in the sham-operated rats given pyruvate
(U = 21, p = 2.8E-02, r = –0.49), post-TBI rats given preventative
pyruvate (U = 18, p = 1.6E-02, r = −0.02), and post-TBI
rats treated with pyruvate (U = 22, p = 3.4E-02, r = −0.47),
compared to sham-operated rats given placebo. At day 20,
there were significant differences in male blood glutamate levels
between sham-operated rats given placebo (101.2% ± 7.3%),

sham-operated rats given pyruvate (82.7% ± 5.1%), post-TBI
given placebo (105.2% ± 4.8%), post-TBI rats given preventative
pyruvate (80.6%± 3.5%) and post-TBI rats treated with pyruvate
(77.4% ± 3.5%) [Kruskal–Wallis, χ2 (4) = 11, p = 2.6E-02].
A subsequent Mann–Whitney test indicated that male blood
glutamate levels were significantly decreased in the post-TBI rats
given preventative pyruvate (U = 24, p = 4.9E-02, r = −0.44)
and post-TBI rats treated with pyruvate (U = 20, p = 2.3E-
02, r = −0.51), compared to the sham-operated control group
given placebo. Also on day 20, male blood glutamate levels
in the sham-operated rats given pyruvate were lower than in
the sham-operated control rats given placebo, although this
difference did not reach statistical significance. At day 30,
there were significant differences in male blood glutamate levels
between sham-operated rats given placebo (99.4% ± 5.9%),
sham-operated rats given pyruvate (75.9% ± 5.2%), post-TBI
given placebo (93.1% ± 7.1%), post-TBI rats given preventative
pyruvate (77.9%± 5.4%) and post-TBI rats treated with pyruvate
(79.9% ± 3.6%) [Kruskal–Wallis, χ2 (4) = 10.1, p = 3.9E-
02]. A subsequent Mann–Whitney test indicated that male
blood glutamate levels were significantly decreased in the sham-
operated controls given pyruvate (U = 16, p = 1E-02, r = −0.58),
post-TBI rats given preventative pyruvate (U = 75, p = 2.3E-02,
r = −0.51) and post-TBI rats treated with pyruvate (U = 75,
p = 2.3E-02, r = −0.51), compared to sham-operated rats given
placebo (Figure 3C).

For female rats, at day 10, there were significant differences
in blood glutamate levels between sham-operated rats given
placebo (98.7% ± 6.7%), sham-operated rats given pyruvate
(80% ± 4.3%), post-TBI given placebo (104.5% ± 7%), post-
TBI rats given preventative pyruvate (80.1% ± 3%) and post-
TBI rats treated with pyruvate (78.7% ± 4.4%) [Kruskal–Wallis,
χ2 (4) = 12.8, p = 1.2E-02]. A subsequent Mann–Whitney
test indicated that at day 10, female blood glutamate levels
were significantly decreased in the sham-operated controls given
pyruvate (U = 23, p = 4.1E-02, r = −0.46), post-TBI rats given
preventative pyruvate (U = 23, p = 4.1E-02, r =−0.46), and post-
TBI rats treated with pyruvate (U = 24, p = 4.9E-02, r = −0.45),
compared to sham-operated rats given placebo. At day 20, there
were significant differences in female blood glutamate levels
between sham-operated rats given placebo (103.4% ± 5.1%),
sham-operated rats given pyruvate (81.1% ± 5.7%), post-TBI
given placebo (100.3% ± 6.1%), post-TBI rats given preventative
pyruvate (86.4%± 4.9%) and post-TBI rats treated with pyruvate
(83.2% ± 5%) [Kruskal–Wallis, χ2 (4) = 11.8, p = 1.9E-02].
A subsequent Mann–Whitney test indicated that at day 20,
female blood glutamate levels were significantly decreased in the
sham-operated controls given pyruvate (U = 18, p = 1.6E-02,
r = −0.54), post-TBI rats given preventative pyruvate (U = 24,
p = 4.9E-02, r = −0.44), and post-TBI rats treated with pyruvate
(U = 18, p = 1.6E-02, r = −0.54), compared to sham-operated
rats given placebo. At day 30, there were significant differences in
female blood glutamate levels between sham-operated rats given
placebo 101.2% ± 5.4%), sham-operated rats given pyruvate
(82.9% ± 4%), post-TBI given placebo (97.6% ± 5.3%), post-
TBI rats given preventative pyruvate (80.4% ± 5.6%) and post-
TBI rats treated with pyruvate (74.2% ± 3.7%) [Kruskal–Wallis,
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FIGURE 3 | Brain (A,B) and blood (C,D) glutamate concentrations. Compared to sham-operated rats, the concentrations of CSF glutamate at 24 h was significantly
greater in the male [p < 0.01, (A)] and female [p < 0.01 (B)] TBI groups. The data are measured in µM/L and expressed as mean ± SD. Blood glutamate levels were
decreased in male [p < 0.05 (C)] and female [p < 0.05 (D)] groups that received preventative or therapeutic pyruvate. The data are measured in µM/L presented as
a percentage from baseline and expressed as mean ± SEM. CSF, Cerebrospinal fluid; PLAC, Placebo; PYR, Pyruvate; TBI, Traumatic brain injury.

χ2 (4) = 14.6, p = 5.7E-03]. A subsequent Mann–Whitney
test indicated that at day 30, female blood glutamate levels
were significantly decreased in the sham-operated controls given
pyruvate (U = 19, p = 1.9E-02, r = −0.52), post-TBI rats given
preventative pyruvate (U = 21, p = 2.8E-02, r = −0.49) and post-
TBI rats treated with pyruvate (U = 11 p = 3.2E-02, r = −0.66),
compared to sham-operated controls given placebo (Figure 3D).

As expected (Puig et al., 2000), blood glutamate levels in post-
TBI rats treated with placebo were not statistically significantly
different than in the sham-operated control rats treated with
placebo. The data are measured in µfvM/L presented as a
percentage from baseline and expressed as mean± SEM.

Sucrose Preference
For male rats at day 30, a one-way ANOVA showed a significant
difference in the percentage of sucrose preference between the
study groups F(4,65) = 13.5, p = 4.8E-08. Post hoc analysis with
a Bonferroni test showed a significant decrease between post-
TBI rats given placebo (76.2% ± 1.9%, p = 4E-05) and post-TBI
rats treated with pyruvate (75.4% ± 2%, p = 8.7E-06) compared
to sham-operated controls given placebo (91.1% ± 1.2%). At
day 90, a one-way ANOVA showed a significant difference in
the percentage of sucrose preference between the study groups
F(4,65) = 11.11, p = 6.3E-07. Post hoc analysis with a Bonferroni
test showed a significant decrease in post-TBI rats given placebo

(73% ± 3.1%, p = 6.5E-05) compared to sham-operated controls
given placebo (89.9%± 1.7%) (Figures 4A,C,E).

For female rats at day 30, a one-way ANOVA showed a
significant difference in the percentage of sucrose preference
between the study groups F(4, 68) = 16.27, p = 2.2E-09.
Post hoc analysis with a Bonferroni test showed a significant
decrease in post-TBI rats given placebo (77% ± 2.2%, p = 7.5E-
06) and post-TBI rats treated with pyruvate (77.1% ± 1.6%,
p = 8.2E-06), compared to sham-operated controls given placebo
(91.4% ± 1.3%). At day 90, a one-way ANOVA showed a
significant difference in the percentage of sucrose preference
between the study groups F(4,65) = 21.29, p = 3.0E-11.
Post hoc analysis with a Bonferroni test showed a significant
decrease in post-TBI rats given placebo (64.5% ± 4.8%,
p = 1.4E-08) compared to sham-operated controls given placebo
(89.8% ± 1.2%) (Figures 4B,D,F). The data are measured in ml
presented as percentage and expressed as mean± SEM.

Open-Field Test
For male rats at day 30, a one-way ANOVA showed a
significant difference in the total distance traveled between the
study groups F(4,72) = 6.49, p = 1.6E-08. Post hoc analysis
with a Bonferroni test showed a significant increase in post-
TBI rats given placebo (31.21 m ± 2.5 m, p = 2.9E-03)
and post-TBI rats treated with pyruvate (28.93 m ± 4.25 m,
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FIGURE 4 | Sucrose preference test. There was a decrease in sucrose preference at 1 and 3 months following TBI for male (A) and female (B) rats given placebo
compared to sham-operated controls (p < 0.01). For male (C) and female (D) rats at day 30, there was a significant decrease in sucrose preference in post-TBI rats
given placebo (p < 0.01) and post-TBI rats treated with pyruvate (p < 0.01) compared to sham-operated controls given placebo. For male (E) and female (F) rats at
day 90, there was a significant decrease in sucrose preference in post-TBI rats given placebo (p < 0.01) compared to sham-operated controls given placebo. The
data are measured as a percentage and presented as mean ± SEM. PLAC, Placebo; PYR, Pyruvate; TBI, Traumatic brain injury.

p = 2.9E-02), compared to sham-operated controls given placebo
(19.3 m ± 0.77 m). At day 90, a one-way ANOVA showed a
significant difference in the total distance traveled between the
study groups F(4,70) = 19.74, p = 6.5E-11. Post hoc analysis
with a Bonferroni test showed a significant increase in post-TBI
rats given placebo (30.52 m ± 1.94 m, p = 8.1E-10) compared
to sham-operated controls given placebo (18.84 m ± 0.72 m)
(Figures 5A,C,E).

For female rats at day 30, a one-way ANOVA showed a
significant difference in the total distance traveled between the

study groups F(4,72) = 4.4, p = 3.1E-03. Post hoc analysis with
a Bonferroni test showed a significant increase in post-TBI rats
given placebo (29.89 m ± 2.33 m, p = 2.3E-02) and post-TBI rats
treated with pyruvate (29.37 m± 5.12 m, p = 3.5E-02), compared
to sham-operated controls given placebo (18.65 m ± 0.69 m). At
day 90, a one-way ANOVA showed significant difference in the
total distance traveled between the study groups F(4,69) = 9.25,
p = 4.8E-06. Post hoc analysis with a Bonferroni test showed
a significant increase in distance traveled by post-TBI rats
given placebo (27.55 m ± 2.06 m, p = 1.6E-05) compared

Frontiers in Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 832478

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-832478 February 11, 2022 Time: 11:49 # 10

Frank et al. Pyruvate for Post-traumatic Brain Injury Depression

FIGURE 5 | Open-field test. There was an increase in the total traveled distance at 1 and 3 months following TBI for male (A) and female (B) rats given placebo
compared to sham-operated controls (p < 0.05). For male (C) and female (D) rats at day 30, there was a significant increase in total distance traveled in post-TBI
rats given placebo (p < 0.01) and post-TBI rats treated with pyruvate (p < 0.01) compared to sham-operated controls given placebo. For male (E) and female (F)
rats at day 90, there was a significant increase in total distance traveled in post-TBI rats given placebo (p < 0.01) compared to sham-operated controls given
placebo. The data are measured as cm/5 min and presented as mean ± SEM. PLAC, Placebo; PYR, Pyruvate; TBI, Traumatic brain injury.

to sham-operated controls given placebo (19.19 m ± 0.88 m)
(Figures 5B,D,F). The data are measured as meter/5 min and
presented as mean± SEM.

DISCUSSION

In this study, we investigated blood glutamate scavenging
activity from pyruvate administration and its mechanisms as
a viable option for antidepressant treatment in a rat model of
post-traumatic depression. Specifically, we studied the effects
of pyruvate on anhedonia and elevated locomotor activity

(Bhatt et al., 2017) as a consequence of post-traumatic behavioral
mood disorders. Additionally, we considered brain glutamate
levels and blood glutamate scavenging, MRI findings, and
neurological outcomes between male and female rodent groups,
and we used both a prophylactic and a therapeutic pyruvate
treatment protocol. Our results determined that pyruvate likely
has an antidepressant effect on the brain via its participation in
blood glutamate scavenging.

Our hypotheses on the following neurological conditions
were confirmed by our study. We determined that the mortality
rate in the TBI group was higher than in the sham group.
Cerebral edema and lesion volume were significantly higher
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in the TBI group compared to the sham group (Figures 2C–
F). We observed that neurological deficits were significantly
greater in the TBI group compared to the sham group,
which spontaneously recovered by 1 month (Figures 2A,B and
section results > neurological performance). In addition, the
concentration of glutamate was increased in the cerebrospinal
fluid at 24 h as a consequence of TBI (Figures 3A,B). We have
previously shown that the administration of pyruvate is effective
in reducing cerebrospinal fluid glutamate levels in rodent models
of subarachnoid hemorrhage (Boyko et al., 2012) and stroke
(Frank et al., 2019a; Gruenbaum et al., 2020). A significant
process of blood glutamate scavenging occurred in groups
that received pyruvate treatment compared to placebo groups
(Figures 3C–D). All the above results applied to both the male
and female cohorts (Figures 2, 3). At days 10–30 following TBI,
the glutamate levels in rats given placebo did not differ from the
levels in naïve rats treated with placebo. In previous studies in the
setting of stroke, an increase in blood glutamate levels was seen
in the first 24 h, but the levels dropped to baseline at 48 h and
beyond (Puig et al., 2000).

To study the efficacy of pyruvate as an antidepressant
therapy, we used two behavioral tests. The first was the sucrose
preference test that measures the level of anhedonia, one of
the most common symptoms of depressive disorders (American
Psychiatric Pub, 2013). The sucrose preference test is a standard
test for assessing anhedonia in rat models and has allowed for
the development of new therapeutic antidepressant treatments
(Gururajan et al., 2019). In our study, the TBI rats developed
anhedonia at higher rates compared to sham rats and then
spontaneously recovered 6 months after TBI (Figures 4A,B).
In contrast, the post-TBI rats who were administered pyruvate
prophylactically showed no symptoms of anhedonia and did not
differ from the results of the sham rat group at 1 and 3 months
following TBI (Figures 4B–F).

Traumatic brain injury rats that received pyruvate only after
they developed anhedonia symptoms, showed a therapeutic effect
of the treatment at 3 months. Thus, pyruvate has proven to
be effective in two approaches: in the prophylactic treatment
protocol as well as the therapy protocol (Figure 4). Pyruvate
showed equal rates of efficacy in both the male and female
cohorts (Figure 4).

The second behavioral test which we used was an open field
test, a common method used to detect high emotionality and
locomotor hyperactivity (Ramamoorthy et al., 2008) in post-
TBI rats (Lewen et al., 1999; Pandey et al., 2009) and mice
(Li et al., 2006; Pullela et al., 2006; Tucker et al., 2016). These
manifestations are associated with depressive status (Pandey
et al., 2009) and show high response rates to antidepressant
drugs (Lewen et al., 1999; Pandey et al., 2009; Bhatt et al., 2017;
Jindal et al., 2017). The hyperlocomotion that we recorded in the
TBI group during the open field test is attributable to damage
caused by the brain insult to the cerebral cortex, striatum, and
olfactory bulbs (Viggiano, 2008). An increase in total distance
traveled in the olfactory bulbectomized model of depression is
well documented in the literature (Kalueff and Tuohimaa, 2004).
Assessment of hyperlocomotive behavior as a consequence of TBI
is also used to verify new models of TBI (Kane et al., 2012).

Our study supports the hypothesis that hyperlocomotion
after TBI is associated with dysregulation of the glutamatergic
system, in particular by high levels of extracellular glutamate.
The association between dysregulation of the glutamatergic
system and hyperlocomotion has been widely reported (Takahata
and Moghaddam, 2003; Abekawa et al., 2007; Hackler et al.,
2010; Egerton et al., 2020). It was previously observed that
activation of metabotropic glutamate receptors increases both
horizontal and vertical locomotor activity and this activity is
impeded by administration of a receptor antagonist, fluphenazine
(Kim and Vezina, 1997). Gainetdinov et al. (2001) showed
that drugs that enhance glutamatergic transmission, such as
positive modulators of L-α-amino-3-hydroxy-5-methylisoxazole-
4-propionate glutamate receptors, suppress the hyperactivity of
mice lacking the dopamine transporter (Gainetdinov et al., 2001).
The involvement of the glutamate system in the development
of attention-deficit disorder, hyperactivity, and other behavioral
motor disorders has also been previously described (Procaccini
et al., 2013; Maksimovic et al., 2014a,b; Miller, 2019; Aitta-
Aho et al., 2019). Halberstadt et al. (2011) demonstrated that
loss of mGlu5 receptor activity either pharmacologically or
through gene deletion leads to locomotor hyperactivity in
mice. These studies strongly indicate that dysregulation of the
glutamatergic system, alone or in combination with other major
neurotransmitter systems such as dopamine, GABA, and the
serotonin system, may induce hyper-locomotive effects that
are controlled by drugs that regulate glutamate homeostasis
(Tucker et al., 2016). Although the precise brain circuitry and
pharmacological targets involved in the suppression of locomotor
behavior require further elucidation, our data support the
possibility that glutamatergic transmission in the hippocampus
could be therapeutically applied to dampen the hyper-excitable
hippocampus and other brain circuitries.

In our study, we found that TBI rats were more likely to
travel farther distances in the open field compared to the sham
group until 6 months following TBI. In addition, more TBI rats
developed hyperlocomotion activity compared to sham rats and
then spontaneously recovered 6 months after TBI. In contrast,
the rats after TBI from the protocol of preventive treatment with
pyruvate showed no symptoms of hyperlocomotive activity and
did not differ from sham rats at 1 and 3 months following TBI.
TBI rats that were in the treatment group and did not receive
pyruvate after TBI developed symptoms of hyperlocomotion and
only then began to receive pyruvate as a therapeutic approach.
Thus, pyruvate showed its efficacy both as a prophylactic protocol
and as a therapeutic protocol. Pyruvate showed equal effective
results in both male and female cohorts.

The similarities between the male and female cohorts in the
outcomes of the sucrose preference test and the open field test
elucidate our understanding of gender differences concerning
depression and anxiety. Women tend to suffer more often from
major depressive disorder (Kovacs et al., 1989; Weissman et al.,
1993; Bebbington, 1998; Merikangas et al., 2010) and anxiety
(Angst and Dobler-Mikola, 1985; Kessler et al., 1994; Bruce
et al., 2005). In rodent models, different rat strains can display
significant gender disparities in models of depression (Kokras
and Dalla, 2014), though it is generally observed that female
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rodents appear more active in the open field test, with less
anxiety (Ter Horst et al., 2009; Kokras and Dalla, 2014). In
our study, the use of the sucrose preference test in addition to
the open field test assisted in developing more comprehensive
neurological findings.

While it was outside of the scope of this study, we have
previously observed that women display lower levels of blood
glutamate concentration at baseline, and in conditions such as
amyotrophic lateral sclerosis, rheumatoid arthritis, and growth
hormone deficiency (Stover and Kempski, 2005). We have also
determined that progesterone and estrogen have neuroprotective
properties that act to reduce blood glutamate levels (Zlotnik
et al., 2011b; Tsesis et al., 2013). We followed recommendations
in the literature to include both sexes in this model (Rubin
and Lipton, 2019), and, therefore our results accurately show
the possible regulatory effects of pyruvate in similar ways
across both groups. We hypothesize that more research on the
topic of gender differences will support the use of pyruvate
as a pharmacological approach that addresses depression for
both men and women.

In our study, we began treatment on the third day after TBI.
Usually, however, new therapeutic modalities are administered
in the first hours after a brain injury (Tucker et al., 2016). We
based our methodology on previous evidence that pyruvate has
a neuroprotective effect in models of stroke and subarachnoid
hemorrhage and, when administered in the first hours, reduces
cerebral edema, infarction zone and blood brain barrier
breakdown (Frank et al., 2019a). A reduction in damage to the
brain tissue after pyruvate administration can potentially affect
the development of behavioral outcomes after TBI. To neutralize
the effect of histological outcomes on behavioral ones, we started
pyruvate administration on the third day after TBI.

In summary, we have provided significant evidence that the
process of blood glutamate scavenging by pyruvate induces
antidepressant properties. These properties result in the
prevention or treatment of anhedonia and hyperlocomotion that
are caused by glutamate deregulation after TBI in rats. These
conditions are symptoms of depressive-like conditions in rodent
models. When analyzed in conjunction with previously observed
neuroprotective properties of blood glutamate scavenging, it
has become more apparent that blood glutamate scavengers
should be considered as a viable treatment option for post-
TBI depression.
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