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ABSTRACT Inference of demographic history from genetic data is a primary goal of population genetics of
model and nonmodel organisms. Whole genome-based approaches such as the pairwise/multiple
sequentially Markovian coalescent methods use genomic data from one to four individuals to infer the
demographic history of an entire population, while site frequency spectrum (SFS)-based methods use the
distribution of allele frequencies in a sample to reconstruct the same historical events. Although both
methods are extensively used in empirical studies and perform well on data simulated under simple models,
there have been only limited comparisons of them in more complex and realistic settings. Here we use
published demographic models based on data from three human populations (Yoruba, descendants of
northwest-Europeans, and Han Chinese) as an empirical test case to study the behavior of both inference
procedures. We find that several of the demographic histories inferred by the whole genome-based
methods do not predict the genome-wide distribution of heterozygosity, nor do they predict the empirical
SFS. However, using simulated data, we also find that the whole genome methods can reconstruct the
complex demographic models inferred by SFS-based methods, suggesting that the discordant patterns of
genetic variation are not attributable to a lack of statistical power, but may reflect unmodeled complexities
in the underlying demography. More generally, our findings indicate that demographic inference from a
small number of genomes, routine in genomic studies of nonmodel organisms, should be interpreted
cautiously, as these models cannot recapitulate other summaries of the data.
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The pairwise sequentially Markovian coalescent (PSMC) and related
methods have become a popular tool to estimate the history of a
population from genetic variation data (McVean and Cardin 2005; Li
and Durbin 2011; Schiffels and Durbin 2014). These methods use
whole genome sequences from one to four individuals to infer the
demographic history of an entire population. Specifically, they estimate
the local time to the most recent common ancestor (TMRCA) for small

regions in the genome and then use the distribution of these coalescent
times to infer an overarching demographic history. For instance, if
many regions of the genome coalesce at a specific time, it may be
evidence for a population contraction, which would reduce the number
of genetic lineages. The great appeal of thesemethods is that they do not
rely on deep sequencing of multiple individuals in a population; in-
stead, a single genome can be used to infer the demographic history of
an entire population. PSMC and its successors have been used to infer
the demographic histories and split times of many human populations
(Li and Durbin 2011; Kidd et al. 2012; Schiffels and Durbin 2014; 1000
Genomes Project Consortium 2015; Henn et al. 2016), and were re-
cently featured in three prominent articles that reconstructed human
history using whole genome sequencing data from over 20 populations
(Malaspinas et al. 2016; Mallick et al. 2016; Pagani et al. 2016).

PSMC plots have also become a cornerstone of many studies of
nonmodel organisms lacking resources for the sequencing of numerous
individuals, including archaic hominins (Meyer et al. 2012; Prufer et al.
2014), great apes (Prado-Martinez et al. 2013), wild boars and domestic
pigs (Groenen et al. 2012; Bosse et al. 2014), canids (Freedman et al.
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2014; Wang et al. 2016), horses (Orlando et al. 2013), over 38 bird
species (Nadachowska-Brzyska et al. 2013, 2015, 2016; Hung et al.
2014; Murray et al. 2017), pandas (Zhao et al. 2012), dromedaries
(Fitak et al. 2016), flowering plants (Albert et al. 2013; Ibarra-Laclette
et al. 2013; Holliday et al. 2016), and even woolly mammoths
(Palkopoulou et al. 2015).

Despite their widespread prominence, there is concern over the
validity of demographicmodelsobtained fromthis set ofwholegenome-
based methods. Particularly, Mazet et al. (2015b) found that PSMC
captures the inverse instantaneous coalescent rate (IICR) rather than
an absolute measure of population size. The IICR corresponds to the
effective population size if the population is panmictic, but it can differ
from the population size due to gene flow and population structure,
which affect the time to coalescence between subgroups. Thus, popu-
lation structure can give a false signal of population growth or contrac-
tion, a notorious problem in demographic inference (Ptak and
Przeworski 2002; Chikhi et al. 2010; Peter et al. 2010; Gattepaille
et al. 2013; Heller et al. 2013; Mazet et al. 2015a,b; Orozco-terWengel
2016). Given these possible confounders, the degree to which whole
genome-based plots derived from PSMC and its successors correspond
to actual population size changes, rather than other demographic phe-
nomena, remains unclear.

An alternative approach to infer population demography from
genetic data uses the site frequency spectrum (SFS). The SFS represents
the distribution of alleles at different frequencies in a sample of indi-
viduals from a population (Nielsen 2000; Wakeley 2009). The distri-
bution of single nucleotide polymorphisms (SNPs), ranging from rare
“singletons” which appear only once in the sample, to high-frequency
variants that may appear in the majority of individuals, is directly
affected by the demographic history of the population (Nielsen 2000;
Wakeley 2009). Population contractions (“bottlenecks”) can lead to a
dearth of rare variants (Nei et al. 1975), whereas a rapid population
expansion can lead to an overabundance (Tajima 1989; Slatkin and
Hudson 1991; Keinan and Clark 2012). The SFS is a sufficient statistic
for unlinked SNPs and has been used extensively in population genetic
inference of demography (Nielsen 2000; Polanski and Kimmel 2003;
Adams and Hudson 2004; Marth et al. 2004; Keinan et al. 2007;
Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013). SFS-
based demographic inference has been implemented in programs such
as @a@i (Gutenkunst et al. 2009), moments (Jouganous et al. 2017),
fastsimcoal2 (Excoffier et al. 2013), stairway plot (Liu and Fu 2015),
fastNeutrino (Bhaskar et al. 2015), and others (Schraiber and Akey
2015). The SFS requires less sequence data per individual than the
whole genome methods, but requires a greater number of individuals
to be studied, with a minimum of 10 per population typically used
(Gutenkunst et al. 2009; Excoffier et al. 2013). While the SFS is imprac-
tical if one can only sequence one or two individuals per population,
population genomic studies based on many short loci scattered
throughout the genome are beginning to be carried out on nonmodel
organisms. RAD-seq data or gene transcript data from RNA-seq can
readily be used for SFS-based demographic inference (McCoy et al.
2014; Trucchi et al. 2014; Sovic et al. 2016).

SFS-based and whole genome-based methods may have different
strengths and weaknesses for demographic inference (Schraiber and
Akey 2015). Theoretical and empirical data show that SFS-based ap-
proaches using large numbers of individuals can accurately estimate
recent population growth (Nelson et al. 2012; Tennessen et al. 2012;
Gazave et al. 2014; Bhaskar et al. 2015; Gao and Keinan 2016). In
contrast, whole genome-based methods are less able to do so (Li and
Durbin 2011). Recently, however, Schiffels and Durbin (2014) de-
veloped the multiple sequentially Markovian coalescent (MSMC),

an extension to PSMC that uses the SMC9 algorithm (Marjoram and
Wall 2006) and can infer demography from two, four, or eight haplo-
types (also known as PSMC9 when inferring from two haplotypes). The
incorporation of multiple genomes in MSMC is specifically meant to
improve estimates of recent growth (Schiffels and Durbin 2014).

The SFS may be limited in the degree to which it can detect ancient
bottlenecks.2Ne (effective population size) generations ago and in its
ability to detect population declines (Bunnefeld et al. 2015; Terhorst
and Song 2015; Boitard et al. 2016). Whole genome-based approaches
are not constrained a priori by the number of population size changes
as is common in the SFS-based approaches (but see the “stairway plot”
approach of Liu and Fu 2015). They therefore often give information
about events occurring millions of years ago, but the reliability of those
results remains uncertain (Li and Durbin 2011). Further, demographic
models inferred from human populations using the SFS were unable to
recapitulate the empirical distribution of identity-by-state (IBS) tracts
across the genome, while PSMC-derived models and an IBS-derived
model were better able to match the IBS tract distribution (Harris and
Nielsen 2013). However, the IBS-derived model did not predict the
empirical SFS.

Due to these different strengths andweaknesses of approaches using
single types of data, newmethodshavebeendevelopedwhich attempt to
combine linkage disequilibrium (LD) information and the SFS
(Bunnefeld et al. 2015; Boitard et al. 2016; Terhorst et al. 2017;
Weissman and Hallatschek 2017). One of the most recent methods is
Terhorst et al.’s (2017) SMC++, which combines a PSMC-like ap-
proach with the SFS to condition an SFS calculated from many indi-
viduals on the distribution of TMRCA from a single unphased genome.
This approach is fast and potentially very powerful, but has the same
barrier to entry for those studying nonmodel organisms as the other
SFS methods, as it requires sequence data from many individuals.

Due to anthropological and biomedical interest, humans have been
extensively studied using numerous demographic inference methods
and provide a means to quantitatively compare these demographic
inferenceapproachesusing the same empirical populations.Gutenkunst
et al. (2009) and Gravel et al. (2011) carried out SFS-based inference
of human demography using the diffusion approximation in @a@i,
while Li and Durbin (2011) and Schiffels and Durbin (2014) estimated
human demography from the same populations using PSMC and
MSMC, respectively. Although the results are in some ways generally
similar, the demographic models inferred for three human populations
using MSMC (Schiffels and Durbin 2014) differ from demographic
models for the same populations derived from SFS-based methods
(Gutenkunst et al. 2009). MSMC infers ancient ancestral sizes and
periods of growth and decline (the characteristic “humps” in MSMC
trajectories) that were not detected in the SFS-derived models as well as
inferring greater recent growth (Figure 1). The models inferred using
MSMC also vary depending on the number of genomes used for the
inference (Figure 1).

Terhorst et al. (2017) analyzed the same populations with the com-
bined whole genome and SFS method, SMC++, finding an ancestral
sizemore in line withGutenkunst et al.’s (2009)model, but with greater
recent growth and ancestral bottlenecks more resembling the MSMC
models (Figure 1). The reasons why these approaches to demographic
inference yield different estimates remain poorly understood.

Herewe leverage humans as amodel system toperforman empirical
comparison of the performance of whole genome, SFS, and combined
methods of demographic inference. Specifically, we determine which
published models of human demography described above (Figure 1)
best fit the empirical distributions of genome-wide heterozygosity, LD
decay, and the observed SFS.
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We find that the models inferred using the SFS or the combined
method, SMC++, accurately recapitulate heterozygosity and the ob-
served SFS. Among theMSMCmodels inferred by Schiffels andDurbin
(2014), only the MSMC models based on a single genome were able to
accurately recapitulate heterozygosity, and none of the MSMC models
predicted an SFS that matched the empirical SFS. None of the demo-
graphic histories accurately predicted LD decay, but the histories de-
rived fromMSMC using four genomes (eight haplotypes), the SFS, and
SMC++-based models fit better than the MSMC models based on one
or two genomes. Our results provide a cautionary tale against the literal
interpretation of demographic models inferred using one type of data,
instead arguing for considering multiple summaries of the data when
making detailed demographic inferences in nonmodel species.

METHODS

Published demographic models used in this study
We determined which, if any, of the published models of human
demography (Figure 1) described below could accurately predict multiple
summaries of the genetic variation data. Demographic models that fit the
data well should produce patterns of genetic variation that match the
empirical patterns in the data. We focused on three human populations:
Utah residents with Northern and Western European ancestry from the
Centre d’Etude du Polymorphism Humain collection (CEU); Han
Chinese in Beijing, China (CHB); and Yoruba in Ibadan, Nigeria (YRI).

The first set of demographic models was jointly inferred for the
three populations in @a@i by Gutenkunst et al. (2009) using a three-
population joint SFS based on data from intronic regions. Their
model parameters were made available both in @a@i and Hudson’s
ms (Hudson 2002) format, and include gene flow between the three
populations (here referred to as the “Gutenkunst” model).

The next nine models were inferred by Schiffels and Durbin (2014)
using whole genome Complete Genomics (Drmanac et al. 2010) se-
quence data of two, four, and eight statistically phased genomic hap-
lotypes (one, two, and three individual genomes) per population to
infer demographic histories using MSMC (here referred to as the
“MSMC 2-haplotype,” “MSMC 4-haplotype,” and “MSMC 8-haplotype”
models; Supplemental Material, Supplementary Note 1 in File S1).

To analyze their models with @a@i, we converted these nine de-
mographic models (CEU, CHB, and YRI populations, each based on
two, four, and eight haplotypes) into stepwisemodels of population size
changes over small time intervals (Figure S1 and Supplementary Note
2 in File S1).

Thefinal set ofmodelswas inferred byTerhorst et al. (2017) in SMC++,
a combined SFS plus whole genome approach. For the whole genome
portion of the analysis, they used high coverage sequence data from
Complete Genomics, and generated an SFS based on a combination of
1000 Genomes and Complete Genomics whole genome data for each
population (Drmanac et al. 2010; 1000 Genomes Project Consortium
2015; Terhorst et al. 2017). We converted these SMC++ models to
@a@i and ms format in the same manner as the MSMC models (here
referred to as the “SMC++”models; Supplementary Note 2 in File S1).

Heterozygosity predicted by demographic models
We compared the distribution of expected heterozygosity from data
simulated under each demographic model to empirical 1000 Genomes
data from the same populations to determine which models most
accurately predict this broad summary of the data (Figure 2 and Table
S1 in File S1). While heterozygosity is a summary of the SFS, we
considered it valuable to examine both statistics since information re-
garding the spatial correlation among SNPs along the genome is lost in

the genome-wide SFS. The distribution of heterozygosity across
windows of the genome retains some spatial information and is
more similar to what is used by the MSMC inference approach.

Empirical heterozygosity: 1000 Genomes data from the CEU, CHB,
and YRI populations were downloaded. 10 unrelated individuals per
population (see SupplementaryNote 3 in File S1 for sequence IDs) were
randomly chosen so that comparisons could be made with Gutenkunst
et al.’s (2009) empirical SFS, described below. For all our empirical
analyses, only sites that passed the 1000 Genomes “Strict Mask” filter
were considered (1000 Genomes Project Consortium 2015).

Expected heterozygosity per site (p) was calculated in nonoverlap-
ping 100-kb windows from the whole genome data (Supplementary
Note 3 in File S1) as:

p ¼ n
n2 1

PL
i¼12pi

�
12 pi

�

L
;

where p is the frequency of one allele, L is the total number of callable
sites in the window, and n is number of sampled chromosomes (n = 20
for 10 diploid individuals).

Because genetic variation can be affected by linked natural selection
(Gazave et al. 2014; Schrider et al. 2016), we also calculated expected
heterozygosity for a set of 6333 · 10-kb neutral windows that were
selected using the Neutral Region Explorer (NRE) (Arbiza et al. 2012)
(Figure S2 and Supplementary Note 3 in File S1). The NRE is a useful
tool that allows for the quick identification of putatively neutral regions
that have high recombination rates and high B-values (indicating less
linked selection). For the full set of parameters used in selection of
putatively neutral regions, see Supplementary Note 3 in File S1.

Simulated heterozygosity: For each demographic model, whole ge-
nomedata for 10 individuals were simulated inMaCS (Chen et al. 2009)
over 20,000 · 100-kb independent blocks, each with a different recom-
bination rate drawn from the distribution of recombination rates cal-
culated by Phung et al. (2016) from the pedigree-based genetic map
assembled by the deCODE project (Kong et al. 2010). Additionally,
6300 · 10-kb independent blocks per 10 individuals were simulated for
comparison to the neutral regions from the 1000 Genomes data set
(1000 Genomes Project Consortium 2015). Each 10-kb block was sim-
ulated using a recombination rate matched to that of one of the empir-
ically neutral 10-kb windows, linearly interpolated from the deCODE
project (Kong et al. 2010). For both sets of simulations, the expected
heterozygosity across the 10 individuals was calculated using the
equation above in msstats (Hudson 2002).

LD decay predicted by demographic models
We calculated LD between pairs of SNPs using genotype data from
10 individuals from each of the four populations in the 1000 Genomes
Project data. We removed singletons and sites where all 10 individuals
werehomozygous for the referenceallele and thencalculatedgenotype r2

using vcftools (Danecek et al. 2011). All pairs of SNPs were then placed
into bins based on their physical distance (bp) between each other, from
0–1000 bp (bin 1) to 50,000–51,000 bp (bin 51). Within each bin, the
average r2 was calculated by dividing the sum of r2 values of each pair of
SNPs in the bin by the total number of SNP pairs in that bin.

The same procedure was carried out for the data simulated inMaCS
(Chen et al. 2009) that were used for the calculations of heterozygosity
above. TheMaCS output was converted to vcf format using a custom bash
script. Genotype r2 was calculated in vcftools (Danecek et al. 2011) for each
100-kb simulated window, the SNP pairs were binned by distance, and
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average r2 was calculated as described above. TheMSMC 8-haplotype YRI
and MSMC 4-haplotype CEU, CHB, and YRI models have extremely
large ancestral sizes, and so their simulations involve so many SNPs
that the LD calculations become highly computationally intensive.
Therefore, for these models only 5000 · 100-kb blocks were used for
LD decay calculations, with 20,000 · 100-kb blocks used for the other
models. We experimented with down-sampling the results and found
no change in the LD decay curve due to the smaller amount of data.

To demonstrate that the use of the SMC9 approximation in the
MaCS (Chen et al. 2009) simulator was not biasing our estimates of

LD, we simulated data in the manner described above under a simple
model of extreme population decline (from 100,000 ancestral individ-
uals to 1000) using both MaCS and MSMS (Ewing and Hermisson
2010) (which does not use the SMC9 approximation) and ran it through
the same LD decay pipeline used for our other simulated data (Figure
S3 in File S1).

SFS predicted by demographic models
We used the diffusion approximation in @a@i (Gutenkunst et al. 2009)
to calculate the expected SFSs under the Gutenkunst, MSMC

Figure 1 Demographic histories for the (A) CEU,
(B) CHB, and (C) YRI populations. Trajectories are
log scaled and in terms of physical units (diploid
individuals and years). Models were either
inferred using SFS-based methods (Gutenkunst)
by Gutenkunst et al. (2009); from a sequentially
Markovian coalescent-based approach (MSMC)
from two, four, and eight haplotypes by Schiffels
and Durbin (2014); or using a combined SFS and
whole genome approach (SMC++) by Terhorst
et al. (2017). The Gutenkunst models also include
migration between all three populations, not
depicted here. Models are scaled by the gener-
ation times used in each study [Gutenkunst et al.
(2009): 25 yr/generation; Schiffels and Durbin
(2014): 30 yr/generation; Terhorst et al. (2017):
29 yr/generation].
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2-haplotype, MSMC 4-haplotype, MSMC 8-haplotype, and SMC++
models for the CEU, CHB, and YRI populations. We compared the
SFSs expected under each of these models both to the empirical SFS
used by Gutenkunst et al. (2009) to infer the demographic histories of
these three populations [“observed (Gutenkunst),” Figure 4 and Fig-
ure 5], as well as to the SFSs based on low-coverage 1000 Genomes
whole genome sequencing data [“1000 Genomes (whole genome),”
Figure 6] and SFSs based on putatively neutral regions in the 1000 Ge-
nomes data set [“1000 Genomes (neutral)”, Figure 6]. We assessed the
fit of different models to the observed SFS by comparing their log-
likelihoods (see below, Table 1, Supplementary Note 4 in File S1, and
Tables S2–S4 in File S1).

Empirical SFSs: The primary empirical SFSs used in our comparisons
were produced by Gutenkunst et al. (2009) and used to infer the joint
demographic histories of CEU, CHB, and YRI populations in their
study [observed (Gutenkunst)]. As described in their supplementary
material, the joint SFS represents 4.04 Mb of Sanger sequencing data
from 12 YRI, 12 CHB, and 22 CEU individuals projected down to

20 chromosomes for a total of 17,446 segregating SNPs polarized
against chimp, with a correction for ancestral misidentification applied.
We marginalized the SFS using @a@i (Gutenkunst et al. 2009) to have
one SFS per population (Figure 4 and Figure 5).

To make sure our results were consistent with SFSs derived from
other sequencingmethodologies and different genomic regions, we also
generated folded proportional genome-wide and neutral SFSs from the
1000 Genomes data described above [1000 Genomes (whole genome)
and 1000 Genomes (neutral)] (1000 Genomes Project Consortium 2015;
Figure 6, Figure S7 in File S1, and Supplementary Note 3 in File S1).

Expected SFSs under published demographic models: Expected SFSs
for a sample size of 10 diploid individuals were calculated in @a@i
(Gutenkunst et al. 2009) for each of the published demographic models
extrapolating calculations across three grid points (40, 50, and 60)
(Figure 4 and Figure 5). To test whether the effect of differences in
mutation rate between the studiesmay be responsible for discrepancies,
we also considered an alternative scaling of the MSMC models using a
higher mutation rate (Supplementary Note 5 in File S1).

Figure 2 Kernel density distribution of expected
heterozygosity (p per site). Heterozygosity was
calculated across 100-kb windows from whole
genome 1000 Genomes Project data for (A)
CEU, (B) CHB, and (C) YRI, and from 20,000 ·
100-kb blocks for data simulated under each
demographic model. The black dot and bars
indicate the mean6 2 SD for each distribution.
Note the log-10 scaling on the y-axis.

Volume 7 November 2017 | Disparate Demographic Histories | 3609

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300259/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300259/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300259/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300259/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300259/-/DC1/FileS1.pdf


We generated both the proportional (Figure 4 and Figure S5 in File
S1) and absolute (i.e., SFS based on SNP counts) SFSs (Figure 5 and
Figure S6 in File). The proportional SFS was calculated by dividing each
bin of the SFS output by @a@i by the sum of the bins. The absolute SFS
was calculated by scaling the SFS output by @a@i (which is relative to
u ¼ 1) by

u ¼ 4NAimL;

where NAi is the oldest ancestral size inferred in each model and L is
the sequence length (4.04 Mbp) in Gutenkunst et al. (2009). u for the
Gutenkunst model used the authors’ preferred mutation rate of
m = 2.35 · 1028 mutations per base per generation, and u for the
MSMC and SMC++ models used the authors’ preferred mutation rate
of m = 1.25 · 1028 mutations per base per generation (see Supple-
mentary Note 5 in File S1 for scaling using alternate mutation rates).

Assessing SFS fit: Log-likelihoodswere calculated for eachproportional
SFS relative to each of the three observed SFSs [observed (Gutenkunst),
1000 Genomes (whole genome), and 1000 Genomes (neutral)] using a
multinomial log-likelihood (Table 1, Supplementary Note 4 in File S1,
and Tables S2 and S4 in File S1). The fit of different models was
compared by examining their decrease in log-likelihood compared
to that of each of the observed SFSs to itself (Table 1, Supplementary
Note 4 in File S1, and Tables S2 and S4 in File S1). Due to the un-
certainty of singleton SNP calls using high-throughput sequencing
data, log-likelihoods were calculated both with singletons and with
the SFS renormalized without the singletons category when comparing
to the 1000 Genomes SFSs (Figure S7 and Table S4 in File S1).

Log-likelihoods were calculated for each absolute SFS (in terms
of SNP counts) using a Poisson likelihood relative to the observed
(Gutenkunst) SFS (Supplementary Note 4 and Table S3 in File S1).

Effect of uncertainty in ancestral population size
To investigate whether changing the ancestral population size (NA) in
the MSMC trajectories would result in SFSs that better fit the observed
SFS, we adjusted the CEU MSMC 2-haplotype model to have a variety
of NA values. We also trimmed the model to remove ancient events
(older than 225.5 KYA) to better match the time period (in years)
encompassed by the Gutenkunst et al.’s (2009) model. These adjusted
stepwisemodels were then used to calculate the expected SFS in @a@i, as
above. Supplementary Note 7 in File S1 describes the values ofNA used
when testing the trimmed and untrimmed models (Figures S10–S13 in
File S1).

MSMC population size trajectories for demographic
models inferred from the SFS
To determine whether MSMC is capable of inferring a demography as
complexas theone inferredin theGutenkunstmodel,weusedcoalescent
simulations to generate long chromosomal sequence data for each
population under the Gutenkunst et al. (2009) inferred demographic
model [see Gutenkunst et al.’s (2009) figure 2B and table 1 for full
model], and then ran MSMC on these simulated data sets to assess
whether the program is capable of recovering the underlying demo-
graphic model.

Simulations were carried out using MaCS (Chen et al. 2009). For
each population, we simulated 50 replicate “genomes,” made up of
80 independent 30-Mb “chromosomes,” each made up of 300 linked
100-kb recombination blocks, with per-block recombination rates cal-
culated by Phung et al. (2016) from the pedigree-based genetic map
assembled by the deCODE project (Kong et al. 2010).

Each simulated genome was then used for a separate MSMC
inference, using the default parameters (Schiffels and Durbin 2014)
(Figure 7A). To determine whether these inferred MSMC trajecto-
ries would lead to SFSs matching those predicted by Gutenkunst
et al.’s (2009) model, the MSMC trajectories were averaged and the
average was converted into a stepwise @a@i model. This model was
then used to calculate the expected SFS under the averaged model
based on simulated data (Figure 7, B and C). The multinomial and
Poisson log-likelihoods for the proportional and SNP count SFSs
were calculated as described in Supplementary Note 4 in File S1
(Tables S2 and S3 in File S1).

Extreme recent growth and Neanderthal admixture: We simulated
data under more complex demographic histories, first to explore the
relative abilities of the MSMC 2-haplotype and 8-haplotype models to
inferextreme recentgrowth, and then todeterminewhether theaddition
of Neanderthal admixture may lead to MSMC trajectories resembling
those inferred from real data by Schiffels and Durbin (2014) (Supple-
mentary Note 6 and Figures S8 and S9 in File S1).

Data availability
All code to simulate data under each demographic model, calculate hetero-
zygosity,andgeneratetheSFSfromsimulatedandempiricaldataareavailable
on GitHub: github.com/LohmuellerLab/Compare_Demographic_Models.

RESULTS
We compared published models of demography for three human
populations (CEU, CHB, and YRI) inferred using different methods

n Table 1 Multinomial log-likelihoods comparing the fit of various
models to the observed SFS derived from Sanger sequencing data
and used by Gutenkunst et al. (2009) for their inference (SFSs in
Figure 4)

Model Multinomial LL ΔLL (Model 2 Data)

CEU
Data to data 221,546 0
Gutenkunst 221,555 29
SMC++ 221,599 253
MSMC 2-haplotype 221,698 2152
MSMC 8-haplotype 221,816 2270
MSMC 4-haplotype 222,760 21214

CHB
Data to data 220,154 0
Gutenkunst 220,202 248
SMC++ 220,277 2123
MSMC 8-haplotype 220,343 2188
MSMC 2-haplotype 220,370 2216
MSMC 4-haplotype 221,411 21257

YRI
Data to data 229,630 0
Gutenkunst 229,647 217
SMC++ 229,779 2150
MSMC 2-haplotype 230,003 2373
MSMC 8-haplotype 231,282 21652
MSMC 4-haplotype 232,976 23346

Data to data denotes the best log-likelihood possible when replacing the
proportions predicted by the model with the observed proportions from the SFS
used in Gutenkunst et al.’s (2009) study (see Supplementary Note 4 in File S1).
Gutenkunst denotes the model inferred by Gutenkunst et al. (2009) fit to the
observed SFS. SMC++ denotes the model inferred by Terhorst et al. (2017)
using a combined whole genome and SFS approach. MSMC 2-, 4-, and
8-haplotype denote the demographic models inferred by Schiffels and Durbin
(2014) using MSMC on two, four, and eight haplotypes, respectively.
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for demographic inference: (1) using the SFS in @a@i (Gutenkunst)
(Gutenkunst et al. 2009), (2) using whole genomes in MSMC (MSMC
2-, 4-, and 8-haplotype) (Schiffels and Durbin 2014), and (3) using a
combined SFS plus whole genome approach in SMC++ (SMC++)
(Terhorst et al. 2017). The evaluation of the MSMC models involves
three models per population because Schiffels and Durbin’s (2014)
inference was carried out using two, three, or eight chromosomal hap-
lotypes (from one, two, and four individuals), sometimes resulting in
fundamentally different demographic parameter estimates. We evalu-
ated whether the method’s performance was improved using certain
numbers of haplotypes.

Heterozygosity predicted by demographic models
Thedistributionofexpectedheterozygosityacross100-and10-kbblocks
was calculated from data simulated under each published demographic
model for each of the three populations and compared to empirical

distributions of heterozygosity based on whole genome and putatively
neutral sequence data from the 1000 Genomes Project.

We find that the Gutenkunst demographic model inferred from the
SFS, the MSMC 2-haplotype model, and the SMC++ model all yielded
distributions of heterozygosity that resemble the empirical whole ge-
nome distribution of heterozygosity, with MSMC 2-haplotype fitting
the mean most closely (Figure 2). However, we found that the higher
haplotype MSMC models (MSMC 4-haplotype and 8-haplotype)
yielded distributions of heterozygosity that were highly divergent
from the empirical distribution (Figure 2 and Table S1 in File S1).

TheMSMC4-haplotypemodelsfit worst due to their extremely high
inferred ancestral size across all three populations (Figure 1 andTable S2
in File S1) (CEU, 187,514; CHB, 191,238; YRI, 205,845 individuals;
compared to 4000–40,000 individuals in the other models), with mean
whole genome heterozygosity distributions nearly seven times larger
than that of the empirical whole genome distribution (Figure 2 and

Figure 3 LD decay patterns. LD decay was
calculated across 100-kb windows from 1000 Ge-
nomes data and simulated data under each de-
mographic model for (A) CEU, (B) CHB, and (C)
YRI. Pairs of SNPs are binned based on physical
distance (bp) between them, up to 51 kb. Aver-
age genotype r2 is calculated within each dis-
tance bin.
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Table S1 in File S1). The MSMC 8-haplotye model for YRI infers a
similarly large ancestral size and has a similarly high mean heterozy-
gosity as the 4-haplotype YRI model. The MSMC 8-haplotype models
for CEU and CHB, however, infer much lower ancestral sizes (CEU,
2147; CHB, 5666) (Figure 1). Due to the low ancestral size, thesemodels
also do not fit the empirical distribution well, yielding distributions of
heterozygosity with means that are two to four times lower than the
empirical distributions.

When examining the 1000 Genomes data, we found that heterozy-
gosity in the neutral regions was higher than that seen for the genome-
wide distribution of heterozygosity calculated in 10-kb windows (Table
S1 in File S1; e.g., CEUmean heterozygosity per site for whole genome:
7.8 · 1024 vs. neutral: 9.4 · 1024), suggesting that natural selection has
directly and/or indirectly affected genome-wide patterns of heterozy-
gosity. When the published demographic models were compared to the
neutral heterozygosity distributions, we found similar trends to those
seen for the whole genome data (Figure S2 in File S1).

LD predicted by demographic models
None of the published demographicmodels could perfectly recapitulate
the empirical LD decay curve (Figure 3). For SNP pairs,10 kb apart,
the MSMC-8 haplotype model comes closest to the empirical curve
for the CEU and CHB populations (Figure 3, A and B), but underes-
timates the amount of LD, while all other models predict too much LD.
The Gutenkunst and SMC++ models predict similar LD curves and
are closer to the empirical curve than the MSMC 2-haplotype and

4-haplotype models. For YRI SNP pairs ,10 kb apart, SMC++
and MSMC 8-haplotype predict similar LD decay curves and are close
to the empirical distribution, with Gutenkunst still fitting better than
MSMC 2-haplotype and 4-haplotype (Figure 3C). At distances.10 kb
apart, all demographic models predict there to bemore LD than seen in
the empirical data (Figure 3).

We found that the lack of fit is not due to the use of the SMC9
approximation in the simulatorMaCS (Chen et al. 2009), as bothMaCS
andMSMS (Ewing andHermisson 2010), a coalescent simulator which
does not use the SMC9 approximation, yielded highly similar LD decay
curves when simulating data under the same simple population con-
traction model (Figure S3 in File S1).

SFS predicted by demographic models
Lastly, we examined which of the demographic models could match
the SFSof the empirical data. To account for the possibility of overfitting
the SFS-based Gutenkunst model to the SFS it was inferred from, we
also compared allmodels to empirical SFSs based on low-coverage,
high-throughput 1000 Genomes sequence data from the same three
populations.

Comparing to the observed Gutenkunst SFS: For each population, the
SFSs predicted by the three MSMCmodels do not match the empirical
proportional SFS from Gutenkunst et al. (2009), regardless of the mu-
tation rate or number of genomes used (Figure 4, Table 1, and Figure S5
and Table S2 in File S1). The expected SFS based on the Gutenkunst

Figure 4 Unfolded proportional site fre-
quency spectra for (A) CEU, (B) CHB (B),
and (C) YRI populations. The “observed”
SFS is from noncoding sequence used by
Gutenkunst et al. (2009) to infer demo-
graphic histories for these three popula-
tions. See Figure S5 in File S1 for scaling
using alternative mutation rates.
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et al. (2009) demographic history matches the observed SFS closely,
being only 9 log-likelihood units worse than the best possible fit (com-
paring the empirical SFS to itself) for CEU, 48 units worse for CHB, and
17 units worse for YRI (Table 1). In comparison, the best-fittingMSMC
models for each population are 152, 188, and 373 log-likelihood units
below the best possible fit (Table 1). The combined whole genome plus
SFS method SMC++ has an intermediate fit, with a log-likelihood well
below the Gutenkunst model, but consistently better than any of the
MSMC models (Table 1).

Interestingly, there is not a consistent improvement in fit to the
observed SFS when increasing the number of individuals used for
the MSMC inference. For each population, the 4-haplotype model
has the worst fit (Figure 4 and Table 1). For CEU and YRI, the MSMC
2-haplotype models fit best out of the MSMC models, but both
are .100 log-likelihood units worse than the Gutenkunst model. For
CHB, the 8-haplotype model fits best, but is still 140 units worse than
the Gutenkunst model (Table 1).

The above comparisons considered the proportions of SNPs at
specific frequencies in the sample. We also performed a comparison
of the number of SNPs in each bin of the SFS, the absolute SFS, to the
observed absolute SFS used inGutenkunst et al.’s (2009) inference using
a Poisson likelihood. The absolute SFS expected under the Gutenkunst
et al. (2009) model fits the observed SFS best (Figure 5 and Table S3 in
File S1), and is only 9, 49, and 17 log-likelihood units below the best
possible fits for CEU, CHB, and YRI models, respectively. The SMC++
models have the next-best fit to the absolute SFS, but come 86 (CEU),
176 (CHB), and 193 (YRI) log-likelihood units below the best possible

fit; followed by MSMC 2-haplotype which fell 278 (CEU), 378 (CHB),
and 455 (YRI) log-likelihood units below the optimal fit (Table S3 in
File S1). In all three populations, the MSMC 4-haplotype and
8-haplotype models are thousands of log-likelihood units worse than
the best possible fit, showing no improvement based on using a larger
number of individuals in the inference (Table S3 in File S1). The over-
estimation of SNPs in the 4-haplotype model is due to the model’s
extremely high predicted ancestral size (�200,000 individuals for each
population) (Table S3 in File S1).

For both the proportional and absolute SFSs, we found that rescaling
themodels usingahighermutationratedidnotproduce largequalitative
differences in how theMSMCmodelsfit the observed (Gutenkunst) SFS
(Supplementary Note 5 and Figures S4–S6 in File S1).

Comparing to the folded low-coverage 1000 Genomes SFS: To avoid
giving theGutenkunstmodel anunfair advantage byfitting allmodels to
the SFS used to infer that particularmodel, we also compared allmodels
to proportional folded SFSs based on whole genome and neutral data
from the 1000 Genomes Project (Figure 6 and Figure S7 in File S1). The
fit to the empirical singletons bin was poor for all models, except for
SMC++, which was, in part, fit to an SFS based on 1000 Genomes data.
Calling singletons is notoriously difficult in low-coverage data, making
that bin the least reliable in the 1000 Genomes data (Kim et al. 2011;
Nielsen et al. 2011; Han et al. 2014, 2015). We therefore calculated
likelihoods for all models relative to the data both with singletons in-
cluded and again with the SFSs renormalized without the singletons
category (Figure S7 and Table S4 in File S1).

Figure 5 SNP count SFSs using the
counts of SNPs for the (A) CEU, (B) CHB,
and (C) YRI populations. The “observed”
SFS is from noncoding sequence used by
Gutenkunst et al. (2009) to infer demo-
graphic histories for these three popula-
tions. SFSs are scaled using the ancestral
population size given by each model, the
mutation rate used to scale each model
by the authors, and the sequence length
of the empirical data set (4.04 Mb). See
Figure S6 in File S1 for scaling using al-
ternative mutation rates.
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ForYRI, theGutenkunstmodel is thebest-fittingmodel for thewhole
genome and neutral 1000 Genomes SFSs, both with and without
singletons, with all other models having a much worse fit (the next
best model, SMC++, is hundreds to thousands of log-likelihood units
below the fit of the Gutenkunst model) (Figure 6C and Table S4 in File
S1). For CEU and CHB, if singletons are included, SMC++ fits the
whole genome and neutral 1000 Genomes SFSs best. For CEU, the
Gutenkunst model then fits second best, with the MSMC models far
behind (Figure 6A and Table S4 in File S1). For CHB, the MSMC
2-haplotype fits second best after SMC++, with the Gutenkunst model
coming third, but both are.10,000 log-likelihood units below SMC++
(Figure 6B and Table S4 in File S1). If singletons are excluded for CEU
and CHB, then the Gutenkunst model fits best, with SMC++ coming in
second, and theMSMCmodels all ranking far below (Table S4 in File S1).

Effect of uncertain ancestral population size
The accuracy of ancient ancestral population sizes, particularly .3
MYA (.100,000 generations), using the whole genome-basedmethods
remains unclear (Li and Durbin 2011). As discussed above, the MSMC
2-haplotype and 4-haplotype models infer large ancestral sizes for each
population that are not supported by previous inferences of human
demographic history (Adams and Hudson 2004; Keinan et al. 2007;
Boyko et al. 2008; Gutenkunst et al. 2009; Nielsen et al. 2009; Gravel
et al. 2011). We hypothesized that these extreme ancestral sizes, as well
as ancient bottlenecks and population growth (the signature humps of
MSMC trajectories), which do not appear in demographic models

inferred using other methods, could be artifacts that are causing the
SFS predicted by these models to deviate from the true SFS.

To test this hypothesis, we took the best fitting of theMSMCmodels,
the CEU 2-haplotype model, and carried out a series of adjustment
experiments todeterminewhether changes to themodel couldprovide a
better fit to the observed SFS. Without adjusting the time period
encompassed by the model, we altered the ancestral population size
to a variety of values including those inferred byGutenkunst et al. (2009)
(Supplementary Note 7 and Figures S10 and S11 in File S1). We also
truncated the MSMC trajectory to remove ancient events and better
match the time period (in years) encompassed by the Gutenkunst et al.
(2009) model. We again adjusted the ancestral population size to a
variety of plausible values (Supplementary Note 7 and Figures S12
and S13 in File S1).

We found trimmingaway the ancient (older than�225KYA)part of
the demographic trajectory and lowering the ancestral population size
to 10,000–12,300 (compared to 41,261 inferred initially) dramatically
improved the fit of the proportional SFSs predicted under these ad-
justed models to the observed (Gutenkunst) SFS (Figure S12 and Table
S5 in File S1). The best-fit model with ancestral size (NA) equal to
12,300was brought towithin 38 log-likelihood units of the best possible
likelihood (Figure S12D and Table S5 in File S1), only 29 units below
the Gutenkunst model. When repeating this procedure using the SFS
based on counts, the SFSs under these adjusted models showed a dif-
ferent pattern of improvement. Here the untrimmed models that did
not have ancient events .225 KYA trimmed away, but had a lowered

Figure 6 Folded proportional SFSs
for (A) CEU, (B) CHB, and (C) YRI
populations. The “1000 Genomes
(WG)” SFS is from low-coverage whole
genome 1000 Genomes data, and the
“1000 Genomes (Neut)” SFS is from
6333 · 10-kb putatively neutral regions
in the 1000 Genomes data.
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ancestral population size of 7300–12,300, showed the most improve-
ment (Figures S11 and S12 in File S1). However, their fit was still.100
log-likelihood units worse than the Gutenkunst model (Figure S12 and
Table S6 in File S1).

MSMC population size trajectories for demographic
models inferred from the SFS
Given that the SFSs predicted by the demographic models inferred
using MSMC do not fit the observed SFS, we examined whether
MSMC is capable of recovering a complex demography such as the
one inferred by Gutenkunst et al. (2009) from a single simulated
genome. We find that MSMC performs relatively well at inferring
the underlying demography from the simulated data. Figure 7A
shows the underlying Gutenkunst demographic model for each
population (purple) (as in the other Gutenkunst model simulations,
migration is included in the model, but is not depicted in our dia-
grams), with the results of 50 independent MSMC inferences on
each 2-haplotype simulated data set coming close to the underlying
demography. However, sharp bottlenecks are inferred as long pop-
ulation declines (as noted by Li and Durbin 2011 and Schiffels and
Durbin 2014). Additionally, we found evidence of MSMC detecting
a false spurt of growth in the YRI population 1350 generations ago

(Figure 7A). Both of these phenomena were also noted by Bunnefeld
et al. (2015).

The SFSs predicted by the demographic models inferred using
MSMCon the simulated datafit the SFS expectedunder theGutenkunst
model and the observed Gutenkunst SFSs better than the MSMC
demographic models inferred by Schiffels and Durbin (2014) (Figure
7, B andC). The proportionalMSMC simulated data SFSs were only 40,
74, and 10 log-likelihood units below the Gutenkunst model SFS (Table
S2 in File S1), with the SFSs based on SNP counts showing a similar
pattern (Table S3 in File S1). Therefore, if the Gutenkunst model is the
true demographic model for human history, MSMC accurately cap-
tures the population size changes and produces an appropriate SFS.

It is well established that two-haplotype, whole genome-based in-
ference (PSMC and MSMC 2-haplotype, also known as PSMC9) is not
able to detect recent demographic events (Li and Durbin 2011; Schiffels
and Durbin 2014). However, the ability to detect recent growth by
using more than two haplotypes in the inference is cited as a feature
ofMSMC (Schiffels andDurbin 2014).We ranMSMC2-haplotype and
8-haplotype on data sets simulated under the Gutenkunst model and a
Gutenkunst model plus extreme recent growth (Figure S8 and Supple-
mentary Note 6 in File S1). Unsurprisingly, MSMC 2-haplotype
was not able to detect extreme recent growth. Its estimates of current
population size were fairly accurate for the original Gutenkunst model

Figure 7 MSMC 2-haplotype can accurately infer the demographic model predicted by Gutenkunst et al. (2009). (A) The results of running MSMC
2-haplotype on 50 independent two-haplotype data sets simulated under the Gutenkunst et al. (2009) model of human demographic history
(Gutenkunst, heavy purple line). The resulting MSMC 2-haplotype trajectories (“MSMC Sim. Gut. Data,” fine pink lines) show the MSMC
trajectories inferred from these 50 data sets. Note that these trajectories accurately track the demographic model used to simulate the data.
(B) and (C) show proportional and SNP count SFSs for each population, respectively. The gray bars (observed) denote the empirical SFS used by
Gutenkunst et al. (2009). The purple bars denote the expected SFS under the inferred Gutenkunst demographic models. The pink bars denote the
expected SFS under the average of the 50 MSMC 2-haplotype demographic model trajectories for each population. Note that these three SFSs
agree.
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(Figure 7A), but the method dramatically underestimated the growth
for data simulated under the Gutenkunst plus growthmodel (Figure S8
in File S1). The results from 8-haplotype MSMC inference were most
surprising. We found that for both models, MSMC 8-haplotype
inferred extreme recent growth as many as four orders of magnitude
beyond that in the underlying model, with a high degree of variance
between replicates (Figure S8 in File S1). Despite the high degree of
variance, the average of the MSMC trajectories all showed a strong
upward bias in estimates of the recent past (Figure S8 in File S1). While
the ability to detect recent growth is meant to be a feature of MSMC,
our findings indicate that the magnitude of growth may not be esti-
mated well.

We had hypothesized that Neanderthal admixture could cause
deviation between the MSMC and Gutenkunst demographic models,
but foundthat theadditionofNeanderthal admixture toourGutenkunst
model simulations did not substantively change the MSMC trajectories
orexpectedSFSs (FigureS9,SupplementaryNote6,andTablesS2andS3
in File S1).

DISCUSSION
We tested which published models of human demographic history,
inferred using either whole genome sequence data, the SFS, or a
combined approach, can recapitulate multiple summaries of human
genetic variation data. We found that nomodel was able to recapitulate
all summaries of the data, but some models still performed better than
others. In particular, none of themodels was able recapitulate LDdecay,
but theGutenkunst SFS-basedmodels and the combinedwhole genome
and SFS-based SMC++ models were able to recapitulate empirical
heterozygosity and the SFS.MSMC2-haplotypewas able to recapitulate
heterozygosity, but not the SFS, and MSMC 4-haplotype and
8-haplotype could fit neither heterozygosity nor the SFS, though
MSMC 8-haplotype did fit LD decay slightly better than the other
models. These results highlight the uncertainties of demographic
inference from one, or even two, types of data and the need to assess
the fit of demographic models using multiple summaries of the data.

We found that the models based on MSMC inference from four
or eight haplotypes didnot improve thefit of the expectedSFS compared
to that based on two haplotypes; in fact, in most cases the 4- and
8-haplotype models fit much worse than the 2-haplotype models. The
4-haplotypemodels forCEU,CHB, andYRI and the 8-haplotypemodel
for YRI appear to fit poorly due to their extremely high ancestral sizes
and ancient humps of growth and decline (Figure 1). The expected SFSs
under the 8-haplotype models for CEU and CHB show a skew toward
low-frequency variants that may be due to their low ancestral size
followed by extreme recent growth (Figure 1). We find that MSMC
8-haplotype vastly overestimates recent growth in simulated data,
which may be contributing to the lack of fit to the SFS (Figure S8 in
File S1). This result is at odds with the findings of Schiffels and Durbin
(2014), who suggested that using eight haplotypes instead of two should
increase accuracy of population size inference in the recent past, though
they also noted a bias toward smaller ancient population sizes when
using an increased number of haplotypes. Changing the scaling of the
mutation rate did not generally help the MSMC models to fit the
expected SFS better (Figures S4–S6 in File S1). It is worth noting that
the model inferred in SMC++ used the same mutation rate as MSMC,
yet fit the empirical SFSs much better (Figure 4, Figure 5, Figure 6,
Table 1, and Tables S2–S4 in File S1), indicating that mutation rate
differences between the whole genome- and SFS-based studies is not
the source of the discrepancies.

We found that inaddition tonotfitting the empirical SFS, theMSMC
4-haplotype and 8-haplotype models did not predict the genome-wide

distribution of heterozygosity (Figure 2), whichmay be surprising as the
genome-wide distribution of heterozygosity is a major feature of the
data used by MSMC. As with the SFS, the reason for the lack of fit for
these models appears to be the extremely high ancestral size inferred in
the 4-haplotypemodels for all three populations and in the 8-haplotype
YRI model, and the low ancestral size inferred in the 8-haplotype
models for CEU and CHB (Figure 1).

Since the most ancient size in theMSMC trajectory will have a large
influence on heterozygosity and the SFS and themost ancient bin of the
MSMC trajectory may be unreliable (Li and Durbin 2011; Schiffels and
Durbin 2014), we explored the effect of altering this ancient size and
removing ancient growth events in the CEU MSMC 2-haplotype
model. We found that selective trimming could improve the fit to the
SFS (Figures S10–S13 in File S1). However, the final bin of the model
cannot explain all of the lack of fit of the MSMC models to the data as
the CEU and CHB MSMC 8-haplotype trajectories do not show the
extreme ancestral sizes in the last bin, yet thesemodels also dramatically
deviate from empirical heterozygosity and the SFS. In other words,
simple exclusion of the final high ancestral size is not sufficient to
improve model fit to other summaries of the data. Our trimming
experiments were only made possible by the abundance of human
sequence data and demographic models previously fit to the data. Since
manyMSMC trajectories are calculated for species for which there is no
prior information about ancient demographic history, the “informed
trimming” we carried out is not a practicable solution to improve the
reliability of MSMC inference.

While our results indicate that features of MSMC trajectories,
particularly ancient events, should be regarded with caution, we also
found that MSMC 2-haplotype is able to accurately recapitulate a
complex demography (with the exception of steep drops in population
size, extreme recent growth, and some false periods of growth) from
simulated data, supporting the validity of themethod, at least for use on
simulated data (Figure 7). Migration between populations did not ap-
pear to cause deviations in MSMC trajectories from the underlying
model (Figure 7), nor did a small degree of Neanderthal admixture
(Figure S9 in File S1), indicating thatMSMC is robust to small amounts
of gene flow. The fact that the 2-haplotype model based on real data did
not fit the observed SFS very well (Figure 4, Figure 5, Figure 6, Table 1,
and Tables S2–S4 in File S1) suggests that the true underlying pattern of
human demography is more complex than either type of inference
(@a@i or MSMC) is capturing, potentially revealing weaknesses in both
methods.

Alternatively, if the Gutenkunst et al. (2009) demographic model is
largely accurate, biases or other factors that exist in real data but not in
simulated data may be affecting MSMC inference, resulting in the
method failing to recover an underlying demography that matches
Gutenkunst et al.’s (2009)model. For example, Song et al. (2016) found
that statistical phasing could affect MSMC estimates of population split
times; and Nadachowska-Brzyska et al. (2016) found that per-site se-
quencing depth, mean genome coverage, and the amount of missing
data led to differences in PSMC curve amplitudes, expansions and
contractions, and the timing and values of Ne. They therefore recom-
mended only using samples with a mean genome coverage of $18·
and ,25% missing data, and employing a per-site sequencing depth
filter of$10 (Nadachowska-Brzyska et al. 2016). The Complete Geno-
mics genomes used by Li and Durbin (2011) were .40· coverage
(Drmanac et al. 2010), indicating that lack of coverage is not respon-
sible for their divergence from estimates based on the SFS.However, the
standards suggested by Nadachowska-Brzyska et al. (2016) may not
always be attainable in de novo genome projects and, thus, data quality
issues may affect nonmodel organism PSMC and MSMC inferences
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more acutely. Future work should also examine the impact of artifacts
of genome assembly errors and structural variants on PSMC inference.
For example, collapsing duplicate regions of the genome on top of each
other could result in regions of the genome having excess heterozygos-
ity, which could in turn affect inference of demography.

We found that no model was able to accurately recapitulate the
empirical distribution of LD decay. The lack of fit of the SFS-based
models is perhaps unsurprising, asHarris andNielsen (2013) found that
the Gutenkunst model cannot recapitulate empirical IBS distributions
(a finer-scale summary of the data related to LD), and Garud et al.
(2015) found that they could not recover empirical LD patterns in
Drosophila, despite matching the SFS, number of segregating sites
(S), and number of pairwise differences ðpÞ: Garud et al. (2015) sug-
gested the lack of fit could either be due to linked positive selection or to
an incompleteness of the demographic model, demonstrating how
models that fit some summaries of the datamay not recapitulate others.
It is more surprising that the MSMC 2-haplotype and 4-haplotype
models do not fit the data well, as the method uses LD information
in its inference, though different summaries of LD may be affected by
demography in distinct ways (Plagnol and Wall 2006). Other possible
factors that could lead to the lack of fit of all models to empirical LD
decay patterns include the absence of natural selection, gene conver-
sion, and fine-scale recombination hotspots in our simulations (Ardlie
et al. 2001; Frisse et al. 2001; Wall and Pritchard 2003). Further, if the
true mutation rate is actually smaller than the relatively high value used
by Gutenkunst et al. (m ¼ 2.35 · 1028 mutations/bp/generation), then
the population sizes would have to be larger than those estimated by
Gutenkunst et al. (2009). Larger population sizes would yield larger
values of the population scaled recombination rate ðrÞ than what
was used in our simulations under the Gutenkunstmodel. Larger values
of r would then lead to a decrease in LD in the simulations, which
might better match the empirical LD decay curves.

Natural selection may affect both SFS- and whole genome-based
methods of demographic inference. Li and Durbin (2011) found that
masking exonic sequence did not alter PSMC trajectories. However,
Schrider et al. (2016) examined the impact of selective sweeps on de-
mographic inference using the SFS in @a@i, approximate Bayesian
computation (ABC), and PSMC and found that all three methods
were influenced to varying degrees and in slightly different directions
by the presence of selective sweeps, with @a@i the most robust to these
effects. This is a concern for published human demographic models as
Gutenkunst et al. (2009) used noncoding sequence from autosomal
genes in their study, which may be subject to linked selection
(Gazave et al. 2014; Schrider et al. 2016). Schiffels and Durbin (2014)
used whole genome sequences that included genic and nongenic re-
gions, some of which are certainly under selection. Thus, the sensitivity
of these methods to selection may partially explain why both perform
well on simulated data without selection, yet have such divergent results
when run on empirical data.

Our results have implications for understanding human demo-
graphic history. First, there has been controversy concerning the pres-
ence of ancient bottlenecks (.100 KYA) in human populations
(Takahata et al. 1995; Harpending et al. 1998; Takahata and Satta
1998; Hawks et al. 2000; Garrigan and Hammer 2006; Fagundes
et al. 2007; Scholz et al. 2007; Blum and Jakobsson 2011; Sjödin et al.
2012). The inferred humps in the ancient portions of MSMC plots
(Figure 1) tended to lend support to these ancient population size
changes that appeared to be absent from SFS demographic estimates.
Our results suggest that if these ancient population size changes did
indeed occur, the resulting SFS would appear very different from the
SFSs seen in human populations (Figure 4, Figure 5, Figure 6, and

Figures S10–S13 in File S1). The fact that they are not seen in the
observed SFS suggests that either the size changes did not occur, and
the inferred size changes are artifacts, or instead, the true demography
is more complex than currently modeled using either approach. Our
conclusion of finding little evidence for the ancient population size
changes is supported by the study of Sjödin et al. (2012). They
employed an ABC approach to directly test models with ancient pop-
ulation size changes in Africa and found little support for such ancient
bottlenecks.

Deep ancestral structure has been put forward as explanation for the
humps detected by the whole genome-basedmethods by the developers
of PSMC and others (Li andDurbin 2011; Henn et al. 2012; Mazet et al.
2015a,b; Orozco-terWengel 2016). While Blum and Jakobsson (2011)
used the TMRCA to postulate an ancient bottleneck 150 KYA, they also
were not able to reject a model of ancestral structure. Strikingly, Mazet
et al. (2015b) were able to perfectly recapitulate the human PSMC
humps without invoking a single size change in the population by
simulating data from a highly structured ancestral population (10 sub-
populations) and modulating the amount of gene flow between these
populations. Therefore, the large “population size changes” inferred in
MSMC,which cause themodels not tomatch the empirical SFS, may in
fact be due to complex structure and large-scale changes in gene flow.
This ancient structure may have a large effect on MSMC trajectories
and LD patterns, but may not strongly influence the SFS (see figure 7 in
Lohmueller et al. 2009), potentially resolving the discrepancy between
the methods (Henn et al. 2012).

Our work provides a cautionary tale for understanding population
history in nonmodel organisms. Our results argue against a literal
interpretation of humps and other jumps in MSMC plots as reflecting
population size changes. This problem is exacerbated for putative
ancient size changes. Given the ever-increasing generation of genomic
data from nonmodel taxa and the application of whole genome-based
approaches to such data (Groenen et al. 2012; Meyer et al. 2012; Zhao
et al. 2012; Albert et al. 2013; Ibarra-Laclette et al. 2013; Nadachowska-
Brzyska et al. 2013, 2015, 2016; Orlando et al. 2013; Prado-Martinez
et al. 2013; Bosse et al. 2014; Freedman et al. 2014; Hung et al. 2014;
Prufer et al. 2014; Palkopoulou et al. 2015; Holliday et al. 2016; Wang
et al. 2016), our findings are especially concerning. We recommend
employing other model-based types of demographic inference leverag-
ing either SFS-based or other summary statistics in an ABC framework
to test whether important demographic features suggested by PSMC
or MSMC plots can be recapitulated using other features in the data.
We also recommend, as done in Thornton and Andolfatto (2006),
Freedman et al. (2014), Cahill et al. (2016), Hsieh et al. (2016), and
Song et al. (2016), that the PSMC or MSMC plots and TMRCA esti-
mates be used themselves as summary statistics for model comparison,
rather than the actual population size estimates. In other words, more
complex demographic models can be simulated and tested to see
whether they recapitulate the observed whole genome-based trajecto-
ries. Of course, this approach will not be successful if the trajectories are
strongly influenced by bioinformatic artifacts or other features not
captured within the simulations, such as natural selection. For both
PSMC/MSMC and SFS-based inference methods, we also recommend
testing whether the estimated models can predict multiple features of
the data. Specifically, researchers should check whether their inferred
model can recapitulate the genome-wide distribution of heterozygosity.
The genome-wide distribution of heterozygosity may be the most prac-
tical and useful statistic for studies of nonmodel organisms that only
have a handful of genomes available to them. SMC++ and other new
approaches that leverage multiple types of data (Bunnefeld et al. 2015;
Boitard et al. 2016; Weissman and Hallatschek 2017) are promising
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alternatives, though our results indicate that SMC++ still cannot re-
capitulate all summaries of the data.

Testing more complex demographic scenarios using multiple sum-
maries of the data may help to resolve uncertainties about our own
species’ history and will improve demographic inference for nonmodel
organisms. Incorporating the potential complexity of possible demo-
graphic histories to produce models that better recapitulate the data
may in fact present the greatest challenge.
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