Screening trematodes for novel intervention targets: a proteomic and immunological comparison of *Schistosoma haematobium, Schistosoma bovis* and *Echinostoma caproni*

MELISSA HIGÓN^{1,2}, GRAEME COWAN¹, NORMAN NAUSCH¹, DAVID CAVANAGH¹, ANA OLEAGA⁴, RAFAEL TOLEDO², J. RUSSELL STOTHARD⁶, ORETO ANTÚNEZ⁵, ANTONIO MARCILLA², RICHARD BURCHMORE³ and FRANCISCA MUTAPI¹*

¹Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 37T, UK

Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3JT, UK ² Area de Parasitología, Dept. Biologia Cellular i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain

³ Institute of Infection, Immunity and Inflammation College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, UK

⁴ Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain

⁵ Unidad de proteómica-SCIE, Universitat de València, Dr Moliner, 50, 46100 Burjassot (Valencia), Spain

⁶Centre for Neglected Tropical Disease Control, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK

(Submitted 5 November 2010; Revised 31 January and 10 February 2011; accepted 10 February 2011; first published online 10 June 2011)

SUMMARY

With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes *Schistosoma haematobium*, *S. bovis* and *Echinostoma caproni* in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by 2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and screened against sera from hamsters infected with *S. haematobium* and *E. caproni* following 2-dimensional Western blotting. Differential protein expression between the three species was observed with *circa* 5% of proteins from *S. haematobium* showing expression up-regulation compared to the other two species. There was 91% similarity between the proteomes of the two *Schistosoma* species and 81% and 78·6% similarity between *S. haematobium* and *S. bovis* versus *E. caproni*, respectively. Although there were some common cross-species antigens, species-species targets were revealed which, despite evolutionary homology, could be due to phenotypic plasticity arising from different host-parasite relationships. Nevertheless, this approach helps to identify novel intervention targets which could be used as broad-spectrum candidates for future use in human and veterinary vaccines.

Key words: Schistosoma, S. bovis, S. haematobium, Echinostosma caproni, trematode, proteomics, immunology, DIGE, DIA, vaccine development.

INTRODUCTION

Schistosomes are important blood-fluke parasites of humans and domestic livestock (Rollinson *et al.* 1997). These trematodes are divided into 4 main groups: *Schistosoma mansoni* group, *S. haematobium* group, *S. indicum* group and *S. japonicum* group (Secor and Colley, 2005). Echinostomes are also trematodes but, unlike schistosomes, they develop and are restricted to the intestinal lumen of the definitive host and do not have a tissue invasive phase (Toledo and Fried, 2005; Toledo *et al.* 2009).

* Corresponding author: Francisca Mutapi. E-mail: fmutapi@staffmail.ed.ac.uk Human schistosomiasis is a neglected tropical disease and a major public health concern in Africa, the Middle East, Asia and South America. Some 200 million people are infected with schistosomes, with a further 700 million at risk of infection in tropical and subtropical regions (Engels *et al.* 2002). As there is currently no available vaccine for this disease in people (Bergquist *et al.* 2008), the foundation of control is based upon provision of chemotherapy to afflicted communities, in particular mass drug administration of the anthelmintic praziquantel (Doenhoff *et al.* 2009). However, the search for an effective vaccine continues to be a key priority (Secor and Colley, 2005).

Parasitology (2011), **138**, 1607–1619. © Cambridge University Press 2011. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence http://creativecommons.org/licenses/by-nc-sa/2.5/. The written permission of Cambridge University Press must be obtained for commercial re-use.

Urinary schistosomiasis, caused by Schistosoma haematobium, is the most prevalent form of schistosomiasis in Africa and the Middle East. Children carry the heaviest burden of infection with as many as 100% of primary school children infected in areas such as our study sites in Zimbabwe (Midzi et al. 2008). Children younger than school-age can also be infected and begin to exhibit disease (Garba et al. 2010). As a result, schistosome-related morbidities include both non-immunological forms (blood in the urine, pain during urination, anaemia, growth retardation, poor cognition and memory) and immune-mediated forms (tissue damage and organomegaly) (Midzi et al. 2008). Immuno-pathological reactions against schistosome eggs trapped in the tissues leads to inflammatory and obstructive disease in the bladder, ureter and kidney as well as fibrosis. Urinary schistosomiasis likely predisposes to bladder cancer and HIV infection (Stoever et al. 2009).

To develop vaccines protective against infection and/or pathology based on natural immune responses against schistosomes, there is ongoing research both in humans and animals in a context of experimental and natural schistosomiasis (Hagan et al. 1991; Dunne et al. 1992; Demeure et al. 1993; Grogan et al. 1997; Mutapi et al. 1998). Several studies have demonstrated similarities between different Schistosoma species in terms of life-histories and immunological aspects (Verjovski-Almeida et al. 2003; Capron et al. 2005; Berriman et al. 2009; Zhou et al. 2009), but little is known about molecular phenotypic differences that may be involved in host adaptation which might affect the efficacy of future vaccines. Despite the demonstration that antibody-mediated responses can protect against schistosome infection in experimental models, current human schistosome vaccine research, based on antibody-mediated protection, has stalled with the failure of many of the vaccine candidate antigens to enter Phase III clinical trials (Hagan and Sharaf, 2003). Limitations in our current understanding of the development of protective anti-schistosome responses against specific antigenic proteins as well as the parasite's biology (particularly antigen expression patterns) may be contributing to the slow development of effective anti-schistosome vaccines.

To shed light on these issues, comparison of the protein expression of *S. haematobium* adult worms with other trematode parasites could be illuminating especially in reference to *S. bovis* which is a 'molecular' analogue of *S. haematobium* and an experimental model for vaccine research (Capron *et al.* 2005). Comparison with other more distantly-related trematodes, e.g. *Echinostoma caproni*, is also useful by providing inferences into putative responses to different life history tracts, i.e. echinostomes do not have a tissue phase in the definitive host,

and present an opportunity to investigate host-related adaptations in protein expression patterns. Although S. bovis and S. haematobium differ in their definitive hosts and in their niches within the host vasculature (Vercruysse and Gabriel, 2005), being sufficiently closely related in terms of evolutionary distance (Bowles et al. 1995; Webster et al. 2006), they have an ability to hybridise (Huyse et al. 2009). As S. bovis is much easier to keep in laboratory passage in rodents (Agnew et al. 1989) as well as eliciting similar cross-immunogenic profiles (Losada et al. 2005), makes study of S. bovis particularly informative. However, significant differences are known: for example, early studies of the S. haematobium vaccine candidate glutathione-S-transferase (28 kDa GST) showed inter-species variation in the coding regions of S. haematobium vs. S. bovis vs. S. japonicum 28 kDa GST. This variation gives rise to phenotypic differences associated with host immunity (Trottein et al. 1992).

To date, several studies using proteomic approaches have compared protein expression patterns between different helminth life stages (Curwen et al. 2004; Jolly et al. 2007; Wang et al. 2010), including parasites of different sexes and parasite development in different hosts (Toledo et al. 2004; Cheng et al. 2005). There have been no comparative proteomic studies on different trematode species which could lead to novel intervention targets with broader spectra and a better understanding of parasite-related host immune modulation (Harnett and Harnett, 2010). Previous evolutionary and ecological studies have been carried out using genetic techniques such as micro-array (transcriptome) or genome sequencing (Cieslak and Ribera, 2009) and these have given important insights into the biology of the parasites. These techniques do not take into account post-transcriptional regulation of protein expression (López, 2007; Schrimpf and Hengartner, 2010) and cannot determine the degree of epitope cross-reactivity between parasite species. Moreover, the proteomic approach is particularly useful in non-model organisms (López, 2007; Ramm et al. 2009). Comparative proteomic approaches have been successfully used in other more general molecular studies: for example, assessing the divergence between different rodent species (Aquadro and Avise, 1981).

In this study, we have used a proteomic approach to compare phenotypic differences between the three different parasite species in terms of protein expression and immunogenicity. We compared protein expression patterns and immune cross-reactivity between *S. haematobium*, *S. bovis* and *E. caproni* which may indicate proteins involved in the adaptation to different hosts and different niches potentially warranting further scrutiny as potential vaccines targets for schistosomiasis as well as several other trematode diseases.

MATERIALS AND METHODS

Parasites and experimental infections

The techniques used for the maintenance of Echinosotoma caproni in the laboratory have been described in detail elsewhere (Toledo et al. 2004). Briefly, encysted metacercariae of E. caproni were removed from the kidneys and pericardial cavities of experimentally infected Biomphalaria glabrata snails and used to infect golden hamsters (Mesocricetus auratus). Outbred male golden hamsters, weighing 45-60 g, were infected through a stomach tube with 75 metacercariae each of E. caproni. The worm egg release by each animal was monitored daily as described previously (Toledo et al. 2003). Soluble adult worm antigens (SWAP) were prepared from adult worms collected from the intestine of hamsters 6 weeks post-infection with 100 metacercariae of E. caproni following previously published protocols (Toledo et al. 2003). For S. haematobium infections used for the serological studies, parasite eggs obtained from urine of S. haematobium-infected children in Zanzibar (Stothard et al. 2002) were hatched and used to infect Bulinus wrighti snails with 5 miracidia per snail. Upon infection patency 150 cercariae were pooled from these shedding snails and used to infect golden hamsters by the paddling technique; all experiments were in accordance with ethical principles in animal research and Home Office (UK) approvals.

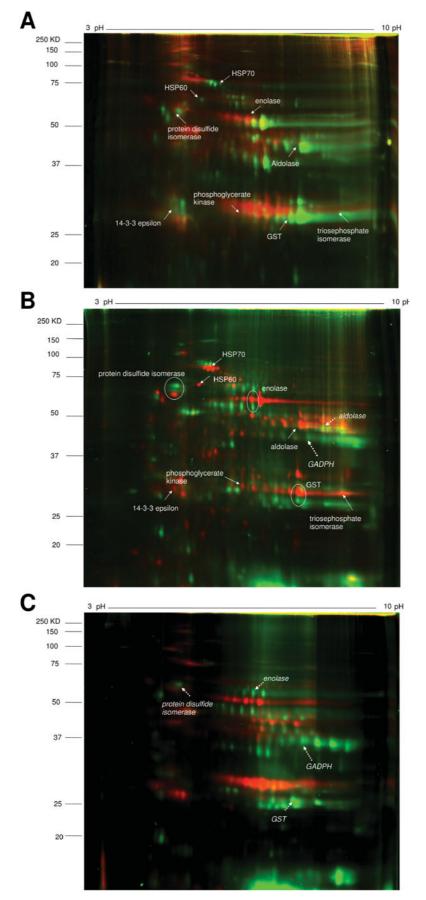
Adult *S. haematobium* SWAP was obtained freeze dried from the Theodor Bilharz Institute (Giza, Egypt). To prepare this fraction, worms were perfused in saline buffer from hamsters, washed in PBS (pH 7·4), homogenized, centrifuged to obtain the soluble fraction and freeze-dried in aliquots (5 mg/mL). These were reconstituted with distilled water as required. Freeze-dried adult *S. bovis* SWAP from sheep was prepared as previously described in detail elsewhere (Oleaga and Ramajo, 2004). SWAP preparations were prepared following similar protocols to reduce proteome variations due to different preparation approaches.

Rodent sera

For the immunological cross-reactivity assays, the antigen recognition patterns of sera from hamsters infected with *S. haematobium* and *E. caproni* were determined. For *E. caproni*, a pool was made from sera collected at 5, 6 and 10 weeks post-infection (hamsters normally make parasite-specific antibodies from 5 weeks) from 5 hamsters. After clotting overnight at 4 °C, serum was separated from the clot by centrifugation. All the sera and the antigens were stored at -20 °C until use. For sera from schistosome infected hamsters, Syrian golden hamsters were infected with 150 cercariae by paddling and bled 12 weeks post-infection. After clotting,

blood collected from each hamster was centrifuged at 1400 g for 5 min to collect sera which were snap frozen in liquid nitrogen for long-term storage in liquid nitrogen. A pool of sera was made from 5 hamsters for use in this study. There were no experiments of hamsters infected with S. *bovis* parasites.

Preparations for CyDye labelling for DIGE


CyDye DIGE Fluor minimal dyes (GE Healthcare) were reconstituted following the manufacturer's instructions. $50\mu g$ protein of each sample were labelled with either Cy3 or Cy5. The sample volumes were adjusted to $18\mu L$ with labelling buffer (7M urea, 2M thiourea, 4% CHAPS, (w/v), 25 mM Tris Base; pH 8.5), followed by addition of $1\mu L$ dye (400 pmol) to each individual sample. The samples were left on ice for 30 minutes in the dark, followed by adding $1\mu L$ of 10 mmol/L lysine to stop the reaction.

Two-dimensional differential in gel electrophoresis (2D-DIGE)

To compare the parasite proteomes in 2D-DIGE assays, three gels were ran-one for each pair of samples. Differentially labelled samples were mixed into the same tube with 210μ l of rehydration buffer (7M urea, 2M thiourea, 4% CHAPS, 5% DTE (dithioerythritol), 0.8% IPG buffer 3–10 pH and bromophenol blue). Thereafter, the first dimension i.e. isoelectric focusing (IEF) and second dimension were run following previously described protocols (Mutapi *et al.* 2005) using the IEF protocol for 13 cm IPG strips; rehydration for 14 h at 20 V, 500 V for 1 h, 1000 V for 1 h and 8000 V for 3 h and performing the second dimension using 12% polyacrylamide gels with SDS buffer. Images from these gels were subsequently analysed as described below.

Image analysis and mass spectrometry

Gels were scanned on a Typhoon spectrophotometer (GE Healthcare) at the appropriate excitation/emission wavelength for each fluorophore Cy3 (532/ 580 nm) and Cy5 (633/670 nm) at 50 microns resolution. The images were analyzed using the Difference In-gel Analysis (DIA) module of Decyder software version 7.0 (GE Healthcare). The protein spots showing greater than 5-fold differences in relative abundance between parasite preparations were considered as differentially expressed proteins. The 5-fold difference was used to reduce the likelihood of detecting spurious differences. Proteins from the different trematodes were identified by comparing DIGE images with the proteomic map of S. haematobium (Mutapi et al. 2005) and E. caproni (Sotillo *et al.* 2010) since there is no complete genome

- A. S. haematobium (green spots) vs. S. bovis (red spots).
- B. S. haematobium (red spots) vs. E. caproni (green spots).

or protein sequence available for any of the three species studied. *S. haematobium* protein identities on the proteome map were obtained from a Coomassie Blue-stained reference gel which had been prepared and processed to obtain MS/MDS data which were submitted for an MS/MS ion search via the Mascot search engine (Matrix Science), and non-redundant National Center for Biotechnology Information (NCBI) database (Mutapi *et al.* 2005). Briefly, plugs of 1.4 mm were excised from the reference Coomassie Blue-stained gel and subjected to in-gel trypsin digestion in an Ettan Spot Handing Workstation (GE Healthcare), in accordance with standard protocols (Amersham).

The resulting tryptic peptides were solubilized in 0.5% formic acid and were fractionated by nanoflow high-performance liquid chromatography on a C18 reverse phase column (GE Healthcare), and elution was performed with a continuous linear gradient of 40% acetonitrile for 20 min. The elutants were analyzed by online electrospray tandem MS (MS/ MS) by use of a Qstar Pulsar mass spectrometer (Applied Biosystems). A 3 sec survey scan preceded each MS/MS data-collection cycle of 4 product ion scans of 3 sec each, and this gave a duty cycle of 15 sec. Data were submitted for an MS/MS ion search via the Mascot search engine (Matrix Science), and both locally established databases for S. mansoni EST sequences and the present non-redundant National Center for Biotechnology Information (NCBI) database were searched.

Two-dimensional electrophoresis and Western blotting

In order to determine cross-reactive antigens, 2D gel electrophoresis (2DE) was conducted on 7 cm gels as above, with some modifications. $100 \,\mu g$ of protein were solubilised in rehydration buffer (7 M urea, 2 M thiourea, 4% CHAPS (w/v), 65 mM DTE and trace bromophenol blue) and 0.8% IPG buffer (pH 3-10) to make a total volume of 125μ L. Each protein preparation was then added to a 7 cm linear pH 3-10 IPG strip and the IEF was performed following the following protocol (1) passive rehydration for 14 h; (2) 500 V for 30 min; (3) 1000 V for 30 min; (4) 8000 V for 4 h followed by equilibration in 2 mL of 1% DTE for 15 min and 2 mL of 4% iodoacetamide in equilibration buffer containing 6 M urea, 0.375 M Tris pH 8.8, 2% SDS and 20% glycerol. The second dimension was performed using 10% polyacrylamide precast gels from Invitrogen. Proteins from SDS-PAGE were stained with Coomassie blue or transferred onto nitrocellulose membranes in 25 ml 20X transfer buffer (Invitrogen), methanol 10% (v/v).

After confirming transfer by staining with 0.1%Ponceau S (Sigma), membranes were blocked with TBS Start Block buffer T20 (Invitrogen) for 1 h at room temperature. After washing with TBS containing 0.05% Tween-20 (TBST), blots were incubated overnight at 4 °C with a pool of 10 serum samples of E. caproni-infected hamsters, or S. haematobiuminfected hamsters or negative control sera at 1:200 dilution in TBS Start Block buffer. The membrane was then washed three times for 10 min each time in TBS, 0.05% Tween 20, 0.5% Triton-X100 (TBS/ TT). Bound antibodies were detected by incubating blots for 1 h at RT with horseradish peroxidase (HRP)-conjugated rabbit anti-Syrian hamster IgG (Abcam), in blocking buffer. After washing four times for 10 min each time in TBS/TT and once in TBS alone, recognised antigens were visualized using ECL Plus (Amersham) following the manufacturer's instructions, and exposed to X-OMAT film (Kodak) for 10 sec. Images from Western blotting and Coomassie blue staining were digitalised and matched by using ImageMaster software (GE Healthcare).

RESULTS

Proteome comparisons

The 2D-DIGE gels were run comparing the 3 proteomes as shown in Fig.1. DIA analysis of the gels showed both quantitative and qualitative differences. There was more similarity between the two schistosome species than between Echinostoma and Schistosoma. On the first gel comparing S. haematobium and S. bovis, 1701 spots representing different proteins (including different isoforms) were detected, with 91% showing similar expression levels (Fig. 2A). 5.4% of the proteins showed increased expression in S. haematobium by our criteria of 5-fold or greater difference in abundance on the gel while 3.6% showed increased expression in S. bovis. On the second gel, comparing S. haematobium vs. E. caproni, 1967 spots were detected with 81% showing similar expression levels. 8.4% of the protein spots showed increased expression in S. haematobium and 10.6% showed increased expression in E. caproni while 81% were present in similar amounts on both gels (Fig. 2B).

On the final gel, comparing S. *bovis* vs. *E. caproni*, 1757 spots were detected with 78.6% showing similar expression levels. 9.1% of the protein spots showed increased expression in *S. bovis* and 12.3% showed increased expression in *E. caproni* (Fig. 2C). It was possible to identify some of the proteins present on the adult worm proteomes by comparing DIGE images with the proteomic maps of

C. S. bovis (red spots) vs. E. caproni (green spots). Identified proteins are indicated by solid arrows (for S. haematobium), dashed arrows (for E. caproni) and encircled (for both).

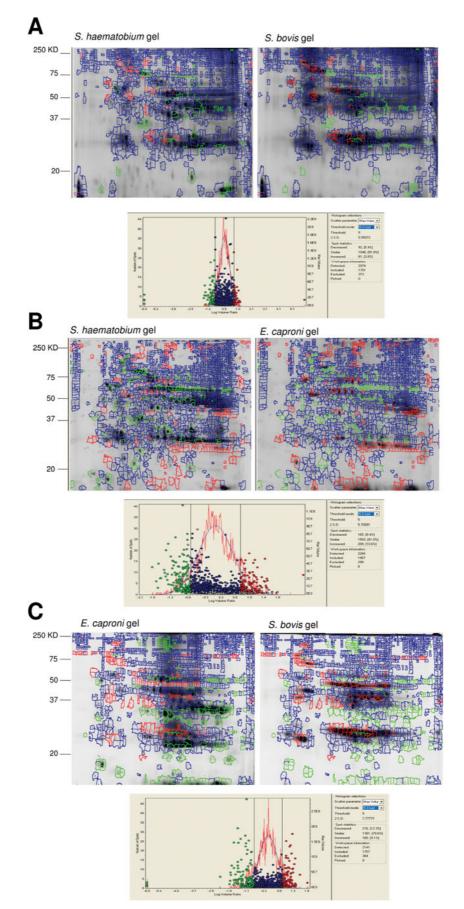


Fig. 2. Pair-wise comparison of protein expression patterns in adult worm proteomes of pairs of parasite species from DIA plug-in analysis. This analysis co-detects the spots from the image and, after normalization, compares the volume

Sample	NCBI accession #	Protein (Species)	MW	Hit_score
1	gi 3891573	Chain A, <i>Fasciola hepatica</i> Glutathione S-transferase isoform 1 in complex with glutathione	25217	77
2	gi 3891573	Chain A, <i>Fasciola hepatica</i> Glutathione S-transferase isoform 1 in complex with glutathione	25217	83
3	gi 16406594	Glyceraldehyde phosphate dehydrogenase (<i>Fasciola hepatica</i>)	23687	247
4	gi 16406594	Glyceraldehyde phosphate dehydrogenase (Fasciola hepatica)	23687	201
5	gi 226475754	Aldolase (Schistosoma japonicum)	39800	134
6	gi 29841453	Similar to GenBank Accession Number AF026805 fructose bisphosphate Aldolase (<i>S. mansoni</i> and <i>S. japonicum</i>)	32063	162
7	gi 268535422	Hypothetical protein CBG15039 (Caenorhabditis briggsae)	20029	58
8	gi 112950027	Enolase (<i>Echinostoma caproni</i>)	46568	588
9	gi 226489288	Tubulin beta-2C chain (Schistosoma japonicum)	50056	666
10	gi 3392892	Protein disulphide isomerase (Fasciola hepatica)	55587	69

Table 1. Proteins identified in the adult soluble worm preparation of *Echinostoma caproni* using MASCOT search engine (Matrix Science)

S. haematobium and *E. caproni*. Details of *S. haematobium* protein identities from mass spectrometry of proteins have already been published (Mutapi *et al.* 2005) while those from *E. caproni* have not previously been published and are given in Table 1 and annotated in Fig. 3.

The expression patterns of pairs of proteins spots between different parasite species are compared in Table 2. The heat shock protein HSP70 was more highly expressed in *S. haematobium* compared to *S. bovis* or *E. caproni*. Between the *Schistosoma* species, there were similar expression levels of metabolic enzymes, signal transduction molecules and detoxification enzymes, but expression levels of these proteins differed between the latter species and *E. caproni*. Three homologous proteins were identified in *S. haematobium* and *E. caproni*; protein disulfide isomerase, enolase and GST, but the gel migration showed that they differed in molecular weights between the two species.

Immune cross-reactivity

Using sera from hamsters infected with *S. haematobium* and *E. caproni*, we performed 2D Westernblot analyses. As expected, homologous pairs of sera and antigen showed the highest levels of recognition (Fig. 4). Interestingly, heterologous sera also detected spots in the gels, confirming crossreactivity among these trematode species. In this context, *S. haematobium* sera recognised more antigenic spots in the *S. bovis* proteome than in *E. caproni*. There was some cross-reactivity, between *E. caproni* and *S. haematobium*. Three spots in the *E. caproni* proteome which were identified as isoforms of GADPH reacted with sera from both *E. caproni*-infected and *S. haematobium*-infected hamsters. However, sera from *E. caproni*-infected hamsters did not react against GADPH in the *S. haematobium* proteome.

DISCUSSION

Trematodes are an evolutionarily distinct group of parasites of importance to both human and veterinary medicine in the diseases that they cause. Understanding similarities and differences in their phenotypic molecular biology is important in several areas such as drug target discovery, vaccine design and development of helminth-derived therapeutic agents for immune disorders; also in the context of when infections are acquired during childhood and beyond. Here, a comparative analysis of the proteome of three species of trematode: *S. haematobium*,

of a spot from the two samples as a volume ratio. Spots were detected as different if the volume ratio threshold difference was \geq 5 fold. Each gel image shows different expression patterns on individual species gels.

A. Gels showing the DIA analyses of *S. haematobium* vs. *S. bovis* on the gels from each of the two species. Green marks represent proteins over-expressed in *S. haematobium*. Red marks represent proteins over-expressed in *S. bovis*. Blue represents spots expressed to similar levels in the two species.

B. Gels showing the DIA analyses of *S. haematobium* vs. *E. caproni* on the gels from each of the two species. Green marks represent proteins over-expressed in *S. haematobium*. Red marks represent proteins over-expressed in *E. caproni*. Blue represents spots expressed to similar levels in the two species.

C. Gels showing the DIA analyses of *S. bovis* vs. *E. caproni* on the gels from each of the two species. Green marks represent proteins over-expressed in *E. caproni*. Red marks represent proteins over-expressed in *S. bovis*. Blue represents spots expressed to similar levels in the two species. The histograms represents spot frequencies plotted against logarithm volume ratio.

Table 2. Proteins differentially expressed between the different trematodes identified on the 2-dimensional gel in Differential in Gel Electrophoresis (DIGE)

S.	haematobium	vs.	S.	bovis

INCREASED in S. haematobiumNCBI accession #MWHeat shock protein /chaperoneNCBI accession #MW70,000 mol var antigen/hsp70gi [1016868331SIMILARNCBI accession #MWPrizetose 1, 6b siphosphate aldolasegi [13128128447Princtose 1, 6b siphosphate aldolasegi [1301371047421Heat shock protein /GhuperoneHeat shock protein /GhuperoneHeat shock protein /GhuperoneHeat shock protein /GhuperoneH=3 siphongi [164923428754Detoxification proteinSkDa glutatione-S transferasegi [11312812407Sk haematobiumMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi [11312812447Pricutos 1, 6 bisphosphate aldolasegi [00564739963Protein disulfide isomerasegi [113512812447Pricutos 1, 6 bisphosphate aldolasegi [00564739963Protein disulfide isomerasegi [1016868331Heat shock protein /chaperone70,000 mol varatigen/hsp70gi [1016868331Heat shock protein /hsp70gi [1016868331Heat shock protein /hsp70<			
70,000 mol wt antigen/hsp70gi 1016868331SIMILARNCB1 accession #MWSIMILARNCB1 accession #MWTrissephosphate isomerasegi 135128128447Pructose 1, 60 bisphosphate adolasegi 30247139963Protein disulfide isomerasegi 3121834463Phosphoglycente kinasegi 302371047421Heat shock protein /ISP60gi 2163453158740Signal transductiongi 664923428754Detoxification proteingi 1610132407S. haematobium vs. E. capronigi 161132447Proteso 1, 60 bisphosphate adolasegi 135128128447Proteso 1, 60 bisphosphate adolasegi 135128128447Proteso 1, 60 bisphosphate adolasegi 31201854443Proteso 1, 60 bisphosphate adolasegi 312132407S. haematobiumMW70000 mol wa antigen/hsp70gi 13128128447Proteso 1, 60 bisphosphate adolasegi 302371047421Heat shock protein /chaperonegi 2163453158740Protein /chaperonegi 1016868331Phosphoglycerate kinasegi 302371047421Heat shock protein /ps70gi 1016868331Protein /chaperonegi 264923428754Detoxification proteingi 264923428754Detoxification proteingi 264923428754Detoxification proteingi 2163453158740Signal transductiongi 2163453124071			
SIMILAR Metabolic enzyme NCBI accession # MW Triosephosphate isomerase gi 1351281 28447 Fructose 1,6 bisphosphate aldolase gi 05647 39963 Protein disulfide isomerase gi 312018 54463 Phosphoglycerate kinase gi 3023710 47421 Heat shock protein/chaperone Heat shock protein hSP60 gi 21634531 28470 Signal transduction IVCREASESD in <i>S. haematobium</i> Metabolic enzyme NCBI accession # MW Triosephosphate aldolase gi 3023710 47421 Heat shock protein /shaperone gi 312181 284477 Fructose 1,6 bisphosphate aldolase gi 3023710 47421 Heat shock protein /shaperone 10000 mol vt antigen/hsp70 gi 10168 68331 Heat shock protein /Shaperone 14-3-3 epsilon Heat shock protein /Shaperone 14-3-4 epsilon Heat shock protein hSP60 gi 21634531 58740 Signal transduction H-3-3 epsilon LiceXEASESD in <i>E. caproni</i> NCBI accession # MW Protein disulfidie isomerase gi 320271 45588 Gilyceraldehyde phosphate dehydrogenase gi 32027 46588 Gilyceraldehyde phosphate dehydrogenase gi 320371 25587 Giltuthione S-transferase gi 3891573 25217 SIMILAR Metabolic enzyme NCBI accession # MW gi 236475754 39800 <i>E. caproni</i> vs. <i>S. boxis</i> INCREASED in <i>E. caproni</i> Metabolic enzyme NCBI accession # MW gi 226475754 39800 <i>E. caproni</i> vs. <i>S. boxis</i> INCREASED in <i>E. caproni</i> Metabolic enzyme NCBI accession # MW gi 226475754 39800 <i>E. caproni</i> vs. <i>S. boxis</i> INCREASED in <i>E. caproni</i> Metabolic enzyme NCBI accession # MW gi 2302892 55587 Ginalace gi 10406594 23687 Detoxification protein Metabolic enzyme NCBI accession # MW gi 226475754 39800 <i>E. caproni</i> vs. <i>S. boxis</i> INCREASED in <i>E. c</i>			
Metabolic enzymeNCBI accession #MWProceto cl, 6 bisphosphate isomerasegi 13121828447Fructose 1, 6 bisphosphate aldolasegi 00564739963Protein disulfide isomerasegi 15121834463Phosphoglycerate kinasegi 201854463Enolasegi 201854463Enolasegi 2163453188740Signal transductiongi 264923428754Detostification proteingi 161013240728 kDa glutathione-S transferasegi 16113240728 kDa glutathione-S transferasegi 135128128447Proteosting the enzymeNCBI accession #MWTriosephosphate isomerasegi 31218128447Proteost 1, 6 bisphosphate aldolasegi 0564739963Proteost 1, 6 bisphosphate aldolasegi 302371047421Heat shock protein /shuffde isomerasegi 31218128447Proteost 1, 6 bisphosphate aldolasegi 0564739963Proteost 1, 6 bisphosphate aldolasegi 302371047421Heat shock protein /shuffde isomerasegi 302371047421Heat shock protein /shuffde isomerasegi 302371047421Heat shock protein hSP60gi 2163453158740Signal transductiongi 2163453128754Detoxification proteingi 2163453158740Heat shock protein hSP60gi 2163453128754Detoxification proteingi 30289255587Enolasegi 339289255587<	70,000 mol wt antigen/hsp70	g1 10168	68331
Triosephosphate isomerase g i 351281 28447 Protein disulfide isomerase g i 3012018 54463 Protein disulfide isomerase g i 3023710 47421 Heat shock protein/tychaperone g i 20134531 58740 Heat shock protein/tychaperone g i 20134531 58740 Heat shock protein HSP60 g i 20134531 28754 Detoxification protein gi 16013 2407 S. Amernatobium vs. E. caproni 28 kDa glutathione vs. E. caproni 110013 28 kV7 INCREASESD in S. haematobium Yestified isomerase gi 131281 28 kV7 Fructose 1, 6 bisphosphate aldolase gi 005647 39963 9963 Protein disulfide isomerase gi 3023710 47421 47421 Heat shock protein /chaperone 110148 54463 110148 54463 Prosphale isomerase gi 10168 64331 14508 110148 110148 110148 110148 110148 110148 110148 110148 110148 110148 110148 110148 110148 110143	SIMILAR		
Fractose 1,6 bisphosphate aldolase gi 1005647 39963 Protein disulfide isomerase gi 312018 54463 Phosphoglycerate kinase gi 3023710 47421 Heat shock protein HSP60 gi 121634531 58740 Signal transduction gi 16649234 28754 Detoxification protein 2407 S. haematobium vs. E. caproni 1 INCREASESD in S. haematobium MW Metabolic enzyme NCBI accession # MW Triosephosphate isomerase gi 15013 2407 S. haematobium vs. E. caproni 1 2447 Fructose 1, 6 bisphosphate aldolase gi 1005647 39963 Protein disulfide isomerase gi 1321281 2447 Fructose 1, 6 bisphosphate aldolase gi 13018 54463 Phosphoglycerate kinase gi 156413 44508 Enolase gi 10168 68331 Heat shock protein /chaperone 10 47421 Outon va tatigen/hsp70 gi 10168 68331 Heat shock protein HSP60 gi 21644531 58740 Signal transduction gi 16649234 28754 <	Metabolic enzyme	NCBI accession #	MW
Protein disulfide isomerase gi 312018 54463 Phosphoglycerate kinase gi 556413 44508 enclase gi 3023710 47421 Heat shock protein/chaperone Heat shock protein/BP60 gi 21634531 58740 Signal transduction gi 6649234 28754 Detoxification protein 28 kDa glutathione-S transferase gi 161013 2407 <i>S. haematobium</i> vs. <i>E. caproni</i> INCREASESD in <i>S. haematobium</i> Metabolic enzyme NCBI accession # MW Triosephosphate isomerase gi 312018 54463 Phosphoglycerate kinase gi 3023710 47421 Heat shock protein / 1520 Signal transduction Heat shock protein / 1520 Rober of the stransferase gi 312018 54463 Phosphoglycerate kinase gi 3023710 47421 Heat shock protein / 1540 Heat shock protein / 1540 Rober of the stransferase gi 3023710 47421 Heat shock protein / 1540 Heat shock protein / 1540 gi 10168 68331 Heat shock protein / 1540 Signal transduction I 4-3-3 epsilon gi 6649234 24754 Detoxification protein 28 kDa glutathione-S transferase gi 31018 6831 Heat shock protein / 1540 Signal transduction I 4-3-3 epsilon gi 6649234 24754 Detoxification protein 28 kDa glutathione-S transferase gi 31018 6831 Heat shock protein / 1540 Signal transduction I 4-3-3 epsilon gi 6649234 24754 Detoxification protein 28 kDa glutathione-S transferase gi 302872 5587 Enclase gi 302892 5587 Enclase gi 302892 5587 Enclase gi 302892 5587 Enclase gi 302892 5587 Enclase gi 3091573 25217 SIMILAR Metabolic enzyme NCBI accession # MW Aldolase gi 226475754 39800 Exception is s. botis INCREASED in <i>E. caproni</i> Metabolic enzyme NCBI accession # MW Aldolase gi 226475754 39800 Exception is s. botis INCREASED in <i>E. caproni</i> Metabolic enzyme NCBI accession # MW Protein disulphide isomerase gi 3392892 5587 Enclase gi 36054 23687 Detoxification protein SUB I Accession # MW		0 1	28447
Phosphoglycerate kinase gi [355413 44508 Enolase gi [3023710 47421 Heat shock protein/chaperone gi [21634531 58740 Signal transduction gi [6649234 28754 Detoxification protein 28 KDa glutathione-S transferase gi [6649234 2407 S. haematobium vs. E. caproni 1152 INCREASED in S. haematobium NCBI accession # MIW Triosephosphate isomerase gi [3121281 28447 Fructose 1, 6 bisphosphate adolase gi [305647 39963 Protein disulfide isomerase gi [312018 54463 Phosphoglycerate kinase gi [356413 44508 Enolase gi [3023710 47421 Heat shock protein /chaperone 7000 gi [21634531 58740 NOBI accession # MIW Triosephosphate isomerase gi [312018 68331 Protein disulfide isomerase gi [312018 68331 Protein disulfide isomerase gi [31649234 28754 Phosphoglycerate kinase gi [31649234 28754 Detoxification protein 18260 gi [21634531 58740 Signal transduction 1168 NCBI accession # MIW Protein disultione-S transferase gi [3392892 55587 Enolase gi [3392892 55587 Enolase gi [3392892 55587 Enolase gi [3392892 55587 Enolase gi [339287] 45658 Glyceratlehyde phosphate dehydrogenase gi [3391573 25217 SIMILAR NCBI accession # MIW Aldolase gi [226475754 39800 E. caproni ws. S. boxis INCREASED in E. caproni Metabolic enzyme NCBI accession # MIW Aldolase gi [239292 55587 Enolase gi [3392892 55587 Enolase Enolase gi [3392892 55587 Enolase Enolase gi [3392892 55587 Enolase Enolase Enolase gi [3491573 50587 Enolase Enolase Enolase Enolase Enolase			
Enclasegi 302371047421Heat shock protein (HSP60gi 2163453158740Signal transductiongi 664923428754Detoxification proteingi 161013240728 kDa glutathione-S transferasegi 13128128447Protexose 1, 6 bisphosphate aldolasegi 13128128447Protexose 1, 6 bisphosphate aldolasegi 3120185463Phosphoglycerate kinasegi 302371047421Heat shock protein /khaperonegi 1016868331Pooghoglycerate kinasegi 1016868331Heat shock protein HSP60gi 2163453124071Signal transductiongi 164923428754Detoxification proteingi 164923428754Detoxification proteingi 164923428754Detoxification proteingi 164923428754Detoxification proteingi 1640639423687Detoxification proteingi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARMWgi 2647575439800Le caproniWCBI accession #MWAldolasegi 32289255587Enolasegi 32289255587Enolasegi 129002746568<			
Heat shock protein/chaperone Heat shock protein HSP60 gi 21634531 58740 Signal transduction 14 – 3.3 epsilon gi 16649234 28754 Detoxification protein 28 kDa glutathione-S transferase gi 161013 2407 <i>S. haematobium</i> vs. <i>E. caproni</i> INCREASESD in <i>S. haematobium</i> NCBI accession # MW Triosephosphate isomerase gi 1312181 28447 Fructose 1,6 bisphosphate aldolase gi 1605647 39963 Protein disulfide isomerase gi 1312018 54463 Phosphoglycerate kinase gi 1556413 44508 Enolase gi 13023710 47421 Heat shock protein /chaperone 70,000 mol wt antigen/hsp70 gi 10168 68331 Heat shock protein /shore signal transduction 14.3.3 epsilon gi 16649234 28754 Detoxification protein 28 kDa glutathione-S transferase gi 13023710 47421 INCREASED in <i>E. caproni</i> MCBI accession # MW Protein disulphide isomerase gi 1392892 55587 Enolase gi 1392892 55587 Enolase gi 1209027 46568 Glyceraldehyde phosphate dehydrogenase gi 1891573 25217 SIMILAR MCBI Accession # MW Protein disulphide isomerase gi 1392892 55587 Enolase gi 126475754 39800 <i>E. caproni</i> NCBI accession # MW Protein disulphide isomerase gi 1392892 55587 Enolase gi 126475754 39800 <i>E. caproni</i> NCBI accession # MW Protein disulphide isomerase gi 1392892 55587 Enolase gi 126475754 39800 <i>E. caproni</i> vs. <i>S. bovis</i>	1 0 1		
Heat shock protein HSP60gi 21634531\$8740Signal transductiongi 664923428754Detoxification proteingi 664923428754Detoxification proteingi 1610132407S. haematobium vs. E. caproniINCREASESD in S. haematobiumINCREASESD in S. haematobiumMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi 135128128447Fructose 1, 6 bisphosphate aldolasegi 0564739963Protein disulfide isomerasegi 31201854463Phosphoglycerate kinasegi 302371047421Heat shock protein /chaperoneInterpretionInterpretion70,000 mol vt antigen/hsp70gi 1016868331Heat shock protein HSP60gi 2163453158740Signal transductionInterpretion28754Heat shock protein MSP60gi 16101324071INCREASED in E. caproniInterpretion28754Wetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 399157325217SIMILARgi 22647575439800E. caproni vs. S. bovisInterpretion4001INCREASED in E. caproniInterpretion255587Enolasegi 389157325217SIMILARInterpretion39800E. caproni vs. S. bovisInterpretion39800E. caproni vs. S. bovisInterpretion46568IntractenzymeNCBI accession #MW </td <td></td> <td>g1 3023710</td> <td>47421</td>		g1 3023710	47421
Signal transductionImage: Signal transduction14 - 3-3 epsilongi 664923428754Detoxification protein28 kDa glutathione-S transferasegi 161013240728 kDa glutathione-S transferasegi 1610132407S. haematobium vs. E. caproniINCREASESD in S. haematobiumMWTriosephosphate isomerasegi 135128128447Fructose I. ob bisphosphate aldolasegi 05054739963Protein disulfide isomerasegi 31201854463Phosphoglycerate kinasegi 302371047421Heat shock protein /chaperone70,000 mol wt antigen/hsp70gi 1016868331Heat shock protein hSP60gi 2163453158740Signal transduction14-3-3 epsilongi 664923428754Lass of protein24072407110168NCREASED in E. caproniMW24071NCREASED in E. caproni111295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARMCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni tori558739800E. caproni tori11295002746568Glyceraldehyde phosphate dehydrogenasegi 332289255587Findasegi 232289255587Enolasegi 332289255587Enolasegi 23289255587Enolasegi 23289255587Potein disulphide isomerase		ail 21624521	58740
14-3-3 cpsilongi 664923428754Detoxification protein240728 kDa glurathione-S transferasegi 1610132407S. haematobium vs. E. caproniINCREASESD in S. haematobiumMWMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi 135128128447Fructose 1, 6 bisphosphate aldolasegi 0564739963Protein disulfide isomerasegi 35641344508Enolasegi 302371047421Heat shock protein /Laperonegi 1016868331Heat shock protein HSP60gi 1016868331Signal transductiongi 664923428754Detoxification protein2407124071INCREASED in E. caproniMWProtein disulphide isomerasegi 39289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 39217325217SIMILARNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 2647575439800E. caproni vs. S. bovisINCREASED in E. caproniINCREASED in E. caproniINCREASED in E. caproniINCRI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 32289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 3392892 <td< td=""><td>*</td><td>g1 2103+331</td><td>38740</td></td<>	*	g1 2103+331	38740
Detoxification protein 28 kDa glutathione-S transferase gi 161013 2407 S. haematohium vs. E. caproni INCREASESD in S. haematohium Metabolic enzyme NCBI accession # MW Triosephosphate isomerase gi 351281 28447 Fructose 1, 6 bisphosphate aldolase gi 605647 39963 Protein disulfide isomerase gi 312018 54463 Phosphoglycerate kinase gi 556413 44508 Enolase gi 3023710 47421 Heat shock protein /chaperone 70,000 mol wt antigen/hsp70 gi 10168 68331 Heat shock protein HSP60 gi 21634531 58740 Signal transduction 14-3-3 epsilon gi 6649234 28754 Detoxification protein 28 kDa glutathione-S transferase gi 161013 24071 INCREASED in E. caproni Metabolic enzyme NCBI accession # MW Protein disulphide isomerase gi 3891573 25217 SIMILAR Metabolic enzyme NCBI accession # MW Aldolase gi 226475754 39800 E. caproni vs. S. bovis INCREASED in E. caproni Metabolic enzyme NCBI accession # MW Aldolase gi 392892 55587 Enolase gi 12950027 46568 Glyceraldehyde phosphate dehydrogenase gi 3891573 25217 SIMILAR Metabolic enzyme NCBI accession # MW Aldolase gi 322892 55587 Enolase gi 3891573 25217 SIMILAR Metabolic enzyme NCBI accession # MW Protein disulphide isomerase gi 3891573 25217 SIMILAR Metabolic enzyme NCBI accession # MW Aldolase gi 226475754 39800 E. caproni vs. S. bovis INCREASED in E. caproni Metabolic enzyme ACBI accession # MW Protein disulphide isomerase gi 392892 55587 Enolase gi 12250027 46568 Glyceraldehyde phosphate dehydrogenase gi 1392892 55587 Enolase gi 226475754 39800 E. caproni vs. S. bovis INCREASED in E. caproni Metabolic enzyme ACBI accession # MW Protein disulphide isomerase gi 392892 55587 Enolase gi 12950027 46568 Glyceraldehyde phosphate dehydrogenase gi 16406594 23687 Detoxification protein B. Metabolic enzyme ACBI accession # MW Protein disulphide isomerase gi 302892 55587 Enolase gi 12950027 46568 Glyceraldehyde phosphate dehydrogenase gi 16406594 23687 Enolase gi 12950027 46568 Glyceraldehyde phosphate dehydrogenase gi 16406		gi 6649234	28754
28 kDa glutathione-S transferasegi 1610132407S. haematobium vs. E. caproniINCREASESD in S. haematobiumMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi 135128128447Pructose 1, 6 bisphosphate aldolasegi 60564739963Protein disulfide isomerasegi 31201854463Phosphoglycerate kinasegi 31201854463Phosphoglycerate kinasegi 302371047421Heat shock protein /chaperonegi 1016868331Heat shock protein /hsp70gi 1016868331Beat shock protein HSP60gi 2163453158740Signal transductiongi 164023428754Detoxification proteingi 1610132407128 kDa glutathione-S transferasegi 32289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 2647575439800E. caproni		g1 0017231	20751
S. haenatobium vs. E. caproniINCREASESD in S. haematobiumMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi [1351281Pructose 1,6 bisphosphate aldolasegi [005647gi [31201854463Phosphoglycerate kinasegi [312018Enolasegi [302371047421Heat shock protein /chaperone70,000 mol wt antigen/hsp70gi [1016868331Heat shock protein hSP60gi [21634531Signal transduction3275414-3-3 epsilongi [664923428 kDa glutathione-S transferasegi [161013240 KDR EASED in E. caproniNCBI accession #MWProtein disulphide isomerasegi [339289255587Enolasegi [1129500276Jyceraldehydrogenasegi [389157325217SIMILARNCBI accession #MWAldolasegi [2264757549800E. caproniKetabolic enzymeNCBI accession #MWAldolasegi [339289255587Enolasegi [3891573Clyceraldehyde phosphate dehydrogenasegi [3891575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWAldolasegi [30289255587EnolaseGlutathione S - Transferasegi [12647575439800E. caproni vs. S. bovisINCREASED in E. capron		gi 161013	2407
INCREASESD in S. haematobiumMetabolic enzymeNCBI accession #MWTriosephosphate isomerasegi [135128128447Fructose 1, 6 bisphosphate aldolasegi [0564739963Protein disulfide isomerasegi [31201854463Phosphoglycerate kinasegi [302371047421Heat shock protein /chaperonegi [302371047421Heat shock protein HSP60gi [1016868331Heat shock protein HSP60gi [2163453158740Signal transductiongi [664923428754Detoxification proteingi [302371047421INCREASED in E. caproniMWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi [339289255587Enolasegi [11295002746568Glyceraldehyde phosphate dehydrogenasegi [389157325217SIMILARNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi [22647575439800E. caproni vs. S. bovisINCREASED in E. caproniIncreasion #Metabolic enzymeNCBI accession #MWAldolasegi [22647575439800E. caproni vs. S. bovisIncreasion #MWProtein disulphide isomerasegi [339289255587Enolasegi [339289255587Enolasegi [22647575439800E. caproni vs. S. bovisIncreasion #MWProtein disulphide isomerasegi [339289255587Enolasegi [3264	_	01	
Metabolic enzymeNCBI accession #MWTriosephosphate isomerasegi[135128128447Fructose 1,6 bisphosphate aldolasegi[06564739963Protein disulfide isomerasegi[31201854463Phosphoglycerate kinasegi[302371047421Heat shock protein /chaperone	-		
Triosephosphate isomerasegi [135128128447Fructose 1,6 bisphosphate aldolasegi [60564739963Protein disulfide isomerasegi [31201854463Phosphoglycerate kinasegi [35641344508Enolasegi [302371047421Heat shock protein /chaperonegi [1016868331Heat shock protein HSP60gi [2163453158740Signal transductiongi [664923428754Detoxification proteingi [16101324071INCREASED in <i>E. caproni</i> gi [339289255587Metabolic enzymeNCBI accession #MWProterin disulphide isomerasegi [389157325217SIMILARgi 22647575439800 <i>E. caproni</i> gi 22647575439800 <i>E. caproni</i> MWMWProtein disulphide isomerasegi 339289255587Enolasegi 122647575439800 <i>E. caproni</i> MW1226475754Olasegi 239289255587Enolasegi 139289255587Enolasegi 122647575439800 <i>E. caproni</i> MWProtein disulphide isomerasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587			
Fructose 1, b bisphosphate aldolasegi i 60564739963Protein disulfide isomerasegi j 1201854463Phosphoglycerate kinasegi j 31201854463Enolasegi j 302371047421Heat shock protein /chaperone70,000 mol wt antigen/hsp70gi l 101686833170,000 mol wt antigen/hsp70gi l 1016868331Heat shock protein HSP60gi j 2163453158740Signal transductiongi 664923428754Detoxification protein28 kDa glutathione-S transferasegi 16101324071INCREASED in <i>E. caproni</i> WWProtein disulphide isomerasegi 39289255587Enolasegi 39289255587Enolasegi 389157325217SIMILARSowisSowisSowisMetabolic enzymeNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 32647575439800E. caproniK. S. bovisK. Barcession #MWSIMILARK. CaproniK. Barcession #MWMetabolic enzymeNCBI accession #MWAldolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 3392892 <t< td=""><td>5</td><td></td><td></td></t<>	5		
Protein disulfide isomerasegi 31201854463Phosphoglycerate kinasegi 55641344508Enolasegi 302371047421Heat shock protein /chaperonei 30237104742170,000 mol wt antigen/hsp70gi 1016868331Heat shock protein HSP60gi 2163453158740Signal transductioni 1664923428754Detoxification proteingi 16101324071INCREASED in <i>E. caproni</i> WWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARMWAddolasegi 22647575439800 <i>E. caproni</i> KEBI accession #MWAldolasegi 339289255587Enolasegi 389157325217SIMILARMCBI accession #MWAldolasegi 22647575439800 <i>E. caproni</i> vs. S. bovisNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 22647575439800 <i>E. caproni</i> vs. S. bovisNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587Enolasegi 339289255587		01	
Phosphoglycerate kinasegi 55641344508Enolasegi 302371047421Heat shock protein /chaperonegi 302371047421Heat shock protein /chaperonegi 101686833170,000 mol wt antigen/hsp70gi 1016868331Signal transductiongi 2163453158740Signal transductiongi 664923428754Detoxification proteingi 66492342407128 kDa glutathione-S transferasegi 16101324071INCREASED in <i>E. caproni</i> MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARgi 22647575439800Metabolic enzymeNCBI accession #MWAldolasegi 22647575439800 <i>E. caproni</i> vs. S. bovisNCBI accession #MWProtein disulphide isomerasegi 339289255587Glucardine proteingi 22647575439800 <i>E. caproni</i> vs. S. bovisImage: Signal science state sta			
Enolasegi 302371047421Heat shock protein /chaperonegi 101686833170,000 mol wt antigen/hsp70gi 1016868331Heat shock protein HSP60gi 2163453158740Signal transductiongi 1664923428754Detoxification proteingi 16101324071INCREASED in <i>E. caproni</i> mWWMetabolic enzymeNCBI accession #MWWProtein disulphide isomerasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1889157325217SIMILARgi 22647575439800 <i>E. caproni</i> NCBI accession #MWAldolasegi 22647575439800 <i>E. caproni</i> NCBI accession #MWMetabolic enzymeNCBI accession #MWPotorification proteingi 389157325217SIMILARNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 32289255587Enolasegi 12647575439800 <i>E. caproni</i> NCBI accession #MWAldolasegi 139289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 139289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 11295002740568Detoxification proteingi 1640659423687		0 1	
Heat shock protein /chaperoneIter70,000 mol wt antigen/hsp70gi 1016868331Heat shock protein HSP60gi 2163453158740Signal transductiongi 66492342875414-3-3 epsilongi 664923428754Detoxification proteingi 16101324071INCREASED in <i>E. caproni</i> WMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 39289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARIncreasegi 22647575439800 <i>E. caproni</i> MCBI accession #MWAldolasegi 22647575439800 <i>E. caproni</i> MCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 22647575439800E. caproni vs. S. bovisIncrease112950027INCREASED in <i>E. caproni</i> MCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 339289255587Enolasegi 339289255587Enolasegi 32020746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteinIncreasegi 1640659423687		01	
70,000 mol wt antigen/hsp70gi 1016868331Heat shock protein HSP60gi 2163453158740Signal transductiongi 2163453158740Signal transductiongi 664923428754Detoxification proteingi 16101324071INCREASED in <i>E. caproni</i> WWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 389157325217SIMILARWMetabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisS. bovisS5587INCREASED in <i>E. caproni</i> WWProtein disulphide isomerasegi 389157325217SIMILARMWS5587S587Protein disulphide enzymeNCBI accession #MWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteinMWMWProtein disulphide		g1 3023710	47421
Heat shock protein HSP60gi 2163453158740Signal transductiongi 66492342875414-3-3 epsilon proteingi 664923428754Detoxification proteingi 16101324071INCREASED in <i>E. caproni</i>		gi 10168	68331
Signal transductiongi 66492342875414-3-3 epsilongi 664923428754Detoxification protein28 kDa glutathione-S transferasegi 1610132407128 kDa glutathione-S transferasegi 16101324071INCREASED in E. caproniWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteinGlutathione S-Transferasegi 389157325217SIMILARMetabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein		01	
14-3-3 epsilongi 664923428754Detoxification proteingi 1610132407128 kDa glutathione-S transferasegi 16101324071INCREASED in E. caproni		0	
28 kDa glutathione-S transferasegi 16101324071INCREASED in E. caproniNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteingi 389157325217SIMILARgi 22647575439800Metabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1295002746568Girl disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687		gi 6649234	28754
INCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteinilliaseilliaseGlutathione S-Transferasegi 389157325217SIMILARilliaseilliaseMetabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisilliaseilliaseINCREASED in E. caproniNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687	Detoxification protein		
Metabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteingi 389157325217SIMILARgi 22647573439800 <i>E. caproni</i> vs. <i>S. bovis</i> gi 22647575439800 <i>E. caproni</i> vs. <i>S. bovis</i> NCBI accession #MWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687	28 kDa glutathione-S transferase	gi 161013	24071
Metabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteingi 389157325217SIMILARgi 22647573439800 <i>E. caproni</i> vs. <i>S. bovis</i> gi 22647575439800 <i>E. caproni</i> vs. <i>S. bovis</i> NCBI accession #MWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687	INCREASED in F cabroni		
Protein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteingi 389157325217SIMILARNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 32647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteinJinternation proteinJinternation protein		NCBL accession #	MW
Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification proteingi 389157325217SIMILARgi 389157325217Metabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687	-		
Glyceraldehyde phosphate dehydrogenase Detoxification proteingi 1640659423687Glutathione S-Transferasegi 389157325217SIMILAR Metabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproni Metabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687		01	46568
Glutathione S-Transferasegi 389157325217SIMILARNCBI accession #MWMetabolic enzymeNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniHWMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687	Glyceraldehyde phosphate dehydrogenase	gi 16406594	23687
SIMILARNCBI accession #MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687			
Metabolic enzymeNCBI accession # gi 226475754MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein	Glutathione S-Transferase	gi 3891573	25217
Metabolic enzymeNCBI accession # gi 226475754MWAldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein	SIMILAR		
Aldolasegi 22647575439800E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein		NCBI accession #	MW
E. caproni vs. S. bovisINCREASED in E. caproniMetabolic enzymeNCBI accession #Protein disulphide isomerasegi 3392892Enolasegi 112950027Glyceraldehyde phosphate dehydrogenasegi 16406594Detoxification proteinJ	•	gi 226475754	39800
INCREASED in E. caproniMetabolic enzymeNCBI accession #Protein disulphide isomerasegi 3392892Enolasegi 112950027Glyceraldehyde phosphate dehydrogenasegi 16406594Detoxification protein23687	E caproni vs S hovis	01	
Metabolic enzymeNCBI accession #MWProtein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein	1		
Protein disulphide isomerasegi 339289255587Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein			
Enolasegi 11295002746568Glyceraldehyde phosphate dehydrogenasegi 1640659423687Detoxification protein			
Glyceraldehyde phosphate dehydrogenase gi 16406594 23687 Detoxification protein			
Detoxification protein		0 1	
		g1 10+00394	23007
		gi 3891573	25217
		8110011010	

S. bovis and E. caproni using 2D-DIGE was conducted. S. haematobium and S. bovis are closely related species and can undergo hybridisation (Huyse et al. 2009), the results obtained here show that there are also significant proteomic differences, even among conserved proteins. These species-specific differences could be due to phenotypic plasticity arising from different host-parasite relationships (Schrimpf and Hengartner, 2010). Evolutionary and phylogenetic studies have demonstrated that highly expressed genes tend to evolve more slowly (Hirsh and Fraser, 2001; Schrimpf and Hengartner, 2010), nonetheless here we demonstrate that some of these conserved proteins differ in molecular weight, most likely due to post-translational modifications which should be explored further particularly as vaccine candidates.

It was possible to identify some of the proteins present in the proteomes by searching public

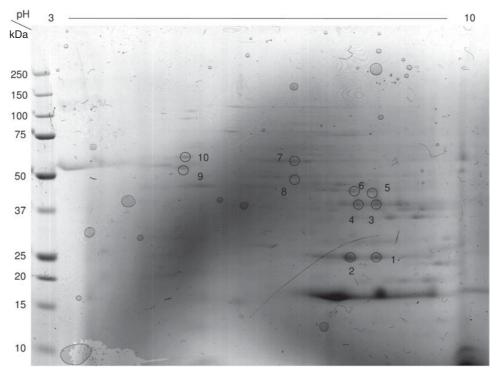


Fig. 3. Coomassie blue-stained 2-dimensional *E. caproni* gel showing spots excised, and identified by MASCOT. Corresponding protein identities are given in Table 1.

databases, but due to the limited sequence information available on these three trematodes, a large number of the proteins remain unidentified (Nowak and Loker, 2005). Comparing the proteomes of the two schistosome species, only HSP70 identified from the Coomassie Blue-stained reference gel showed increased expression in S. haematobium despite the 10% difference in protein expression levels detected by the DIA analysis. The DIGE analysis can detect much lower concentrations of proteins than Coomassie staining. Thus, a large number of proteins present on the DIGE gel were present at a concentration too low to be detected from the Coomassie Blue-stained gel for mass spectrometry. These proteins accounted for some of the 10% differences between the two schistosomes. Our results showing differential expression of HSP70 are consistent with those from a different trematode genus, Fasciola where F. hepatica and F. gigantica show different levels of HSP70 expression (Smith et al. 2008). Furthermore we have previously reported differences in HSP70 expression in *E. caproni* parasites from low vs. high compatible hosts (Higón et al. 2008). Therefore, expression levels of HSP70 seem to depend on the host environment and this could be a common mechanism used by different parasites in order to adapt to different hosts. The sequencing of the genome and subsequent identification of all proteins present in the proteome of all 3 species compared in this study will greatly strengthen such comparative approaches as they will allow more robust comparison of identified proteins as well as comparisons of the number of isoforms and the relative abundance of each isoform to the compared.

There were more differentially expressed proteins between the two different genera. Most proteins identified in both E. caproni and S. haematobium (with known identities) are homologues (protein disulfide isomerase, enolase and GST). However, these homologues have different molecular weights. It is likely that this difference is due to posttranslational modifications rather than changes in the gene sequence, since these proteins are highly conserved (Ramajo-Hernández et al. 2007a,b; Sotillo et al. 2008). Furthermore, these proteins are important for the host-parasite relationship (E/S products, immunogenic properties), so these modifications could be involved in the host-parasite surface interaction. Protein disulfide isomerase (PDI) catalyses the formation (oxidation), breakage (reduction) and rearrangement (isomerisation) of disulfide bonds within proteins, thereby permitting their proper folding in the endoplasmic reticulum and transit through the secretory pathway (Ellgaard and Ruddock, 2005). PDI has been identified in the E/S products of adult E. caproni, E. friedi and F. hepatica worms, suggesting that it may be important in host-parasite interactions (Salazar-Calderon et al. 2003; Bernal et al. 2006; Sotillo et al. 2010). Moreover, PDI is immunogenic in human S. haematobium infections (Mutapi et al. 2005) and experimental F. hepatica (Moxon et al. 2010) and it has been shown to be immunologically protective against the hookworm, Ancylostoma (Epe et al. 2007). Differences in PDI

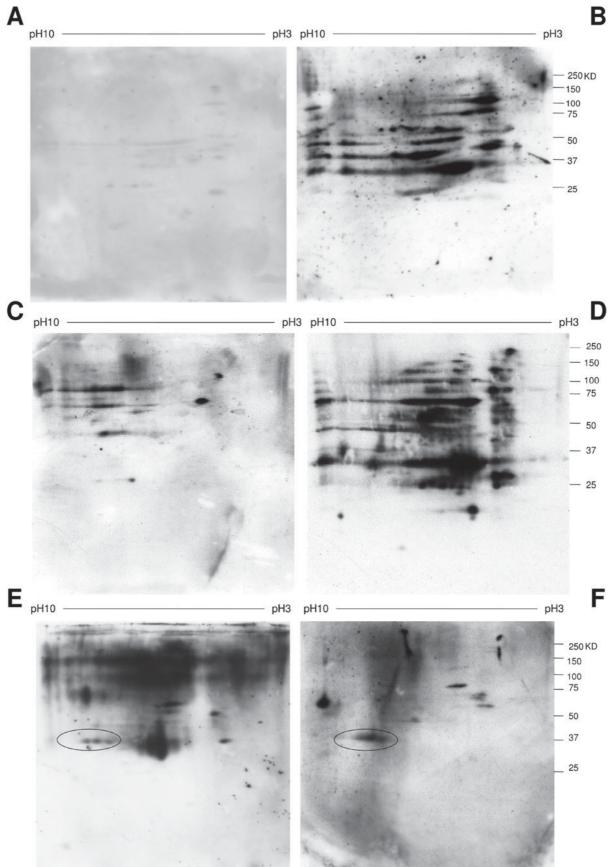


Fig. 4. Antigen recognition profile of sera from trematode-infected hamsters.

A. S. bovis SWAP antigen recognition by sera from E. caproni-infected hamsters.

B. S. bovis SWAP antigen recognition by sera from S. haematobium-infected hamsters.

molecular weight between *S. haematobium* and *E. caproni* could be due to post-translational modifications, akin to the PDI glycosylation reported in *Trypansoma brucei* where it is related to parasite defence (Rubotham *et al.* 2005).

The main function of glutathione S-transferase (GST) is detoxification of oxygen and endogenous free radicals (Torres-Rivera and Landa, 2008). It is present in Echinostoma spp. and S. bovis tegument and E/S products (Bernal et al. 2006; Perez-Sanchez et al. 2006; Sotillo et al. 2010). It is also the leading schistosome vaccine candidate (Capron et al. 2005; McManus and Loukas, 2008). There is a difference in the theoretical and observed molecular weights for GST. Ramajo-Hernandez et al. (2007a) reported no glycosylation of GST in S. bovis. Enolase is a multifunctional glycolytic enzyme (Pancholi, 2001), also present in E/S products (Bernal et al. 2006; Perez-Sanchez et al. 2006; Sotillo et al. 2010). In S. bovis as well as E. caproni, enolase has been identified as a human plasminogen-binding protein; this protein may be involved in preventing blood clotting during feeding in Schistosoma (Ramajo-Hernández et al. 2007b) or in mucosal erosion in *Echinostoma* (Marcilla et al. 2007).

To investigate some of the biological differences arising from differences in the proteomes, the immunogenicity of the adult worm antigens was compared. There was cross-reactivity between the three trematode species, but the intensity and antigen pattern recognition patterns differed. The most immune cross-reactivity occurred between the two schistosomes which is consistent with the DIGE results. We have identified a novel antigen for E. caproni, 3 isoforms of GADPH. E. caproni GAPDH was also recognized by sera from S. haematobium-infected hamsters. Interestingly, S. haematobium GADPH antigen was not recognized by sera from E. caproni-infected hamsters. GAPDH's immunogenicity has been reported from other studies and is one of the World Health Organisation's human schistosome vaccine candidates (Bergquist et al. 2002; El Ridi et al. 2010). Nevertheless it has not previously been reported as an antigen in Echinostoma spp. Toledo et al. (2004) discovered an immunogen of 37 kDa, 6 weeks post Echinostoma infections in rats, but the intensity of this response declined during the infection, suggesting that the protein could be released in the juvenile stages of the parasites. This immunogen is likely to be GAPDH and this present study and that of Toledo *et al.* (2004) suggest that the kinetics of antigen release and antibody production against GAPDH require further investigation, especially in the future context of screening against human sera from infected people.

Schistosomiasis continues to be a major public health problem in several tropical and sub-tropical countries. There are now several studies (e.g. Garba et al. 2010), showing that children as young as 1 year old are infected and can harbour levels of infection comparable to those in the adults in their communities and the search for an effective vaccine continues to be a key priority (Secor and Colley, 2005). One promising approach being pursued is to treat people, children in particular, repeatedly with praziquantel to induce immune-mediated resistance to re-infection (Black et al 2010a). However, studies using this protocol indicate that the number of PZQ treatments required to reduce re-infection is significantly variable and can take several rounds of PZQ treatment (Black et al. 2010b). This suggests that an integrated approach using treatment and a recombinant vaccine as proposed by the World Health Organisation (Berquist, 2004) might lend predictability and consistency as well as improved efficacy to future schistosome control programmes. Thus the molecular phenotypic differences shown in this study, particularly those which appear to be post-translational, may influence the development and production of recombinant vaccines (e.g. bacterial expression systems may not process the proteins appropriately after translation) and affect the efficacy of future vaccines.

Overall this study has demonstrated that, despite several biological and phylogenetic similarities between the three trematode species S. haematobium, S. bovis and E. caproni, there are quantitative and qualitative differences in protein expression patterns in their adult worm proteomes. The differences could be due to phenotypic plasticity arising from different host-parasite relationships. Some of these differences translate to differences in immunogenicity. Further studies characterizing the differentially expressed proteins will be important in determining the identity of proteins involved in host-parasite adaptation and the nature of the interaction between the host and parasite. This is particularly important for identifying vaccine candidates and predicting the effects vaccination, especially in childhood, would have on the parasite population structure.

C. S. haematobium SWAP antigen recognition by sera E. caproni from infected hamsters.

D. S. haematobium SWAP antigen recognition by sera from S. haematobium-infected hamsters.

E. E. caproni SWAP antigen recognition by sera from E. caproni-infected hamsters.

F. E. caproni SWAP antigen recognition by sera from S. haematobium-infected hamsters.

A novel E. caproni antigen GAPDH is encircled.

ACKNOWLEDGEMENTS

We are grateful for the donation of CyDye DIGE Fluor minimal dyes by GE Healthcare. We also thank Alan Scott, University of Glasgow for technical support.

FINANCIAL SUPPORT

This work was supported by the Carnegie Trust for the Universities of Scotland; the Wellcome Trust (Grant no WT082028MA); and a predoctoral fellowship from the Spanish Ministry of Science and Education (MH).

REFERENCES

Agnew, A. M., Murare, H. M., Lucas, S. B. and Doenhoff, M. J. (1989). Schistosoma bovis as an immunological analogue of S. haematobium. Parasite Immunology 11, 329–340.

Aquadro, C. F. and Avise, J. C. (1981). Genetic divergence between rodent species assessed by using two-dimensional electrophoresis. *Proceedings of the National Academy of Sciences, USA* **78**, 3784–3788.

Bergquist, R. (2004). http://www.who.int/tdrold/publications/tdrnews/ news71/schisto.htm. Accessed 26 January 2011.

Bergquist, R., Al-Sherbiny, M., Barakat, R. and Olds, R. (2002). Blueprint for schistosomiasis vaccine development. *Acta Tropica*, **82**, 183-192.

Bergquist, R., Utzinger, J. and McManus, D. P. (2008). Trick or Treat: the role of vaccines in integrated schistosomiasis control. *PLoS Neglected Tropical Diseases* 2, e244. doi:10.1371/journal.pntd.0000244

Bernal, D., Carpena, I., Espert, A. M., De la Rubia, J. E., Esteban, J. G., Toledo, R. and Marcilla, A. (2006). Identification of proteins in excretory/secretory extracts of *Echinostoma friedi* (Trematoda) from chronic and acute infections. *Proteomics* **6**, 2835–2843.

Berriman, M., Haas, B. J., LoVerde, P. T., Wilson, R. A., Dillon, G. P., Cerqueira, G. C., Mashiyama, S. T., Al-Lazikani, B., Andrade, L. F., Ashton, P. D., Aslett, M. A., Bartholomeu, D. C., Blandin, G., Caffrey, C. R., Coghlan, A., Coulson, R., Day, T. A., Delcher, A., DeMarco, R., Djikeng, A., Eyre, T., Gamble, J. A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D. A., Lacerda, D., Macedo, C. D., McVeigh, P., Ning, Z., Oliveira, G., Overington, J. P., Parkhill, J., Pertea, M., Pierce, R. J., Protasio, A. V., Quail, M. A., Rajandream, M. A., Rogers, J., Sajid, M., Salzberg, S. L., Stanke, M., Tivey, A. R., White, O., Williams, D. L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A. and Fraser-Liggett, C. M., Barrell, B. G. and El-Sayed, N. M. (2009). The genome of the blood fluke *Schistosoma mansoni*. Nature 460, 352–358.

Black, C. L., Muok, E. M., Mwinzi, P. N., Carter, J. M., Karanja, D. M., Secor, W. E. and Colley, D. G. (2010*a*). Increases in levels of schistosomespecific immunoglobulin E and CD23(+) B cells in a cohort of Kenyan children undergoing repeated treatment and reinfection with *Schistosoma mansoni*. *Journal of Infectious Diseases* 202, 399–405.

Black, C. L., Mwinzi, P. N., Muok, E. M., Abudho, B., Fitzsimmons, C. M., Dunne, D. W., Karanja, D. M., Secor, W. E. and Colley, D. G. (2010b). Influence of exposure history on the immunology and development of resistance to human *Schistosomiasis mansoni*. *PLoS Neglected Tropical Diseases* 4, e637.

Bowles, J., Blair, D. and McManus, D. P. (1995). A molecular phylogeny of the human schistosomes. *Molecular Phylogenetics and Evolution* 4, 103– 109.

Capron, A., Riveau, G., Capron, M. and Trottein, F. (2005). Schistosomes: the road from host–parasite interactions to vaccines in clinical trials. *Trends in Parasitology* **21**, 143–149.

Cheng, G. F., Lin, J. J., Feng, X. G., Fu, Z. Q., Jin, Y. M., Yuan, C. X., Zhou, Y. C. and Cai, Y. M. (2005). Proteomic analysis of differentially expressed proteins between the male and female worm of *Schistosoma japonicum* after pairing. *Proteomics* 5, 511–521.

Cieslak, A. and Ribera, I. (2009). Aplicaciones de proteómica en ecología y evolución. *Ecosistemas* 18, 34–43.

Curwen, R. S., Ashton, P. D., Johnston, D. A. and Wilson, R. A. (2004). The *Schistosoma mansoni* soluble proteome: a comparison across four lifecycle stages. *Molecular and Biochemical Parasitology* **138**, 57–66.

Demeure, C. E., Rihet, P., Abel, L., Ouattara, M., Bourgois, A. and Dessein, A. J. (1993). Resistance to *Schistosoma mansoni* in humans: influence of the IgE/IgG4 balance and IgG2 in immunity to reinfection after chemotherapy. *Journal of Infectious Diseases* **168**, 1000–1008.

Doenhoff, M. J., Hagan, P., Cioli, D., Southgate, V., Pica-Mattoccia, L., Botros, S., Coles, G., Tchueme-Tuchuente, L. A., Mbaye, A., and Engels, D. (2009). Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. *Parasitology* **136**, 1825–1835.

Dunne, D. W., Butterworth, A., Fulford, A. J., Ouma, J. H. and Sturrock, B. F. (1992). Human IgE responses to *Schistosoma mansoni* and resistance to reinfection. *Memorias do Instituto do Osvaldo Cruz* **87**, 99–103. Ellgaard, L. and Ruddock, L. W. (2005). The human protein disulphide isomerase family: substrate interactions and functional properties, *EMBO Reborts* **6**, 28–32.

El Ridi, R., Tallima, H., Mahana, N. and Dalton, J. P. (2010). Innate immunogenicity and *in vitro* protective potential of *Schistosoma mansoni* lung schistosomula excretory-secretory candidate vaccine antigens. *Microbes and Infection* **12**, 700–709.

Engels, D., Chitsulo, L., Montresor, A. and Savioli, L. (2002). The global epidemiological situation of schistosomiasis and new approaches to control and research. *Acta Tropica* **82**, 139–146.

Epe, C., Behrens, C., Strube, C. and Schnieder, T. (2007). Evaluation of the transcription level of the protein disulfide isomerase in different stages from *Ancylostoma caninum* with a real-time PCR assay. *Parasitology Research* **101**, 1589–1595.

Garba, A., Barkier, N., Djibo, A., Lamine, M.S., Sofo, B., Gouras, A. N., Bosque-Oliva, E., Webster, J. P., Stothard, J. R., Utzinger, J. and Fenwick, A. (2010). Schistosomiasis in infants and preschool-aged children: infection in a single *Schistosoma haematobium* and a mixed *S. haematobium-S. mansoni* foci of Niger. *Acta Tropica* **115**, 212–219. Grogan, J., Kremsner, P. J., Van Dam, G. J., Deelder, A. M. and Yazdanbakhsh, M. (1997). Anti-schistosome IgG4 and IgE at 2 years after chemotherapy: infected versus uninfected individuals. *Journal of Infectious Diseases* **176**, 1344–1350.

Hagan, P., Blumenthal, U. J., Dunne, D., Simpson, A. J. D. and Wilkins, A. H. (1991). Human IgE, IgG4 and resistance to reinfection with *Schistosoma haematobium*. *Nature* **349**, 234–245.

Hagan, P. and Sharaf, O. (2003). Schistosomiasis vaccines. *Expert Opinion in Biological Therapy*, **3**, 1271–1278.

Harnett, W. and Harnett, M. M. (2010). Helminth-derived immunomodulators: can understanding the worm produce the pill? *Nature Reviews Immunology* **10**, 278–284.

Higón, M., Monteagudo, C., Fried, B., Esteban, J. G., Toledo, R. and Marcilla, A. (2008). Molecular cloning and characterization of *Echinostoma caproni* heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts. *Parasitology* **135**, 1469–1477. Hirsh, A. E. and Fraser, H. B. (2001). Protein dispensability and rate of evolution. *Nature* **411**, 1046–1049.

Huyse, T., Webster, B. L., Geldof, S., Stothard, J. R., Diaw, O. T., Polman, K. and Rollinson, D. (2009). Bidirectional introgressive hybridization between a cattle and human schistosome species. *PLoS Pathogens* 5, e1000571. doi: 10.1371/journal.ppat.1000571

Jolly, E. R., Chin, C. S., Miller, S., Bahgat, M. M., Lim, K. C., DeRisi, J. and McKerrow, J. H. (2007). Gene expression patterns during adaptation of a helminth parasite to different environmental niches. *Genome Biology* 8, R65.

López, J.L. (2007). Two-dimensional electrophoresis in proteome expression analysis. *Journal of Chromatography*, 849, 190-202.

Losada, S., Chacón, N., Colmenares, C., Bermúdez, H., Lorenzo, A., Pointier, J. P., Theron, A., Alarcón de Noya, B. and Noya, O. (2005). *Schistosoma:* Cross-reactivity and antigenic community among different species. *Experimental Parasitology* **111**, 182–190.

Marcilla, A., Perez-Garcia, A., Espert, A., Bernal, D., Muñoz-Antoli, C., Esteban, J. G. and Toledo, R. (2007). *Echinostoma caproni*: identification of enolase in excretory/secretory products, molecular cloning, and functional expression. *Experimental Parasitology* **117**, 57–64. McManus, D.P. and Loukas, A. (2008). Current status of vaccines for

schistosomiasis. *Clinical Microbiology Reviews* **21**, 225–242. Midzi, N., Sangweme, D., Zinyowera, S., Mapingure, M.,

Brouwer, K. C., Munatsi, A., Mutapi, F., Mudzori, J., Kumar, N., Woelk, G. and Mduluza, T. (2008). The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. *Transactions of the Royal Society of Tropical Medicine and Hygiene* **102**, 1039–1045.

Moxon, J.V., Flynn, A.R.J., Golden, A.O., Hamilton, J.V., Mulcahy, G. and Brophy, M.P. (2010). Immune responses directed at egg proteins during experimental infection with the liver fluke *Fasciola hepatica*. *Parasite Immunology* **32**, 111–124.

Mutapi, F., Burchmore, R., Mduluza, T., Foucher, A., Harcus, Y., Nicoll, G., Midzi, N., Turner, C.M. and Maizels, R.M. (2005). Praziquantel treatment of individuals exposed to *Schistosoma haematobium* enhances serological recognition of defined parasite antigens. *Journal of Infectious Diseases* **192**, 1108–1118.

Mutapi, F., Ndlovu, P.D., Hagan, P., Spicer, J.T., Mduluza, T., Turner, C. M., Chandiwana, S. K. and Woolhouse, M. E. J. (1998). Chemotherapy accelerates the development of acquired immune responses to *Schistosoma haematobium* infection. *Journal of Infectious Diseases* **178**, 289–293.

Nowak, T. S. and Loker, E. S. (2005). *Echinostoma paraensei*: differential gene transcription in the sporocyst stage. *Experimental Parasitology* **109**, 94–105.

Oleaga, A. and Ramajo, V. (2004). Efficiency of the oral, intramuscular and subcutaneous routes for the experimental infection of hamster and sheep with *Schistosoma bovis*. *Veterinary Parasitology* **124**, 43–53.

Pancholi, V. (2001). Multifunctional alpha-enolase: its role in diseases. Cellular and Molecular Life Science: CMLS 58, 902–920.

Pérez-Sánchez, R., Ramajo-Hernández, A., Ramajo-Martín, V. and Oleaga, A. (2006). Proteomic analysis of the tegument and excretorysecretory products of adult *Schistosoma bovis* worms. *Proteomics* 6, S226–S236.

Ramajo-Hernandez, A., Oleaga, A., Ramajo-Martin, V. and Perez-Sanchez, R. (2007a). Carbohydrate profiling and protein identification of tegumental and excreted/secreted glycoproteins of adult *Schistosoma bovis* worms. *Veterinary Parasitology* **144**, 45–60.

Ramajo-Hernández, A., Pérez-Sánchez, R., Ramajo-Martín, V. and Oleaga, A. (2007b). *Schistosoma bovis*: Plasminogen binding in adults and the identication of plasminogen-binding proteins from the worm tegument. *Experimental Parasitology* **115**, 83–91.

Ramm, S.A., McDonald, L., Hurst, J.L., Beynon, R.J. and Stockley, P. (2009). Comparative proteomics reveals evidence for evolutionary diversification of rodent seminal fluid and its functional significance in sperm competition. *Molecular Biology and Evolution* 26, 189–198.

Rollinson, D., Kaukas, A., Johnston, D.A., Simpson, A.J. and Tanaka, M. (1997). Some molecular insights into schistosome evolution. *International Journal for Parasitology* **27**, 11–28.

Rubotham, J., Woods, K., Garcia-Salcedo, J.A., Pays, E. and Nolan, D. P. (2005). Characterization of two protein disulfide isomerases from the endocytic pathway of bloodstream forms of *Trypanosoma brucei*. *Journal of Biological Chemistry* 280, 10410–10418.

Salazar-Calderón, M., Martín-Alonso, M. J., Castro, A. M. and Parra, F. (2003). Cloning, heterologous expression in *Escherichia coli* and characterization of a protein disulfide isomerase from *Fasciola hepatica*. *Molecular and Biochemical Parasitology* **126**, 15–23.

Schrimpf, S. P. and Hengartner, M. O. (2010). A worm rich in protein: Quantitative, differential, and global proteomics in *Caenorhabditis elegans*. *Journal of Proteomics* **73**, 2186–2197.

Secor, W.E. and Colley, D.G. (2005). *Schistosomiasis*. World Class Parasite Series. Springer, New York.

Sirag, S.B., Christensen, N.O., Frandsen, F., Monrad, J. and Nansen, P. (1980). Homologous and heterologous resistance in *Echinostoma revolutum* infections in mice. *Parasitology* 80, 479–486.

Smith, R.E., Spithill, T.W., Pike, R.N., Meeusen, E.N.T. and Piedrafita, D. (2008). *Fasciola hepatica* and *Fasciola gigantica*: cloning and characterization of 70 Kda heat-shock proteins reveals variation in HSP70 gene expression between parasite species recovered from sheep. *Experimental Parasitology* **118**, 536–542.

Sotillo, J., Valero, L., Sanchez Del Pino, M.M., Fried, B., Esteban, J.G., Marcilla, A. and Toledo, R. (2008). Identification of antigenic proteins from *Echinostoma caproni* (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. *Parasite Immunology* **30**, 271–279.

Sotillo, J., Valero, M.L., Sánchez Del Pino, M.M., Fried, B., Esteban, J.G., Marcilla, A. and Toledo, R. (2010). Excretory/secretory proteome of the adult stage of *Echinostoma caproni*. *Parasitology Research*, **107**, 691–697.

Soulsby, E.J.L. (1986). Helminths, Arthropods and Protozoa of Domesticated Animals, 7th Edn. Bailliere-Tindall, London.

Stoever, K., Molyneux, D., Hotez, P. and Fenwick, A. (2009). HIV/AIDS, schistosomiasis, and girls. *Lancet* 13, 2025–2026.

Stothard, J. R., Mgeni, A. F., Khamis, S., Seto, E., Ramsan, M. and Rollinson, D. (2002). Urinary schistosomiasis in schoolchildren on Zanzibar Island (Unguja), Tanzania: a parasitological survey supplemented with questionnaires. *Transactions of the Royal Society of Tropical Medicine* and Hygiene 96, 507–514.

Toledo, R., Espert, A., Carpena, I., Muñoz-Antoli, C. and Esteban, J. G. (2003). An experimental study of the reproductive success of *Echinostoma friedi* (Trematoda: Echinostomatidae) in the golden hamster. *Parasitology* **126**, 433–441.

Toledo, R., Espert, A., Munoz-Antoli, C., Fried, B. and Esteban, J. G. (2004). Immunological characterization of somatic and excretory/secretory antigens of *Echinostoma caproni* (Trematoda: Echinostomatidae) in experimentally infected rats. *Comparative Parasitology* **71**, 42–48.

Toledo, R., Esteban, J. G. and Fried, B. (2009). Recent advances in the biology of echinostomes. *Advances in Parasitology* 69, 147–204.

Toledo, R. and Fried, B. (2005). Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts. *Trends in Parasitology* **21**, 251–254.

Torres-Rivera, A. and Landa, A. (2008). Cooperative kinetics of the recombinant glutathione transferase of *Taenia solium* and characterization of the enzyme. *Archives of Biochemistry and Biophysics* **477**, 372–378.

Trottein, F., Godin, C., Pierce, R.J., Sellin, B., Taylor, M.G., Gorillot, I., Silva, M.S., Lecocq, J.P. and Capron, A. (1992). Interspecies variation of schistosome 28-kDa glutathione S-transferases. *Molecular and Biochemical Parasitology* 54, 63–72.

Vercruysse, J. and Gabriel, S. (2005). Immunity to schistosomiasis in animals: an update. *Parasite Immunology* 27, 289–295.

Verjovski-Almeida, S., DeMarco, R., Martins, E. A., Guimaraes, P. E., Ojopi, E. P., Paquola, A. C., Piazza, J. P., Nishiyama, M. Y. Jr, Kitajima, J. P., Adamson, R. E., Ashton, P. D., Bonaldo, M. F., Coulson, P. S., Dillon, G. P., Farias, L. P., Gregorio, S. P., Ho, P. L., Leite, R. A., Malaquias, L. C., Marques, R. C., Miyasato, P. A., Nascimento, A. L., Ohlweiler, F. P., Reis, E. M., Ribeiro, M. A., Sa, R. G., Stukart, G. C., Soares, M. B., Gargioni, C., Kawano, T., Rodrigues, V., Madeira, A. M., Wilson, R. A., Menck, C. F., Setubal, J. C., Leite, L. C. and Dias-Neto, E. (2003). Transcriptome analysis of the acoelomate human parasite *Schistosoma mansoni. Nature Genetics*, **35**, 148–157.

Wang, Z., Abubucker, S., Martin, J., Wilson, R. K., Hawdon, H. J. and Mitreva, M. (2010). Characterizing *Ancylostoma caninum* transcriptome and exploring nematode parasitic adaptation. *BMC Genomics* 11, 307. doi: 10.1186/1471-2164-11-307

Webster, B. L., Southgate, V. R. and Littlewood, D. T. (2006). A revision of the interrelationships of *Schistosoma* including the recently described *Schistosoma guineensis*. *International Journal for Parasitology* **36**, 947–955.

Zhou, Y., Zheng, H., Chen, Y., Zhang, L., Wang, K., Guo, J., Huang, Z., Zhang, B., Huang, W., Jin, K., Dou, T., Hasegawa, M., Wang, L., Zhang, Y., Zhou, J., Tao, L., Cao, Z., Li, Y., Vinar, T., Brejova, B., Brown, D., Li, M., Miller, D. J., Blair, D., Zhong, Y., Chen, Z., Liu, F., Hu, W., Wang, Z. Q., Zhang, Q. H., Song, H. D., Chen, S., Xu, X., Xu, B., Ju, C., Huang, Y., Brindley, P. J., McManus, D. P., Feng, Z., Han, Z. G., Lu, G., Ren, S., Wang, Y., Gu, W., Kang, H., Chen, J., Chen, X., Chen, S., Wang, L., Yan, J., Wang, B., Lv, X., Jin, L., Wang, B., Pu, S., Zhang, X., Zhang, W., Hu, Q., Zhu, G., Wang, J., Yu, J., Wang, J., Yang, H., Ning, Z., Beriman, M., Wei, C. L., Ruan, Y., Zhao, G., Wang, S., Liu, F., Zhou, Y., Wang, Z. Q., Lu, G., Zheng, H., Brindley, P. J., McManus, D. P., Blair, D., Zhang, Q. H., Zhong, Y., Wang, S., Han, Z. G., Chen, Z., Wang, S., Han, Z. G. and Chen, Z. (2009). The *Schistosoma japomicum* genome reveals features of host–parasite interplay. *Nature* 460, 345–351.