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The view of CD4 T-cell-mediated immunity as a balance between distinct lineages of Th1 and Th2 cells has changed dramatically.
Identification of the IL-17 family of cytokines and of the fact that IL-23mediates the expansion of IL-17-producing T cells uncovered
a new subset of Th cells designated Th17 cells, which have emerged as a third independent T-cell subset that may play an essential
role in protection against certain extracellular pathogens. Moreover, Th17 cells have been extensively analyzed because of their
strong association with inflammatory disorders and autoimmune diseases. Also, they appear to be critical for controlling these
disorders. Similar toTh1 andTh2 cells, Th17 cells require specific cytokines and transcription factors for their differentiation. Th17
cells have been characterized as one of the major pathogenicTh cell populations underlying the development of many autoimmune
diseases, and they are enhanced and stabilized by IL-23. The characteristics of Th17 cells, cytokines, and their sources, as well as
their role in infectious and autoimmune diseases, are discussed in this review.

1. Introduction

CD4+ T cells play an important role in the initiation of
immune responses by providing help to other cells and taking
on a variety of effector functions during immune reactions.
Upon antigenic stimulation, näıve CD4+ T cells activate,
expand, and differentiate into different effector subsets called
T helpers—(Th) Th1, Th2, Th9, Th17, and Th22—that are
characterized by the production of distinct cytokines and
effector functions [1]. Th17 cells have been identified as one
of the major pathogenic Th cell populations underlying the
development of many autoimmune diseases, and it is known
that IL-23 enhances and stabilizes them [2].

The main functions of the immune system are to recog-
nize and subsequently eliminate foreign antigens, to induce
immunologic memory, and to develop tolerance to self-
antigens. Effective immunologic homeostasis relies on a
continual balance among several factors, including Th cell
activation and suppression by regulatory T cells (Treg).
When homeostasis is disrupted and the immune system
responds in favor of activation, the host becomes susceptible
to autoimmunity [3].

The identification of the IL-17 family of cytokines and the
finding that IL-23 mediates the expansion of IL-17-producing
T cells led to the discovery of a new subset of Th cells
designated Th17 cells. Similar to Th1 andTh2 cells, Th17 cells
require specific cytokines and transcription factors for their
differentiation.

Th17 cells have an important role in inducing the inflam-
matory process [3], the immediate protective response of the
body to foreign pathogens; however, the immune response
needs to be controlled to avoid injury mediated by the
immune response in the form of chronic inflammation.
CD4+T cells are the first line of defense and they play amajor
role in the induction and regulation of immune responses,
mainly by secreting cytokines. After antigenic stimulus, näıve
CD4+ T cells may differentiate into effector T cells. Th1 and
Th2are the classical subsets involved in the immune response.
Th1 secrete interferon-𝛾 (IFN-𝛾) and interleukin (IL)-2, while
Th2 produce IL-4, IL-13, and IL-5 [4, 5]. However, the T-
cell subsets have been expanded, and Th17 cells have been
described as a novel subset of the specialized Th cells lineage
that produces IL-17 but not IFN-𝛾 or IL-4 [6]. These cells are
potent inducers of tissue inflammation and require TGF𝛽 in
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combination with other cytokines such as IL-6 and IL-23 for
their differentiation [7].

2. Th17 Cells: Who Are They?

The T-cell subsets involved in inflammatory reactions are
mainly Th1 and Th17. There is evidence that Th17 cells can
be generated from effector memory CD4+ T cells. The
involvement of such cytokines as IL-6, TGF𝛽, IL-21, and IL-
23 in the development ofTh17 cells has been described clearly
[8].

Th17 cells, first described in mice, are the major source
of IL-17 in many types of adaptive immunity [6]. While
Th1 and Th2 cells provide effector responses to intracellular
bacterial infections and parasitic pathogens, respectively,
Th17 cells offer protection against extracellular bacterial and
fungal infections and have been implicated in autoimmunity.
Th17 cells secrete different cytokines (IL-17A, IL-17F, IL-21,
and IL-22) and their differentiation requires a novel set of
transcription factors that includes a signal transducer and the
activator of transcription 3 (Stat3), the retinoic acid receptor-
related orphan receptor 𝛾 (ROR𝛾), the retinoic acid receptor-
related orphan receptor a, the nuclear factor kappa-light-
chain-enhancer of activated B (NF-kB) cells, a zeta inhibitor
(IkBf), and basic leucine zipper transcription factor (Batf)
[9, 10].

Th17 differentiation in mice requires initiation by TGF𝛽
and IL-6, expansion by IL-21, and stabilization by IL-23 [11].
In humans, the combination of TGF𝛽 and IL-21 was sufficient
to induce differentiation from näıve T cells; indeed, TGF𝛽
plus IL-21 or TGF𝛽 plus IL-6 and IL-23 or IL-6 and IL-21
can induce expression of ROR𝛾. IL-1𝛽 plus IL-6 have been
shown to be important in enhancing the amplification ofTh17
cells and the production of IL-23 to maintain the Th17 cell
population [4, 12].

2.1. The IL-17 Family. The IL-17 family comprises cytokines
that participate in inflammatory responses and in the patho-
genesis of many inflammatory disorders. There are six mem-
bers in this family: IL-17A (also called IL-17 or CTLA8),
IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F. Their
receptors form a family that contains five members (IL-
17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE). The IL-17
cytokines show high homology to IL-17A (16% to 50% of
amino acid sequence identity), while the other members of
this family and the IL-17 family receptors show structural
homology among their members [5, 13].

IL-17A was discovered in 1993 and was found to have a
homology to an open reading frame encoded within the Her-
pes virus Saimiri. IL-17A can lead to neutrophil recruitment,
inflammation, and host defense, but pathological production
leads to excessive inflammation and overt tissue damage [5,
14].

The cellular sources and regulation of IL-17F are similar to
those of IL-17A.The genes that encode IL-17A and IL-17F are
located on chromosome 6. IL-17E (or IL-25) shows the lowest
similarity to IL-17A in terms of the amino acid sequence
and also promotes Th2 cell-mediated immune responses,

thereby contributing to allergic disease and defense against
helminthic parasites [10, 15]. IL-17C is produced in epithe-
lial cells and keratinocytes in response to pathogens or
inflammatory cytokines and also promotes IL-17 production.
Moreover, IL-17C induced TNF𝛼 and IL-1𝛽 production in
the human monocytic cell line THP1 and mouse peritoneal
exudate cells [16, 17]. In contrast, IL-17B and IL-17D are
poorly studied and their biological functions are still unclear.
However, forced expression of IL-17D in edited mouse tumor
cells induced rejection by leading to the recruitment of NK
cells [18].

2.2. Biological Functions of Members of the IL-17 Family. The
IL-17 family’s activities also include chronic inflammation
associated with extracellular matrix destruction by activating
the production of metalloproteinases and inhibiting extracel-
lular matrix production in chondrocytes and osteoblasts. It
has been reported that local mesenchymal cells promote the
differentiation of näıve T cells into Th17 cells [19]. In inflam-
matory processes, IL-17 has shown synergistic interactions
with other cytokines, such as TNF𝛼 and IL-1, leading to a
chronic process [19].

Themost thoroughly studiedmembers of the IL-17 family
are IL-17A and IL-17F; two molecules with similar biological
activities that induce the production of proinflammatory
cytokines, chemokines, antimicrobial peptides, and matrix
metalloproteinases by activating innate and tissue resident
cells, such as fibroblasts and epithelial cells. Additionally,
IL-17A and IL-17F promote the recruitment and subsequent
activation of neutrophils [20–22], and it has been observed
that IL-17 sustains, rather than inducing, inflammation, thus
amplifying the inflammatory response induced by a preexist-
ing tissue injury [23]. On the other hand, IL-17A and IL-17F
perform diverse immunoregulatory roles during infection by
extracellular bacteria, fungi, and some types of viral infection
[20, 21]. Interestingly, Maione et al. found evidence that
IL-17A acts as a proaggregant agent by increasing platelet
responses to ADP. They observed that IL-17A does not
itselfcause an intra-arterial occlusive thrombus but could
induce the endothelial features peculiar to a prothrombotic
state, likely related to a downregulation of CD39 expression
and activity in the vascular system [24, 25]. IL-17A also
induces the expression of intercellular cell adhesionmolecule
1 (ICAM-1) in keratinocytes and chondrocytes [21].

IL-17E (IL-25) produces a particularly important activity
on acquired and innate immune responses not only because
it is linked to allergic disease, but also because it plays a
protective role in helminthic parasite infection. After antigen
or pathogen stimulation, IL-17E induces production of Th2
cytokines such as IL-4, IL-5, and IL-13 by NKT,Th2, andTh9
cells. The role of IL-17B, IL-17C, and IL-17D in the immune
system is still unclear, though they share a similar ability
to induce inflammatory mediators. Both IL-17B and IL-17C
induce TNF and IL-1b expression from a monocytic cell line
and cause neutrophil infiltration. IL-17D induces expression
of IL-6, IL-8, and GM-CSF in endothelial cells and inhibits
hematopoietic progenitor colony formation [20, 21].

IL-17C is produced in epithelial cells and keratinocytes
in response to pathogens or inflammatory cytokines and
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promotes IL-17 production. Moreover, IL-17C induced TNF𝛼
and IL-1𝛽 production in the humanmonocytic cell line THP1
andmouse peritoneal exudate cells [16, 17]. In contrast, IL-17B
and IL-17D are poorly studied, so their biological functions
remain unclear. However, forced expression of IL-17D in
edited mouse tumor cells induced rejection by propitiating
recruitment of NK cells [18].

The IL-17 family of cytokines mediates its biological
functions via surface receptors on target cells. The IL-17R
family contains 5 members that share sequence homology
with IL-17RA. All members (IL-17RA, IL-17RB, IL-17RC, IL-
17RD, and IL-17RE) have a fibronectin III-like domain in their
extracellular part and an SEF/IL-17R (SEFIR) domain in their
intracellular region. Functional receptors form heterodimers
with IL-17RA as common subunit. IL-17RA is expressed
constitutively in many cell types and is stimulated by IL-17
to induce production of proinflammatory molecules [13, 15].

In addition to Th17 cells, there are other immune cells
that also produce IL-17, such as 𝛾𝛿 T cells [10, 19, 26], innate
Th17 (iTh17) [27], natural killer (NK) cells, mast cells, and
neutrophils [10, 19].

2.3. IL-17 Signaling. IL-17 upregulates the expression of
proinflammatory chemokines and cytokines through acti-
vation of NF𝜅B, MAPKs, and the C/EBPs cascade. It also
works with TNF𝛼 to induce gene expression and activates
the JAK-PI3K and JAK-STAT pathways. In addition, IL-17A
promotes inflammatory responses through the downregula-
tion of microRNA-23b [5, 28]. In this way, although IL-17
does not initiate an inflammatory reaction while, if injected
in preinflamed tissues, is able to further amplify biochemical
and cellular events characteristic of the early stages of the
inflammatory reaction [23].

Tumor-necrosis factor receptor-associated factor (TR
AF6) is an E3 ubiquitin ligase essential for the activation of
the NF𝜅B and MAPK pathways. Polyubiquitinated TRAF6
activates TGF𝛽-activated kinase 1 (TAK1) with the subse-
quent NF𝜅B activation. However, IL-17RA does not contain
a TRAF6 binding site, indicating the existence of another
adaptor molecule that mediates the association of TRAF6
with IL-17RA [10, 15, 17]. At the C-terminus of the IL-17
receptor family there is a SEFIR domain. The STIR (SEFIR
and TIR) domain superfamily includes TLRs, IL-1Rs, and IL-
17 receptors. Interestingly, the SEFIR domain also interacts
with a cytosolic protein called Act1 (NF𝜅B activator 1).
Act1 is an NF𝜅B and IKK activator and an adapter for the
recruitment of TRAF6. Indeed, Act1 is recruited to the IL-
17 receptor complex through the homotypic interactions of
the SEFIR domains upon IL-17 stimulation [13, 17]. Act1-
deficient cells fail to activate NFkB and MAPKs upon IL-
17A stimulation and thus cannot produce proinflammatory
molecules, such as IL-6 andCXCL1. Since IL-17RA is required
for IL-17F signaling, Act1 have a critical role in IL-17F
signaling [10, 15].

Although the mechanism of activation of Act1 remains
unclear, it is known that it mediates K63 ubiquitination
and the activation of TRAF6. Moreover, IL-17A alone is a
weak NF𝜅B activator but one that can synergize with other

strong cytokines, such as TNF𝛼, to promote and extend
proinflammatory responses [5, 10].

Another component of the IL-17 signaling pathway is
HSP90, which interacts with Act1 to mediate, as a scaffold
protein, IL-17 signaling [5, 29]. Ubiquitin-specific processing
protease 25 (USP25) is a negative regulator of the IL-17R
signal transduction pathway because it restricts the ubiq-
uitination status of TRAF6, thereby attenuating NFkB and
MAPK signal transduction [13].

2.4. Cytokines Involved in Th17 Differentiation

2.4.1. TGF𝛽. TGF𝛽 (transforming growth factor-beta) is
a pleiotropic factor with several different roles in T-cell
development, homeostasis, and tolerance [30].

The role of TGF𝛽 in Th17 development and function has
generated controversy. Recent studies support the existence
of at least two functional subclasses ofTh17 cells distinguished
by their development in the presence or absence of TGF𝛽, and
there are reports thatTh17 cells can produce their own TGF𝛽,
including TGF𝛽1 andTGF𝛽3, whichwould appear to exercise
distinct programming functions [31].

The indispensability of TGF𝛽 in Th17 differentiation
resurfaced later; this time in relation to the mouse, when
it was reported that there may be two pathways of Th17
differentiation: a TGF𝛽-dependent pathway that gives rise
to “nonpathogenic” Th17 cells and a TGF𝛽-independent
pathway that gives rise to “pathogenic” Th17 cells [32]. Näıve
precursors polarized in the presence of IL-6, IL-1𝛽, and IL-23,
but, in the absence of TGF𝛽 signaling, induced a population
of so-called Th17 cells that induced EAE (experimental
autoimmune encephalomyelitis) upon passive transfer into
normalmice. In contrast, näıve cells polarized under identical
conditions but with exogenous TGF𝛽1 and no IL-23 (the
so-called Th17(𝛽) cells) and failed to induce EAE following
transfers, despite expressing considerably higher amounts of
IL-17A [33].

2.4.2. IL-6. IL-6 is a pleiotropic cytokine secreted by the
cells of the innate immune system such as DCs, monocytes,
macrophages, mast cells, B cells, and a subset of activated
T cells, though tumor cells, fibroblasts, endothelial cells,
and keratinocytes also secrete IL-6 [7]. Recent studies have
demonstrated that IL-6 has a very important role in regulat-
ing the balance between IL-17-producingTh17 cells and Treg.
IL-6 (plus TGF𝛽) induces the development ofTh17 cells from
näıve T cells; in contrast, IL-6 inhibits differentiation into
Treg [34].

2.4.3. IL-21. IL-21 is produced by a range of differentiated
CD4+ T-cell subsets and natural killer (NK) T cells [35]. IL-
21 signals through a heterodimeric receptor, which is formed
by a common gamma chain (shared with IL-2, IL-4, IL-7, IL-
9, IL-13, and IL-15 receptors) and an IL-21 specific receptor
(IL-21R) [36, 37]. Since IL-21R is expressed on CD4+, CD8+
T cells, B cells, NK cells, dendritic cells, macrophages, and
keratinocytes [36], it acts on a range of lymphoid lineages and
exerts pleiotropic effects. IL-21 drives differentiation of naı̈ve
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T cells intoTh17 cells. IL-21 is induced by IL-6 andROR𝛾t and
stabilizes and maintains Th17 cells by upregulating its own
expression and that of IL-23R [35, 38].

2.4.4. IL-23. IL-23 is produced by activated dendritic cells
and macrophages in response to microbial stimulation [39].
IL-23 appears to be the critical driver behind Th17 acti-
vation and the subsequent production of IL-17. IL-23 is a
heterodimer of a unique IL-23p19 and shared IL-12/23p40
chains [40].

The signaling pathway of IL-23R has been described
clearly. It involves Janus-associated kinase 2 (Jak2), tyrosine
kinase 2 (Tyk2), and severalmembers of the signal transducer
activator of transcription (STAT) family, including STAT1,
STAT3, STAT4, and STAT5 [41].

In lymphocytes, IL-23 induces a strong phosphorylation
of STAT3 and a relatively weak activation of STAT4, whereas
the reverse is true for IL-12-induced phosphorylation with
respect to STAT4 and STAT3. Phosphorylation of STAT3 is
essential for the development of IL-17-producing T-helper
(Th17) cells, whereas STAT4 is important for increasing IFN𝛾
production and the subsequent differentiation of Th1 cells
[42].

3. Regulatory T Cells and Their Role in Th17
Cell Function

Regulatory T cells (Treg) are a subset of CD4+ lymphocytes
involved in the maintenance of self-tolerance and the mod-
ulation of overall immune responses against infections and
tumor cells by controlling CD4+ effector T cells. Treg secrete
TGF𝛽 and IL-10 and require the specific cytokine TGF𝛽
and the transcription factor FoxP3 for their differentiation.
While Th17 cells have been involved in the promotion of
autoimmunity and Treg cells have been involved in the
control of Th17 cells, the balance Th17/Treg has been judged
important in the control of immunity mediated byTh17 cells
[4]. Furthermore, both T-cell subsets require TGF𝛽, Treg for
the expression of FoxP3, and to induce the differentiation of
Th17, in combination with IL-6 and IL-21. Consequently, in
the proinflammatory environment (mediated by IL-6 or IL-
21), ROR𝛾t expression is upregulated, while FoxP3 expression
is reduced, and vice versa [34, 43].

On the other hand, Singh et al. have reported that
aryl hydrocarbon receptor promotes epigenetic regulation
thereby influencing reciprocal differentiation of Tregs and
Th17 cells [44]; then it could be important in themaintenance
of the Treg/Th17 ratios.

4. Th17 Cells in Autoimmune and
Infectious Diseases

The role ofTh17 cells in autoimmunity was demonstrated first
in mice that were deficient for the p19 chain of the IL-23,
in which the IL-17-producing T cells were significantly lower
than in wild-type mice, highlighting the importance of the
IL-23/Th17 axis in the pathogenicity of these autoimmune
diseases [1]. Since then, the study of the pathogenic role of

Th17 subset cells has focused on autoimmune inflammatory
diseases, such as multiple sclerosis, rheumatoid arthritis, and
psoriasis [45, 46]. The role of Th17 cells in different autoim-
mune, inflammatory, and infectious diseases is described
below.

4.1. Glioma. Glioma is the most common malignant disease
of the brain. Although the brain is believed to be immunolog-
ically privileged, increasing evidence shows that lymphocytes
infiltrate the brain parenchyma during glioma formation
and that the blood-brain barrier (BBB) is compromised
under glioma stress. Few studies of the relationship between
Th17 cells and this disease have been reported; however,
research has shown that the numbers of Th17 cells appear
to be higher than in control subjects. Moreover, Th17-related
cytokines are expressed in glioma tissues, suggesting the role
of these cells in glioma tumorigenesis and progression [47,
48]. Furthermore, the serum levels of IL-17 correlate with the
disease, with age [49], and with the medium conditions of
glioma cells that induce Th17 cell differentiation [47], thus
supporting the role of Th17 cells in glioma.

4.2. Hashimoto’s Thyroiditis. HT has long been epidemiolog-
ically associated with excessive iodine levels. However, the
immunological mechanisms involved in this disease remain
unclear. It has been reported that intrathyroid infiltrating
Th17 cells and serum IL-17 levels increase significantly in
HT patients. Moreover, the administration of moderately
high levels of iodine was found to facilitate the polarization
of murine splenic naı̈ve T cells into Th17 cells, whereas
extremely high levels of iodine favored Th1 polarization and
inhibited Treg development, suggesting that both Th1 and
Th17 cells may be involved in the pathogenesis of HT and that
high levels of iodine may play a critical role in this process
by modulating T-cell differentiation [50]. Additionally, IL-
23 levels were found to be higher in patients with HT than
controls [51, 52], while levels of IL-17A [50, 53, 54] and
frequencies of Th17 cells were also higher in patients than
controls [55, 56].

4.3. Atherosclerosis. Atherosclerosis is a chronic inflamma-
tory disease regulated by T lymphocyte subsets. Th17 cells
have been found to be elevated in patients [57, 58]. In
addition, Th17-related cytokine correlates with the severity
and progression of carotid artery plaques [58–61], and the
Th17/Treg imbalance appears to be associated with plaque
progression [62, 63]. Additionally, IL-17A has been involved
in lipidmetabolism and in the pathogenesis of atherosclerosis
[64].

4.4. Multiple Sclerosis. MS is known as a neurotropic autoim-
mune disease in which a coordinated attack of innate and
adaptive immune cells inflames the central nervous system
(CNS) and interrupts signal transduction by demyelinating
(destruction of the myelin sheath) the nerve fibers. This
inflammatory demyelinating disease of the CNS has a certain
autoimmune background [65]. T-helper cells play a critical
role in disease onset and progression [66].
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Several groups have studied and characterized T cells
subsets and their cytokines in MS. They have reported that
the frequency of Th17 [67, 68] and the levels of Th17 related
cytokines [66, 69] were higher in MS patients compared to
controls. Moreover, a lower Treg/Th17 ratio [65, 68] and a
correlation of the severity of symptoms with the Treg/Th17
ratio [68] were also observed, suggesting their role in disease
severity [65]. Additionally, it has been reported that the
response of T cells to myelin antigen includes production
of IL-17 [70]. Furthermore, the reduction of Th17 cells after
treatment with IFN-𝛽 [66], methylprednisolone [68], anti-
TNF therapy [71], fingolimod [72], and the suppression of the
production of IL-23 by IFN-𝛽 treatment [73], together with
the data described above, support the role ofTh17 cells in this
disease.

4.5. Type 1 Diabetes. DM1 is an autoimmune disease caused
by T-cell-mediated destruction of insulin-producing cells.
Although it has been thought that an imbalance between
Th1 and Th2 is associated with the disease, the role of Th17
cells is under study [74]. As in MS, the Treg/Th17 balance
has been found to be broken in DM1 patients; moreover the
frequencies of TH17 cells seem to be higher in patients than
controls [75].

It the case of type 2 diabetes (T2D), the alteration of the
Th1/Th2/Th17/Treg paradigm may contribute to enhanced
immune activation and inflammation and the subsequent
development and progression of T2D [76]; moreover, glu-
coregulation may contribute to reducing IL-17 in patients
[77].

4.6. Rheumatoid Arthritis. RA is a systemic autoimmune dis-
ease characterized by progressively destructive joint inflam-
mation, destruction of articular cartilage, and bone and
synovial hyperplasia. The chronic inflammation process is
responsible for stimulating destructive mechanisms in the
joint that causes structural damage and lead to functional
disability and deterioration [78].

The contribution of Th17 cells to the development of
chronic arthritis was first reported in mice. It was found
that in vivo neutralization of IFN𝛾 exacerbates Th17 induced
arthritis, and anti-IL-17A treatment delays onset of arthritis
induction byTh17 cells.Thus,Th17 cellsmay participate in the
production of autoantibodies that can induce arthritis [79].

As in other autoimmune inflammatory diseases, TH17
frequencies were found to be increased in patients compared
to controls [80, 81] as were the levels of IL-17 and IL-23
[81, 82]. Also, the notion that levels of Th17 cells could be
reduced by anti-TNF [71], IL-21 [83], and IL-10 [84] has been
reported.

4.7. Spondyloarthropathies. SpAs, now better known as
spondyloarthritides are a diverse group of interrelated
inflammatory arthritides. This group includes not only the
prototypical disease, ankylosing spondylitis (AS), but also
reactive arthritis, psoriatic arthritis, Chron’s disease, undif-
ferentiated SpA, and juvenile-onset spondyloarthritis [85].
The role of the IL-23/IL-17 axis in SpAs pathology has been

reviewed extensively [86]; however, it has been reported that
the serum levels of IL-17 and IL-23 were elevated in SpAs
[87, 88]. Moreover, the circulating Th17 cells appear to be
elevated as well [84, 87].

Another finding was that serum IL-17 and IL-23 levels
in AS [89, 90] and the frequency of Th17 cells [91, 92]
correlate with disease activity. As reported in other autoim-
mune diseases, response to treatment with anti-TNF therapy
significantly reduces the frequency of TH17 cells [87].

4.8. Systemic Lupus Erythematosus. SLE is a systemic autoim-
mune disease of unknown etiology. There is increasing
evidence that a disturbed T-cell homeostasis plays a critical
role in the development of SLE. The main T-cell subsets that
are pivotal for this T-cell balance consist of T-helper cells
and regulatory T cells [93]. It has been suggested that an
imbalance of circulating T-helper cells and an impairment of
regulatory T cells are involved in the pathogenesis of SLE as
has been reported for MS and DM1 [66, 75].

The role of Th17 cells in SLE has been supported by the
higher serum levels of IL-17 [94, 95] and the higher frequency
of circulating Th17 cells [95–97], although no differences
between patients with the active and inactive forms of the
disease has been found [93]. As has been reported for other
diseases, the Treg/Th17 ratio was seen to be reduced in
patients [96, 98].

Also, high levels of Th17 cytokines have been found in
SLE patients [82]. Additionally, cytokine levels and Th17
frequencies correlate with disease activity [99, 100], and the
imbalance between Treg and Th17 cells (Treg/Th17 ratio)
correlates with disease activity as well [101, 102].

4.9. Psoriasis. Psoriasis is a chronic, relapsing, and immune-
mediated inflammatory skin disease [2]. It is characterized
by hyperplasia in the epidermis, infiltration of leukocytes,
including monocytes, dendritic cells and T lymphocytes
into both the dermis and the epidermis, and the dilation
and growth of blood vessels [103]. Psoriasis is now defined
as a Th1/Th17/Th22-based inflammatory disease [104]. The
role of Th17 cells has been supported by the discovery of
elevated frequencies of Th17 cells in patients and the fact
that the Treg/Th17 ratio correlated with the skin lesions
[103]. Moreover, IL-17A, the principal effector cytokine of
Th17 cells, stimulates keratinocytes to produce chemokines,
cytokines, and other proinflammatory mediators, thereby
enabling IL-17A to bridge the innate and adaptive immune
systems to sustain chronic inflammation [105]. Finally, this
has been found to be elevated in patients with psoriasis [106].

Elevated frequencies of Th17 cells have been reported in
psoriatic patients [103, 107]. As in other autoimmunediseases,
the Treg/Th17 cells have been found to be deregulated, and
this ratio correlates with disease activity [103]. Hence, clinical
trials with IL-17 pathway inhibitors may provide a new
therapeutic approach for patients with psoriasis [105, 108].

4.10. Vitiligo. Vitiligo is a common skin disorder, character-
ized by progressive skin depigmentation due to the loss of
cutaneous melanocytes. The exact cause of melanocyte loss
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remains unclear, but a large number of observations have
pointed to the important role of cellular immunity in vitiligo
pathogenesis [109].

Th17 cells have been implicated in skin lesions in vitiligo
[110] because of the discovery of higher levels of serum IL-17
in patients than controls [111, 112]. Th17 cell infiltration and
decreased Tregs have also been reported [113]. Moreover, it
has been found that levels of IL-17 decreased after treatment,
while Foxp3 increased significantly [112], suggesting that the
imbalance between Th17 and Treg could have an important
role in vitiligo lesions.

4.11. Inflammatory Bowel Disease. Inflammatory bowel dis-
ease can be divided into two main forms: Crohn’s disease
(CD) and ulcerative colitis (UC).These are disabling diseases
characterized by a chronic relapsing inflammatory response
to commensal microflora in the gut [114, 115]. Although the
mechanisms involved are still unclear, there is a clear genetic
susceptibility [115]. In addition to the T-helper cell type (Th) 1
andTh2 immune responses, other subsets of T cells, namely,
Th17 and regulatory T (Treg) cells, likely play a role in IBD,
because the IL13/TH17 pathway has been postulated as an
important biomarker of active IBD [17, 116], and the presence
of IBD, but not the genetic load, alters mRNA expression
of IBD-associated Th17/IL-13 genes [115]. Moreover, Th17
and Treg cells have been found in increased amounts in the
peripheral blood of IBD patients [117], reaching levels that
correlate with disease activity [118]. Also, the Treg/TH17 cell
ratio was associated with disease activity in patients with
Crohn’s disease. Hence, together with the Treg/TH17 ratio,
they could be considered as potential prognostic indicators
[119].

4.12. Cardiovascular Diseases. The role of the IL-17 cytokine
family in the pathogenesis of cardiovascular diseases has
been described as one that amplifies both the inflammation
induced by other cytokines in synergistic interactions [120]
and the prothrombotic effects combined with the low FeCl3
concentrations that have been observed [25].

As in other pathologies, Th17 cells contribute to increas-
ing cardiovasculopathies [121], while the Treg/Th17 imbal-
ance has been associated with cardiovascular complications
in uremic patients undergoing hemodialysis [122, 123].

4.13. Human Immunodeficiency Virus (HIV) Infection. The
role ofTh17 cells in the pathogenesis ofHIV infection remains
unclear. Selective depletion of this T-cell subset has been
reported in gut-associated lymphoid tissue (GALT) as well as
in the peripheral blood of HIV-infected individuals [124].

Th17 cells have been found to be associated with HIV
patients in different ways. Studies have shown that Th17 cells
are reduced inHIV patients [125, 126]. Additionally, the levels
ofTh17 cells appear to be higher in long-term nonprogressors
compared to typical progressors [124]. Th17 cells and IL-
17 levels have been shown to have a negative correlation
with HIV plasma viral load [126, 127]. The Treg/Th17 ratio
showed a negative correlation to viral plasma load [128, 129],
although the percentage of Treg cells positively correlated

with viral load before antiretroviral therapy [126]. Moreover,
antiretroviral treatment normalizes the number of Th17 and
the Treg/TH17 ratio in HIV patients [126, 130]. These data
strongly suggest that Th17 cells and the Treg/Th17 balance
could maintain HIV under control [131] and, therefore, could
play a role in the pathogenesis of AIDS.

4.14. Hepatitis C Virus (HCV) Infection. The role of Th17
cells in HCV infection and progression remains unclear. It
has been reported that Ag-specific Th17 cells are induced in
patients infected by the hepatitis C virus (HCV) and that
TGF𝛽 and IL-10, which are induced by the nonstructural viral
protein 4 (NS4), suppressedTh17 responses in HCV-infected
patients [132]. Moreover, higher levels of IL-17 have been
found in patients compared to normal controls, although no
correlation with the viremic state was found [133, 134].

Considering that IL-17 serum levels show correlations
with serum alanine aminotransferase levels, an association of
this cytokine with control of liver injury has been proposed
[134], althoughTh17 cell expansion appears not to be associ-
ated with patients who were cured, who became persistently
infected, or who had circulating levels of IL-17 in cases of
fibrosis [135].

The effect of treatment with pegylated IFN plus ribavirin
appears to be controversial, because of reports indicating that
it does not affect IL-17 levels, and that there are no differences
between responders and nonresponders [133]. Moreover, this
treatment downmodulates the secretion of key Th1 and Th17
proinflammatorymediators and profibrotic growth factors as
early as 12 weeks after treatment initiation [136].

4.15. Hepatitis B Virus (HBV) Infection. The role ofTh17 cells
in HBV infection has been documented by the expression of
IL-23 and IL-23R in biopsied liver tissues fromHBV-infected
patients. Also, IL-17 appears to be indispensable for HBsAg-
stimulated differentiation of näıve CD4(+) T cells into Th17
cells [137]. Thus, Th17 cells have been shown to participate in
the pathogenesis of liver damage associated with the hepatitis
B virus (HBV) [138].

The frequencies of Treg and Th17 cells are reported to
increase in the peripheral blood of HBV patients [139, 140].
Th17 levels [141, 142] and the Treg/TH17 ratio appear to
have a crucial role in the occurrence, development, and
outcome of HBV [142, 143] and could be used as indicators of
inflammation that may predict progression to fibrosis [144].
Hence, Th17 cells can contribute to immune activation and
disease aggravation in patients with chronic HBV infection
[138, 145], because of the correlation ofTh17 cells with serum
alanine aminotransferase levels [139]. However, this does not
appear to occur in pediatric patients [140]. Additionally,Th17
cells and the IL-23/IL-17 axis seem to be involved in the acute
or chronic form of the disease [146].

On the other hand, it was also found that IL-17A
decreased the levels of HBVs antigen (HBsAg) and HBVe
antigen (HBeAg) in culture medium, as well as the levels of
intracellular HBV DNA in infected HepG2.2.15 cells [147],
although treatment with telbivudine does not affect IL-17
levels [148]. In contrast, HBVc-Ag induces the production



International Journal of Inflammation 7

of IL-10, a cytokine involved in the blockage of Th17 cell
activation [149]. Moreover, blockage of the IL-17 receptors
(IL-17R) increased levels of HBsAg and extracellular HBV
DNA in culturemedium, as well as levels of intracellularHBV
DNA [147].

The imbalance in the IL17/Il-13 axis has also been asso-
ciated with responses to HBV vaccination in HCV-infected
individuals [150].

5. Concluding Remarks

The role of Th17 cells in autoimmune diseases has been
reported and supported with some clarity and has been
shown to exhibit similar behaviors in the diseases studied.
The number of diseases influenced by Th17 cells appears to
be increasing. These diseases include those provoked by viral
infections in which the role of Th17 cells remains unclear,
though evidence suggests that they could play an important
role in the control of these diseases.
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[125] Y. Alvarez, M. Tuen, A. Nàdas, and C. E. Hioe, “In vitro
restoration of Th17 response during HIV infection with an
antiretroviral drug and Th17 differentiation cytokines,” AIDS
Research and Human Retroviruses, vol. 28, no. 8, pp. 823–834,
2012.

[126] Y. He, J. Li, Y. Zheng et al., “A randomized case-control study of
dynamic changes in peripheral bloodTh17/Treg cell balance and
interleukin-17 levels in highly active antiretroviral-treated HIV
type 1/AIDS patients,” AIDS Research and Human Retroviruses,
vol. 28, no. 4, pp. 339–345, 2012.

[127] A. Singh, M. Vajpayee, S. A. Ali, K. Mojumdar, N. K. Chauhan,
and R. Singh, “HIV-1 diseases progression associated with loss
of Th17 cells in subtype “C” infection,” Cytokine, vol. 60, no. 1,
pp. 55–63, 2012.

[128] M. F. Chevalier, G. Petitjean, C. Dunyach-Rémy et al., “The
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