
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Edwin Bölke,
Heinrich Heine University of
Düsseldorf, Germany

REVIEWED BY

Michael Maes,
Chulalongkorn University, Thailand
George Anderson,
CRC Scotland & London,
United Kingdom

*CORRESPONDENCE

Dietmar Abendroth
dietmar.abendroth@t-online.de

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 27 July 2022
ACCEPTED 06 September 2022

PUBLISHED 23 September 2022

CITATION

Bizjak DA, Stangl M, Börner N,
Bösch F, Durner J, Drunin G,
Buhl J-L and Abendroth D (2022)
Kynurenine serves as useful
biomarker in acute, Long- and
Post-COVID-19 diagnostics.
Front. Immunol. 13:1004545.
doi: 10.3389/fimmu.2022.1004545

COPYRIGHT

© 2022 Bizjak, Stangl, Börner, Bösch,
Durner, Drunin, Buhl and Abendroth.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 23 September 2022

DOI 10.3389/fimmu.2022.1004545
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Introduction: In patients with SARS-CoV-2, innate immunity is playing a central

role, depicted by hyperinflammation and longer lasting inflammatory response.

Reliable inflammatory markers that cover both acute and long-lasting COVID-

19 monitoring are still lacking. Thus, we investigated one specific inflammatory

marker involved as one key player of the immune system, kynurenine (Kyn), and

its use for diagnosis/detection of the Long-/Post-COVID syndrome in

comparison to currently used markers in both serum and saliva samples.

Material and methods: The study compromised in total 151 inpatients with a

SARS-CoV-2 infection hospitalized between 03/2020 and 09/2021. The group

NC (normal controls) included blood bank donors (n=302, 144f/158m, mean

age 47.1 ± 18.3 years (range 18-75)). Two further groups were generated based

on Group A (n=85, 27f/58m, mean age 63.1 ± 18.3 years (range 19-90), acute

admission to the hospital) and Group B (n=66, 22f/44m, mean age 66.6 ± 17.6

years (range 17-90), admitted either for weaning or for rehabilitation period due

to Long-COVID symptoms/syndrome). Plasma concentrations of Kyn, C-

Reactive Protein (CRP) and interleukin-6 (IL-6) were measured on admission.

In Group B we determined Kyn 4 weeks after the negative PCR-test. In a subset

of patients (n=11) concentrations of Kyn and CRP were measured in sera and

saliva two, three and four months after dismission. We identified 12 patients

with Post-COVID symptoms >20 weeks with still significant elevated

Kyn-levels.

Results:Mean values for NC used as reference were 2.79 ± 0.61 µM, range 1.2-

4.1 µM. On admission, patients showed significantly higher concentrations of

Kyn compared to NC (p-values < 0.001). Kyn significantly correlated with IL-6

peak-values (r=0.411; p-values <0.001) and CRP (r=0.488, p-values<0.001).

Kyn values in Group B (Long-/Post-COVID) showed still significant higher

values (8.77 ± 1.72 µM, range 5.5-16.6 µM), whereas CRP values in Group B

were in the normal range.

Conclusion: Serum and saliva Kyn are reflecting the acute and long-term

pathophysiology of the SARS-CoV-2 disease concerning the innate immune
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004545/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004545/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004545/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1004545&domain=pdf&date_stamp=2022-09-23
mailto:dietmar.abendroth@t-online.de
https://doi.org/10.3389/fimmu.2022.1004545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1004545
https://www.frontiersin.org/journals/immunology


Bizjak et al. 10.3389/fimmu.2022.1004545

Frontiers in Immunology
response and thus may serve a useful biomarker for diagnosis and monitoring

both Long- and Post-COVID syndrome and its therapy.
KEYWORDS

kynurenine reference values, inflammation diagnostics, COVID-19 monitoring, Long-
COVID biomarkers, innate immunity
Introduction

The mutual reaction of host defense against pathogens

generally exhibit an initial tissue injury mediated by various

generated pathogen-associated molecular patterns (PAMPs) and

by any injurious nonpathogenic factors that includes the

generation and appearance of damage-associated molecular

patterns (DAMPs) (1).

There is evidence that in the center of tissue injury, reactive

oxygen species (ROS) play a dominant role and that its origin

(e.g., infectious, toxic, physical, or other injurious events) has

only a minor effect (2). Oral gingival epithelium as well as the

airway epithelium are predisposed as a sentinel system to detect

pathogens and nonpathogenic agents and to initiate a host

innate defense response (3–5).

The innate immune responses and respective involved cell types

play a vital role in the origin of clinical symptoms and severity of

COVID-19 disease. This assumption is in agreement with previous

studies on the SARS-CoV, which is the closest relative to SARS-

CoV-2, and that predominantly infects airway and alveolar

epithelial cells, vascular endothelial cells, and macrophages (6). It

has been demonstrated that SARS-CoV can influence and trigger

various innate recognition and response pathways (6).

The prevailing evidence suggests that patients with severe

COVID-19 seem to have an overreaction of the innate immune

system demonstrating exacerbated levels of inflammation caused

by a so-called “cytokine storm” (6). Although COVID-19 has been

closely examined in the last two years regarding acute and long-

term mental and physiological health consequences, the versatile

mechanisms that underpin COVID-19 are still intensely studied

with regard to possible symptoms and health outcome (6, 7).

Inside the tryptophan metabolism, the kynurenine pathway

(KP) plays a critical role in generating cellular energy in the form of

nicotinamide adenine dinucleotide (NAD+). Especially during an

immune response, energy requirements are substantially increased

and the KP acts a key regulator of the immune system (8). This key

regulator is of utmost importance especially in the line of first

defense in the innate immune activation (9).

Kynurenine is known to signal through the aryl hydrocarbon

receptor (Ahr) with the possibility for modulation of ROS levels

(10). The Ahr promoter region contains several sites for NF-kB

binding, indicating that inflammation is a key factor modulating
02
Ahr expression. Furthermore, kynurenine activation of Ahr

stimulate expression of the enzyme Indoleamine 2,3-

dioxygenase 1 (IDO1), which generates kynurenine by

degrading tryptophan (11). On the one hand, this positive

feedback loop may link inflammation with ROS production,

whereas on the other hand, the antioxidant Nrf2 can be

stimulated by Ahr, and Nrf2 can itself activate Ahr expression.

The balance between pro- and anti-oxidative functions of Ahr

mediated by kynurenine may therefore regulate healthy versus

unhealthy aging in different tissues and organ systems (11).

Kynurenine is metabolized by IDO-1 in the brain. Prolonged

exposure by chemokines due to increased kynurenine levels may

result in long-term brain impairment. Kynurenine metabolites

itself are producing pro-oxidative and pro-inflammatory effects,

resulting in impairment of cognitive function, enhanced

oxidative stress and decreased brain-derived neurotrophic

factor. The place of action is located in the microglia cells,

responsible as innate immune cells (9, 12).

The mechanistic pathways especially in the brain through

which the kynurenines interact with these systems are well

known, and the subsequent inflammation and inflammatory

events induced by e.g., virus-driven diseases can negatively affect

emotion, cognition, pain, metabolic function, and aging (8). In

doing so, abnormal concentrations or a disbalance of kynurenine

metabolites have the potential for increasing the risk of

developing psychiatric disorders (13, 14).

The currently most prominent example of the virus-driven

activation and not successfully downregulated innate immune

response together or alone with a cytokine storm event is the so-

called Long-COVID syndrome in adults, or the PIMS (pediatric

inflammatory multiorgan syndrome) in children (15). These

syndromes include long-term health consequences including

impaired healing in the brain (depression), in the lung

(fibrosis), in the cardiovascular system (loss of heart function,

endothelial reaction) and in the kidney (loss of renal function).

The disease exhibits symptoms like severe pneumonia,

associated to a severe inflammatory reaction including high C-

reactive protein (CRP) and interleukin-6 (IL-6) levels, low

albumin and eosinophils, but high sedimentation rate and

lymphopenia. Hospitalized individuals also have increased

lactate dehydrogenase (LDH), a marker of cellular death, often

associated with altered coagulation (16, 17). With more than
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90% accuracy, high concentrations of high-sensitivity CRP and

LDH as well as a low lymphocyte count can predict mortality of

individual patients more than 10 days in advance (18). Several

meta-analyses also associated IL-6 levels with the severity of

COVID-19 syndrome (19–21).

The Long-COVID syndrome is a longer lasting subclinical

inflammation in different parts of the body yet, leading in some

individuals to chronic manifestations called Post-COVID

syndrome (> 12 weeks), but the diversity of symptoms and

individual disease progression indicates that there is no main

clinical denominator of biomarkers so far (22–24). The duration

and kind of predictive forecasting of the COVID-19 infection by

measuring this sustained subclinical inflammation might thus be

a valuable asset for clinical diagnostics.

This asset might be the aforementioned aromatic amino acid

kynurenine. It has been observed that in some cases, SARS-CoV-

2 elicits a reaction like the cytokine storm syndrome seen in

seps is . During seps is , dendr i t ic ce l l s showing an

“overproduction”of IDO, leading to a powerful counter-

regulatory, anti-inflammatory reaction characterized by

apoptosis of immune effector cell and cellular (especially T

cell) exhaustion. The resulting consequence is often seen by

immunosuppression and increased susceptibility to secondary

infections (25–28). Recently, a meta-analysis showed that the

kynurenine pathway is extremely active in acute COVID-19,

accompanied by reduced tryptophan and elevated kynurenine,

and much more active in severe COVID-19 patients compared

to mild or moderate patients (29).

All these patterns are related to the tryptophan-metabolism

and its central molecule, kynurenine. The ongoing elevation of

the tryptophan metabolism downstream including kynurenine

and kynurenic acid is thus of utmost importance.

The main purpose of this proof-of-concept study was 1) to

examine if kynurenine is able to depict the inflammatory

situation during the acute phase of the disease and 2) if so, if

there will be the theoretically developed prognosis of an ongoing

subclinical inflammatory situation in patients with the Long-/

Post-COVID syndrome.
Material and methods

Study population

The study compromised in total 151 inpatients with a SARS-

CoV-2 infection hospitalized between 03/2020 and 09/2021 in

LMU Munich (Großhadern). The group NC (normal controls)

included blood bank donors (n=302, 144f/158m, mean age 47.1 ±
Frontiers in Immunology 03
18.3 years (range 18-75)). Detailed NC characteristic can be found

in Kaden et al. (2015) and Abendroth et al. (2014) (30, 31).

Two further groups were generated based on acute

admission at the hospital:

Group A (n=85, 27 f/58 m, mean age 63.1 ± 18.3 years (range

19-90), admitted LMU Großhadern) was treated either on the

infection ward (n=67) or the Intensive care Unit (ICU) (n=18),

whereas Group B was admitted either for weaning or for

rehabilitation period due to Long-COVID symptoms/

syndrome (n= 66, 22 f/44 m, mean age 66.6 ± 17.6 years

(range 17-90), admitted Rehabilitation Hospital Ichenhausen).

Plasma concentrations of kynurenine, CRP and interleukin-6

(IL-6) were measured on admission (Table 1).

In Group B kynurenine concentrations were determined 4

weeks after the negative PCR-test. In a subset of patients (n=11)

concentrations of kynurenine and CRP were measured in sera and

saliva 2, 3 and 4 months after dismission in a pilot-like sub study.

The same protocol was used for saliva measurements withdrawn

for PCR-Analysis for detection of COVID-19 antibodies (n=11).

Figure 1 illustrates the different groups with the experimental

determined biomarkers at the respective time points.

As has been shown earlier, there exists a linear correlation

(r2= 0.902) between the measurement of kynurenine in serum

and in saliva (24).
Ethics

The study was released and signed by the ethics committee

of the University of Ulm (4/2011, 312/2015, 19/2020) and ethics

committee of the Ludwigs-Maximilians-University Munich

(CORKUM, associated research project) and performed in

accordance with the current Declaration of Helsinki. Each

patient signed a letter of informed consent for the leave of

blood and saliva samples.
Biosampling

We established a biobank by collecting leftovers of blood

samples from patients suffering from COVID-19 whenever sent

to the central laboratory of our university hospital.

Blood for routine monitoring of the patients was normally

withdrawn every Monday, Wednesday and Friday between 7:00

and 8:00 o’clock a.m. After measurement of routine parameters,

the remaining serum was stored at -30°C until further

measurements. Saliva sampling was performed by using the

Salivette™ tube (Sarstedt, Nümbrecht, Germany).
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Kynurenine, IL-6 and CRP measurement

The method of kynurenine measurement was already

published in detail (30). In short, serum samples were

deproteinized with acetic acid trichloride, followed by

consecutive proton-dominant hydrolysis. The stable metabolite

kynurenine is reacting under the use of 4-dimethylamino-

benzaldehyde (Ehrlich’s reagent) into a yellow product. Said

coloring reagent serves for the detection of primary amino

groups, pyrrole and indole derivatives as well. The colorimetric
Frontiers in Immunology 04
determination of the concentration is performed with

monochromatic light. The standard solution of kynurenine was

prepared by using L-kynurenine sulfate. Equal amounts of sample

were mixed with 100 ml trichloroacetic acid (30%) thoroughly.

Absorption was measured with 492 nm wavelength in a linear

sector from 0.5–100 mM of the concentration of N-

formylkynurenine, proportional to the activity of the enzyme

indoleamine-2,3-dioxygenase. The absorbents of each sample at

492 nm were compared with the absorbents at 650 nm or 690 nm

of the same sample. Then the absorbents of the controls were
TABLE 1 Demographic and biochemical data of group NC, A, B.

Group NC, Normal Controls n = 302 A, Acute COVID-19 n = 85 B, Long-COVID-19 n = 66 p-value

Age (years) 48.3 ± 18.3 63.1 ± 16.5 66.6 ± 17.6 B-C

(Range 18-75) (Range 19-90) (Range 17-90) n.s.

Gender (f/m) 144/158 27/58 22/44

ICU (n/%) n.a. 18/22% 6/9%

Ventilation (days) n.a. 12 (3 – 131 days) Weaning n.a.

Biochemical Parameter

Kynurenine (µM) 2.79 ± 0.61 10.18 ± 8.88 9.01 ± 3.62 NC vs. A/B
p<0.001

A vs. B
p=0.182

CRP (mg/L) < 5 69.2 ± 14.9 Admission:
Month 2: 4.14 ± 2.1
Month 3: 1.88 ± 0.8
> Month 5: 1.28 ± 0.5

n.a.

IL-6 pg/ml (peak) <1.0 58.8 ± 17.4 n.d. n.a.
f

All three groups were comparable concerning age and gender distribution. There was a significant difference concerning kynurenine between the normal controls and patients with COVID-
19 infections or with Long-COVID syndrome. All data are given as mean ± standard deviation if not otherwise stated. The respective range is presented in parentheses. (ICU, intensive care
unit; n.a., not applicable; n.d., not done; n.s., not significant).
FIGURE 1

Overview of the different study populations and the respective experimental biomarkers. Group NC (normal controls) consisted of healthy blood
donors (30, 31) where kynurenine concentrations were measured and taken as reference values for the Sars-CoV-2 infected individuals (Group
A and Group B). ICU = Intensive Care Unit; CRP = C-Reactive Protein; IL-6 = Interleukin 6.
rontiersin.org
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subtracted from the absorbents of each well. By preparing a

standard curve the concentration of kynurenine in each sample

could be determined.

Kynurenine concentration stability of stored samples for NC

and the COVID-groups were observed (31). Thus, a reliable

comparison of reference samples (NC) and the study groups A

and B can be assumed.

IL-6 and CRP were measured with commercial immunoassays

on a COBAS 8000 analyzer™ (Roche Diagnostics,

Rotkreuz, Switzerland).
Statistical analysis

Descriptive data analysis and analysis of variance methods

were used to characterize the data. All p-values are two-sided

and considered to be descriptive. For a formal statement of

descriptive significance, a nominal type I error level of a=0.05
(two-sided) was assumed.

The exact Mann-Whitney U test was performed for

comparison of two groups with not normally distributed

continuous variables. Spearman’s rho (r) was performed to

assess correlations between parameters of tryptophan

metabolism and IL-6.
Frontiers in Immunology 05
If not otherwise stated, all values are given as mean ±

standard deviation. The analyses were performed using Sigma

Plot 14™ from Systat Software Inc. (San Jose, CA, USA).
Results

In this pilot-study, including n=85 patients infected with

COVID-19 (mean age 52.8 ± 30.0 years) and n=302 NC, we first

measured kynurenine in serum and subsequently in

saliva (n=11).
Serum kynurenine, IL-6 and CRP in
group A and B on first admission

On admission, serum kynurenine was significantly elevated

in COVID-19 patients Group A compared to NC (10.81 ± 8.8

µM vs. 2.79 ± 0.61 µM; p<0.001) (Figure 2). Samples in Group A

were taken by starting clinical treatment in the first week.

For better graphical demonstration, we left out two results in

the COVID-19 positive group (43 and 58 µM) with a

hyperinflammatory syndrome.

Kynurenine significantly correlated positively with IL-6 peak-

values (r=0.411; p<0.001) and CRP (r=0.488, p<0.001) (Table 1).
FIGURE 2

Kynurenine in normal controls (n=302) vs. COVID-19 patients in the early acute clinical state (n=85). The difference was significant (p< 0.001).
We left out two results (58 and 43 µM) with an extreme hyperinflammatory syndrome in the COVID-19 positive group A.
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Kynurenine values in Group B (Long-COVID) showed still

significantly higher values (8.77 ± 1.72 µM, range 5.5-24.6 µM,

p<0.001 (Figure 3).
Serum vs saliva kynurenine

Kynurenine was measured not only in serum. In Figure 4 the

measurements of kynurenine of NC and COVID-19 positive

patients (n=11) either measured in serum or saliva were

compared according to the previous publication data of our

group (30, 31). Serum and saliva values in the previously

COVID-19 positive patients were significantly higher

compared to NC (p<0.001).
Serum kynurenine, IL-6 and CRP in
group A and B on follow-up admission

Looking in the follow-up of a starting group of patients

(n=11) with the diagnosis of Long-COVID syndrome, we could

observe the sustained elevated level of kynurenine compared to

NC from month 2 until month 4, the end of the follow up

monitoring period so far. This was not found for CRP
Frontiers in Immunology 06
(Figures 5A, B). We compared 11 patients with positive

infection and patients after COVID-19 positive infection

without signs of a Long-COVID syndrome.

CRP, described in the literature as a good biomarker in

COVID-19 patients (17), was not suitable to identify the Long-

COVID syndrome. CRP at 2 months after positive testing was

near the normal range of >5 mg/L or 5 µg/ml (Figure 5A).

These findings are showing the difference between the Long-

COVID (4-12 weeks) and Post-COVID syndrome (>

12 weeks).

12 patients with Post-COVID symptoms >20 weeks (range

20-42 weeks) with still elevated serum kynurenine-levels (8.73 ±

3.19 µM, range 5.4-16.5 µM) were identified (Figure 6).
Discussion
Long-COVID is a chronic illness with a wide variety of

symptoms, of which many are not explainable using

conventional laboratory tests. There still are existing difficulties

in detecting the illness. Researchers looking more deeply at

Long-COVID patients have found visible dysfunctions

throughout the body (22, 32).
FIGURE 3

Comparison of kynurenine values between normal controls (n=302) and previously positive COVID-19 patients (Group B, n=66) with an existing
Long-COVID syndrome (p<0.001). Patients with the LCS were currently under therapeutic management.
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Although it was shown that the marker CRP might be

helpful during the acute phase of the disease (16, 17), the

long-term value remains questionable. Our data underline the

appropriate use of CRP in the acute phase, while CRP

concentrations in Long-COVID are comparable with

normal controls and thus do not reflect the long-term
Frontiers in Immunology 07
inflammation. This was supported by previous results of

our group in renal transplanted patients, where the

diagnosis of rejection could not be estimated by CRP-

monitoring (30).

In contrast, kynurenine was still increased up to four months

in patients suffering from Long- and Post-COVID compared to
FIGURE 4

Measurement of Kynurenine in serum and in saliva in normal controls (n=302) and in patients with COVID-19 infection (Group B, n=11). Serum
and saliva values in the previously COVID-19 positive patients were significantly higher compared to normal controls (p<0.001).
BA

FIGURE 5

(A) Follow up of C–Reactive Protein and Kynurenine–measurement in patients either cured (n=11) or with a Long-COVID-syndrome (n=11) from
a subset of Group B CRP was in a normal range after month 2 post infection (verified by a positive PCR-Test). (B) Kynurenine was still
significantly increased.
frontiersin.org
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cured COVID-patients without developing Long-/Post-COVID

(subpopulation of Group B) or NC. In addition, the picture of

hyperinflammation with extraordinary high levels of kynurenine

was solely found in COVID-19 patients, especially in those on

the ICU with kynurenine concentrations up to 79.4 µM (data

not shown).

Furthermore, the accumulative evidence of the COVID-19

specific studies published in the last year suggests that SARS-

CoV-2 infection induces a powerful, and apparently uncontrolled

inflammatory response. This inflammation can be assumed to

contribute to the tissue damage already caused by the viral

infection towards the COVID-19 underlying pathology. The

short- and long-term sequalae following recovery of COVID-19

suggests that these syndromes lead to an accelerated state of chronic

subclinical systemic inflammation. Thus, a reliable immunological

marker to support prognosis in the acute and long-term phase of

the COVID-19 disease and which reflects the current inflammatory

status would be a valuable asset.

Studies estimate that around 10-30% of people infected with

SARS-CoV-2 may develop long-term symptoms. Four different

risk factors were identified for a more severe development: a) the

presence of having Type 2 diabetes, b) reactivation of Epstein-

Barr virus (EBV) c) presence of certain autoantibodies and d)

high levels of viral RNA early during an infection (16, 24).
Frontiers in Immunology 08
The interdependence of virus infection with kynurenine and

the activation of the kynurenine pathway in SARS-CoV-2

positive patients has been examined by fellow working groups.

Lawler et al. evaluated indicators of the tryptophan metabolism

by quantitative metabolic phenotyping and found that especially

the neurotoxic metabolites kynurenine, quinolinic acid and 3-

hydroxykynurenine were increased in ten SARS-CoV-2 positive

subjects (33). This finding was confirmed by the metabolomic

study of Thomas et al., who observed a profound alteration of

the kynurenine pathway in patients with SARS-CoV-2 infection

(34). In their study population of 33 SARS-CoV-2 positive

subjects, a significant decrease of tryptophan with concomitant

increases of kynurenine, kynurenic acid and picolinic acid

was observed.

Furthermore, the association between the disease outcome

and the plasma levels of kynurenine pathway metabolites

demonstrates that indicators of tryptophan metabolism -

especially but not limited to kynurenine - may have the

potential as prognostic biomarkers in individuals with SARS-

CoV-2 infection. Kynurenine levels of patients compromised by

virus-infections (Cytomegalovirus vs. COVID-19) are

comparable, but much more pronounced in COVID-19 (30).

In addition, we already showed that kynurenine is elevated in

patients suffering from overtraining symptom and associated
FIGURE 6

Kynurenine (Serum) in the 3rd month after positive PCR-testing: either cured or with a Long-COVID syndrome for 3 months or Post-COVID
syndrome more than 5 months in a subset of Group B Kynurenine is still significantly increased, whereas the values of the cured patients are in a
normal range.
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chronic fatigue (35), which is also a common side effect of Long-

and Post Covid, compared to healthy individuals.

Post-COVID patients appear to have a disrupted immune

system to Long-COVID patients who fully recover. One reason

is that the body is still fighting remnants of SARS-CoV-2. Other

groups found that the virus spreads widely during an initial

infection, while SARS-CoV-2 specific genetic remnants can

remain in tissues for many months (i.a., in the intestines and

lymph nodes) (36). A further possibility is that the initial viral

infection induces chronic inflammatory processes, possibly by

reactivating other viruses in the patient’s body that are normally

dormant. Most individuals are infected during their childhood

and adolescence, and its reactivation might help predict whether

a person will develop Long-COVID.

Beside CRP, we found correlations between kynurenine and

peak IL-6 values in the acute infection phase. Long-term

assessments are still undergoing, but recent studies point to a

link between Long-COVID and elevated IL-6 concentrations

(37). Hence, the simultaneous determination of EBV, IL-6 and

kynurenine may therefore complement each other in a “Long-

COVID-Panel” for the clinical assessment and monitoring, as all

three can reliably be measured non-invasive in saliva (38), and

might provide even higher prognosis accuracy.

Thus, our results are demonstrating the relevance concerning

diagnosis and monitoring of a Long- and Post-COVID syndrome

and PIMS in children and the potential for other virus induced

inflammation monitoring. Furthermore, recent data indicates that

the maintenance of gut dysbiosis and increased gut permeability,

evident in acute COVID patients, may underpin Long-COVID

(39). Given that alterations in gut dysbiosis/permeability impact on

systemic mitochondrial function, including in immune and glial

cells (40) as well as increasing the pro-inflammatory cytokines

driving IDO and the conversion of tryptophan to kynurenine, the

role of gut dysbiosis/permeability interactions with kynurenine,

serotonin and melatonin may be important to examine. It should

also be noted that the kynurenine activation of the AhR will actively

suppress natural killer cells, and therefore the capacity of the body

to detect and eliminate virus-infected cells as well as cancer

cells (41).

Above that, our pilot experiment of determining kynurenine

in serum and subsequently in saliva demonstrates the additional

usefulness of clinical kynurenine monitoring. The non-invasive

kynurenine measurement in saliva is a safe and fast approach of

assessing the disease status of COVID-19 patients that is not

biased by blood-thinning medications or other therapy targeting

the cardiovascular or blood system.

Taken together, our data supports the following possible theory

behind the Long-COVID syndrome: the longer lasting activation of

the innate immunity, triggered additionally by genetic material of

the virus in tissue, induce DAMP-like inflammatory reactions,

which may end up in a subclinical chronic inflammation. This

subclinical chronic inflammation could be detected by measuring
Frontiers in Immunology 09
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which could be easy monitored.
Strengths and limitations

Nevertheless, some limitations of this study must be

considered. Due to the retrospective study design, only the

routinely measured parameters were available for statistical

analysis. Furthermore, kynurenine concentrations in saliva and

serum of Long- and Post-COVID patients were only determined

in a limited subsample of the whole cohort, which limits the

statistical effect size.

A strength of the study is that none of the patients in Group

A or B was under hemodialysis. Therefore, an influence on the

kynurenine level by this treatment is unlikely. Above that, this

pilot study was partly designed as a “proof-of-concept” study to

show the prognostic value of kynurenine monitoring. Although

the preliminary results are promising, higher participant

numbers are needed for still higher validity and reliability of

the presented data.

Another source of bias may be the parenteral substitution of

amino acids in ICU patients. We do not have information about

the exact nutritional program of the included ICU patients.

Hence, we cannot rule out an influence on the measurements of

the tryptophan metabolites, although the effect might be

supposedly weak (42). Considering a normal diet, the daily

uptake is nearly five times higher than the need. Lack of

supply for tryptophan is only existent in heavenly starving

people and not in the western hemisphere, so an influence on

the kynurenine level is again unlikely. Additionally there are a

few more mechanisms regulating the tryptophan pathway (43)

which need to be considered in interpreting the observed results.
Conclusion and future perspectives

Kynurenine can be regarded as a useful biomarker in

detection of the inflammatory and hyperinflammatory character

of the SARS-CoV-2 disease in the acute as well as the long-term

progression. Furthermore, kynurenine is able to detect the chronic

subclinical systemic inflammation typical for the Long-COVID-

and more pronounced for Post-COVID syndrome.

In addition, we could demonstrate in a sub study with pilot

character that in a subpopulation of previously COVID-19

positive patients, kynurenine could be the first time measured

additionally in saliva and serum with comparable results. We are

working on a test (ELISA as well as a LFA-format) to translate

this biomarker testing in a new format either concerning the

matrix (saliva) and the technique. Measurements in saliva opens

the opportunity for self-monitoring of the patients and

noninvasive therapy control.
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Given the wider alterations arising from the conversion of

tryptophan to kynurenine, including suppressed levels of

serotonergic and melatonergic pathway activation (44), it will be

important to determine the relevance of such coordinated changes

together with kynurenine monitoring in acute, Long- and Post-

COVID. Further pathway studies including the different sides of

kynurenine pathways (hepatocytes, muscle cells, gut lumen) may

shed additional light on the involvement of kynurinen and its

metabolites in virus driven disease like COVID-19 and assist in

clinical monitoring and disease outcome. Investigations on such

processes will allow for better integration of the role of raised

kynurenine levels in both Acute and Long-COVID.
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