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Bacteriophages offer interesting alternatives to antibodies for the specific capture and detection of pathogenic bacteria
onto biosensing surfaces. Procedures for the optimal chemical immobilization of lytic bacteriophages onto surfaces are
presented. More specifically, the removal of lysate contaminants from bacteriophage suspensions by size exclusion
chromatography significantly increases the resultant planar surface density of immobilized bacteriophages. E. coli T4 and
Salmonella enterica serovar Typhimurium P22 phage systems seem to undergo highly heterogeneous adsorption to the
surface, possibly explaining the observed phage clustering at higher surface densities. The T4 phage and its E. coli host
were initially employed as a model system where we discovered an optimal planar surface density of phages for best
bacterial capture: 18.9 ± 0.8 phages/mm2 capturing 18.0 ± 0.3 bacteria/100 mm2. Phage surface clustering ultimately limits
the T4 phage-immobilized surface’s ability to specifically capture its host bacteria. Nevertheless, this is to our knowledge
the largest surface capture density of E. coli reported using intact T4 bacteriophages. Two additional purified
bacteriophage systems (P22 and Campylobacter jejuni phage NCTC 12673) were then similarly studied for their ability to
capture their corresponding host bacteria (Salmonella enterica serovar Typhimurium and Campylobacter jejuni
respectively) on a surface.

Introduction

Food-borne infectious diseases are a major global health concern.
Enteric diseases are the second leading cause of child death
worldwide killing nearly 1.7 million children every year.1

According to the World Health Organization (WHO), the
bacteria: Campylobacter, Salmonella and E. coli O157:H7 are the
three most prominent disease-causing food-borne contaminants.2

The development of a quick, low-cost, easy to use, portable food-
testing device would be transformative in the establishment of
adequate food safety programs throughout the developing world—
diminishing the reliance on costly laboratory infrastructure.

Bacteria are routinely detected and identified by microscopy,
colony-forming assay, PCR3 and ELISA.4 More recently bacter-
iophages have been used in a phage amplification assay5 and in
fluorescence microscopy with labeled phages.6 These methods
however are time-consuming, labor-intensive, and require
specialized laboratory skills. There are rapid biosensor platforms
being developed for microcantilever, surface plasmon resonance,
quartz crystal microbalance and impedometric-based detection.7

However, these systems are dependent on the capture of the
analyte on an interface.

Bacteriophages have several advantages over antibodies that are
conventionally used as probes for bacterial detection.
Bacteriophages are stable macromolecular assemblies that are
relatively insensitive to temperature, pH, and ionic strength
compared with antibodies. In fact, many phages can maintain
their ability to infect for decades.8 They are also easy to produce
by simple infection of their host bacteria whereas antibody
production (monoclonal and polyclonal) is expensive and
complicated.9

Bacteriophages initiate infection of their hosts by adsorption
and then molecular recognition of the bacterial cell surface. The
phage tails that bind to host cell surface polysaccharides or
proteins mediate the recognition.10,11 Phage recognition of its host
is commonly specific enough to differentiate between strains of
the same species and this unique recognition makes bacterio-
phages an excellent choice as probes for selective detection of their
host pathogen. Furthermore, bacteriophages are considered the
most widely distributed biological entity in the biosphere, with an
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estimated population density of ~10 million/cm3 in any
environmental niche where bacteria reside.12 We believe that this
incredible biodiversity is a major strength of the intact phage
approach.

Reporter bacteriophages are unique systems that have been
developed for detection of bacteria exploiting the specific
recognition of these viruses. A reporter bacteriophage carries a
reporter gene that is delivered into the host bacteria upon
infection and is expressed by the bacterial molecular machinery
enabling their identification. Bacteriophages by themselves are
incapable of expressing the gene and do not show signal until
the gene is delivered into the host and thus a positive expression
of the gene is a direct indicative of the presence of the host
bacterium. Several reporter phages such as luciferase reporter
phages (lux13 and luc14), ice nucleation reporter phages,15 fluo-
rescent dye labeled phages,16 lacZ reporter phages17 etc have
been used for target organisms including Salmonella,13 E. coli,16

Listeria18 and Mycobacterium.14 Hagens et al. give a detailed
account of use of reporter phages for the detection of food born
pathogens19 while Smartt et al. describe the general application of
this technology in a recent review.20 However, use of biosensors
for bacterial detection has gained tremendous popularity for
improved detection limits and possibility of developing point of
care devices for fast and accurate assessment. Improving the
strategy for bacteriophage immobilization on a biosensor platform
has therefore become a field of active research in the recent years.

All previous literature discussing surface-immobilized bacter-
iophages for the capture of bacteria use partially-purified phage
suspensions.21-24 Propagated phages and the resultant lysate are
full of contaminants derived from the bacterial host, such as
lipopolysaccharides (endotoxin), peptidoglycan fragments, flagella
and proteins. These previous studies do describe some preliminary
purification steps from the crude lysate. Bacteriophage purifica-
tion and concentration by CsCl gradient, PEG precipitation,
ultrafiltration, and ultracentrifugation are the most common
methods. However, these methods are either not efficient enough
to remove most contaminants from the preparation after one
purification, are time-consuming or produce a low yield. Recent
advances in bacteriophage purification are chromatographic
methods. Ion exchange chromatofocusing is possible, but would
requires determination of the phage pI and stability of the phage
through a pH range for each phage system under study.25

Sephacryl S-500 size exclusion chromatography (SEC) has also
been demonstrated,26 but most phages would be larger than its
exclusion limit and would elute in the void volume with other
large contaminants.

SEC by Sephacryl S-1000 proves to be an excellent, simple, and
versatile method for purification of entities such as bacteriophages
, 400 nm in diameter27—which constitute a very large set of the
known range of phage diversity. Concentrated phage preparations
can easily be loaded onto the column and purified phage eluent
collected automatically as is typically done by most FPLC systems.
The separation is non-destructive and can occur under mild
conditions (pH 7, room temperature, PBS eluent).

Previous work with unpurified T4 suspensions has shown that
the use of covalent bonding in surface attachment gives a density

of 18 ± 0.15 phages/mm2.24 We report here a substantial increase
of phage surface density when chromatographically purified
suspensions are rather used, resulting in an improved surface
coverage for the purpose for capturing the host pathogen. This has
in turn resulted in a marked improvement of E. coli capture
density. Phage surface clustering ultimately limits the T4 phage-
immobilized surface’s ability to specifically capture its host
bacteria. Nevertheless, this is to our knowledge the largest surface
capture density of E. coli reported using intact T4 bacteriophages.
We extended this study to two other phage suspensions (P22 and
NCTC 12673), which also show significant improvement in
phage surface density.

Most importantly, such improvement of phage binding allowed
a rigorous study of the surface attachment isotherm. Our analysis
reveals that phage attachment to the surface does not obey the
idealized Langmuir isotherm, but rather fits closest to the Brouers-
Sotolongo isotherm,28 suggesting that a highly heterogeneous
surface exists. We assert that phages initially attaching to the
surface could be providing lower-energy sites for additional phage
attachment, thus explaining the extensive surface aggregation, or
clustering of phages, observed at higher phage titers. Finally, we
have also applied these improvements to demonstrate the real-
time capture of E. coli using surface plasmon resonance (SPR)
with a T4-immobilized surface.

Results and Discussion

Purification of bacteriophages by size exclusion chromato-
graphy. This study was initially prompted by the observation of
large quantities of Salmonella flagella fragments in ultracentrifuga-
tion-purified P22 phage preparations (Fig. 1A). It was quickly
observed that the presence of these fragments on the capture
surface severely interfered with the capture of the host Salmonella
by the immobilized phage. Similar flagella fragments can also be
seen by AFM in other work on P22-immobilized surfaces.22 Thus,
there was a need for an alternative purification method to remove
these bacterial contaminants after phage propagation. We used
size exclusion chromatography to further purify the ultracentri-
fuged phage preparation. In size exclusion chromatography
(SEC), the parameter governing the retention of a solute is its
hydrodynamic volume or Stokes radius.29 The flagella fragments
are expected to have a much longer Stokes radius and were
therefore likely to elute first, as was observed by the first peak in
the P22 chromatogram (Fig. 1B).

The first run for a new phage sample was done on the XK 16/70
column, loading a 1 mL sample of ultracentrifuged phage
preparation. Of the resultant chromatogram, each major fraction
was diluted by 1024 and 1027 and then plaque assayed to identify
the phage peak. The phage peak is the first peak in the T4 (Fig. 1C)
and NCTC 12673 (Fig. 1D) chromatograms, while it is the second
peak in the P22 chromatogram. The presence of other peaks
confirms that other contaminating proteins exist in the samples.

Phage purification was scaled up to a 12 mL sample delivery on
the XK 26/70 column; the sample volume to column volume
ratio was correspondingly scaled up from 0.83% to 3.77%. With
the increase in sample proportion, the column height equivalent
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of theoretical plate (HETP) reduced for P22 and NCTC 12673,
but increased for the T4 samples. The purification of a 12 mL
sample of phage lysate could be achieved successfully in 45 min,
however the entire experiment including column equilibration,
sample loading, elution and column washing could be performed
in less than 3 h.

CsCl gradient ultracentrifugation has been the most popular
method of phage lysate purification for removal of bacterial protein
contaminants. Gradient ultracentrifugation as a stand-alone
technique for purification however does not result in complete
removal of the contaminant protein despite repeated cycles.30 It has
been successfully coupled with PEG precipitation to achieve better
purification but is still time consuming (several hours) and
laborious since it involves PEG precipitation, several rounds of
ultra-high centrifugation followed by ultrafiltration and subsequent

removal of CsCl from the purified phage sample.31 Comparatively,
our method is much faster than CsCl gradient ultracentrifugation
and achieve the purification of 12 mL of phage lysate in less than 3
h considering the column equilibration time, sample loading and
elution time and column washing time.

Covalent attachment of bacteriophages to reactive surfaces.
The phage surface density improves significantly to 54 ± 7 phages/mm2

using Sephacryl S-1000 purified T4 bacteriophages, a 9-fold
improvement over ultracentifugation-purified T4 phages. Similarly
with purified P22, phage density improves to 199 ± 2 phages/mm2,
a 25-fold improvement over unpurified P22 phages (Fig. 2).

The use of purified phages for covalent attachment is allowing
us to approach a jamming (maximum) surface coverage (Fig. 3A
and B). The jamming coverage is the steric limit to further
adsorption, at a specific surface attachment reaction temperature.

Figure 1. (A) Hair-like contaminating flagella fragments are commonly seen on unpurified P22-immobilized surfaces. Size exclusion chromatograms of
(B) P22, (C) T4 and (D) NCTC 12673 phage preparation run on Sephacryl S-1000 solid support. Plaque assay results (1024 and 1027 for T4 and P22; 1022

and 1025 for NCTC) are shown for each collected fraction; “void” results are multiple overlapping plaques that are uncountable, creating a large void in
the bacteria overlay.
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To the best of our knowledge, this has never been demonstrated
before with tailed bacteriophages. The purified T4 samples show a
jamming surface coverage of 0.29, while purified P22 show a
jamming coverage of 0.13 at 40°C. We could not observe jamming
surface coverage for NCTC 12673 due to its low sample titer.

Figure 3C shows that the purified phage suspensions exhibit
higher surface densities. There should be diffusion-controlled
transport to the substrate surface within a thin layer (known as a
boundary layer) over the reactive surface.32 Assuming the
contaminating proteins and phage are spherical particles, the
smaller contaminating proteins should diffuse faster through this
layer as governed by the Einstein-Stokes equation. They would
thus out-compete the bacteriophages in adsorbing to and reacting
on the surface. Following Adamczyk et. al’s studies of diffusion-
controlled irreversible adsorption of micron-sized latex particles to
mica surfaces,33 we attempted to approach diffusion-controlled
transport to our Au-DTSP surfaces, minimizing the role of
convection or external force. We also observe differences between
the three bacteriophage species in attachment efficiency to the Au-
DTSP surface which is probably due to the difference in phage
surface amino acid composition (varying number of displayed
amino groups).

Our SPR study reveals the online surface attachment kinetics
for purified bacteriophages (Fig. 3D). Total phage attachment to
the surface approaches equilibrium at around 2200 sec for T4
with a bulk suspension concentration of ~1 � 1011 pfu/mL. After
an ethanolamine blocking step and PBS rinses, ~65 SPR pixels of
phage washed off the surface, with 53 pixels remaining. It is the
remaining phages that are likely to be primarily covalently
attached to the surface, while those that washed off were only
physically adsorbed.

Phage surface attachment model and clustering of bacter-
iophages on planar surfaces. Purified bacteriophage suspensions

allow an opportunity to study their surface attachment more
rigorously. In Figure 3A and B the data are empirically fit to
adsorption isotherms by a nonlinear fitting procedure. Covalent
attachment of purified phages to the surface does not seem to
follow the idealized Langmuir adsorption isotherm, which
assumes that all available adsorption sites have equivalent sorption
energies. The empirical Freundlich equation is based on sorption
onto a heterogeneous surface.32 However, in our data where a
saturation regime is clearly observed, the Freundlich isotherm and
its surface heterogeneity assumption will no longer be appropri-
ate.34 The Brouers-Sotolongo isotherm (BSI) (a deformed Weibull
exponential isotherm) has been employed in previous studies to
analyze sorption processes on highly heterogeneous surfaces.28,34

It was observed that the BSI empirically best fits to our data
as well.

Nevertheless, a limitation with this adsorption isotherm fitting
analysis is that it assumes that only an adsorption process occurs and
that all the adsorbed phages remain on the surface prior to
characterization. We know that this is not true as indicated by our
SPR real-time phage immobilization study (Fig. 3D). The SPR
analysis shows that at the end of the phage immobilization step, the
substrate surface is populated by covalently attached and adsorbed
phages. Therefore we do not account for the covalent attachment
process in our understanding of phage surface attachment in
Figure 3A and B.

Thus, a two-step phage surface attachment model was derived
(Fig. 4A). Based on SPR online binding plots at several T4 phage
concentrations, we approach a limit in the phage attachment step
where d(Pa + Pcov)/dt ≈ 0. From this assumption, we can derive
phage surface attachment models based on Langmuir-type
adsorption (Equ. 1):
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where Pcov is SPR pixels corresponding to covalently bonded
phages (as illustrated on an SPR phage binding plot, Fig. 3D), Pa
is SPR pixels corresponding to adsorbed phages, that are removed
by washing (as illustrated on an SPR phage binding plot,
Fig. 3D), Atot is the total surface area of the SPR chip accessible
for phage binding, Aph is the estimate of the planar surface area of
surface attached phages, determined by SEM images, KL is the
Langmuir adsorption constant, [phage] is phage titer in
suspension, β is Aph error term and ε is overall error term.

The equation (Equ. 2) for BSI-type adsorption similarly can be
given as:
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where θmax is the maximum surface coverage (can be empirically
seen on θ vs. [phage] plots, Fig. 3A and B), KBSI is the Brouers-
Sotolongo adsorption constant and a is a constant defined in the
derivation of the Brouers-Sotolongo adsorption isotherm28 that is
a “measure of the average sorption energy and width of the
sorption energy distribution”.

Figure 2. Covalent attachment of unpure and purified bacteriophages
on planar Au-DTSP surface: (A) unpure T4: 5.8 ± 0.7 phages/mm2; (B) pure
T4: 54 ± 7 phages/mm2; (C) unpure P22: 8.2 ± 0.1 phages/mm2; (D) pure
P22: 199 ± 2 phages/mm2.
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Our SPR data for the surface attachment of T4 phage fits
somewhat to the Langmuir-derived model (Fig. 4B), but it fits
best to the BSI-derived model (Fig. 4C). This model also has a
lower Akaike Information Criterion (AIC) and thus its better fit is
not due to excessive free parameters or overfitting.35 The Brouers-
Sotolongo isotherm is derived from the notion that there is a
Pareto distribution of sorption energies on the surface. Also, a is a
measure of the average sorption energy and width of the sorption
energy distribution28; both decrease when a increases.

For the T4 system, the a derived from fitting to the surface
attachment model (2.75) and that derived from the θ vs. [phage]
curve (2.68) are relatively close. Therefore fitting to θ vs. [phage]

data may be a reasonable representation of surface attachment
behavior for deriving a. In the P22 system the a derived from a θ
vs. [phage] curve is much lower (0.80). The significant difference
in a between the two phage systems suggest that it is the phages
themselves that are perhaps involved in imparting this surface
heterogeneity. Therefore, we suggest that initial attachment of
phages is perhaps providing lower energy sites for subsequent
adsorption.

In fact it follows that SEM micrographs show significant phage
surface clustering (Fig. 4D–F), particularly when approaching the
jamming coverage. In the case of T4 phages, one can clearly observe
phage tails buried within clusters (Fig. 4F), which may render them

Figure 3. θ vs. [phage] curves for two phage systems, (A) T4 and (B) P22. θ is the fraction of total area of adsorbed analyte over the total surface area,
called surface coverage. Langmuir: T4, R2 = 0.42; P22, R2 = 0.15. Freundlich: T4, R2 = 0.81; P22, R2 = 0.87. Brouers-Sotolongo: T4, R2 = 0.99, θmax = 0.29,
K = 4.96 � 10215, a = 2.68; P22, R2 = 0.99, θmax = 0.13, K = 5.26 � 1029, a = 0.80. (C) Diffusion-controlled transport of bacteriophages to Au-DTSP planar
surface, using low bulk concentration of phage to prevent phage clustering and steric hindrance to attachment. Pure/unpure ratios: T4W = 2.1x;
P22 = 1.6x; CP1 = 3.0x. (D) Surface plasmon resonance plot of purified T4 immobilization to planar Au surface treated with reactive DTSP self-assembled
monolayer.
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surface inaccessible to specifically capture their bacterial hosts. T4
starts to noticeably form surface clusters beyond 2 � 1011 pfu/mL
bulk concentration (phage surface density of 23.7 ± 0.1 phages/mm2).
The same observation was made for P22 phage immobilization
beyond bulk concentration of 4.6x1010 pfu/mL (phage surface
density of 33.6 ± 0.2 phages/mm2). The smaller a (larger average
sorption energy) for P22 may also explain why we observe more
favorable clustering with this phage. We did not observe significant
phage clustering with NCTC 12673 due to the low sample titers
obtained for these phages. Elsewhere, filamentous phage “bund-
ling” has also been reported.36

Further work on mitigating phage surface clustering could
involve varying the ionic strength to dampen any possible
electrostatic interactions between phages. Surface patterning
approaches37 to guide phage attachment should also be explored.

Strain-specific bacterial capture by bacteriophage-coated
surfaces. The capture of bacteria by bacteriophage-immobilized
surfaces is highly strain-specific as has been reported previously.24

In that work, the control non-host strains of E. coli (6M1N1,

NP10 and NP30) do not show significant binding to the T4
phage-immobilized surface. The SEM images in Figure 5A–C
shows the successful specific capture of the three host bacterial
pathogens (E. coli K12, C. jejuni 11168H and S. Typhimurium
(ATCC 19585)) on the corresponding phage-immobilized
surfaces (T4, NCTC 12673 and P22 respectively).

Intuitively one might expect that maximizing phage surface
density (approaching the jamming coverage) should correspond to
maximal specific bacterial binding to the surface. However, we show
that this is not true as is indicated from the bacterial capture density
analysis in Figure 5D. Instead, we determined a near-optimal phage
surface density for best bacterial capture for the model T4 system.
We observed that 18.9 ± 0.8 phages/mm2 phage surface density gives
the best host bacterial capture density (18.0 ± 0.3 bacteria/100
mm2). To the best of our knowledge, this is the largest surface
capture density of E. coli reported using intact T4 bacteriophages.
The host bacterial capture density drops off above this optimal
phage surface density. This is likely due to increasing phage surface
clustering that is causing some tails to become inaccessible, thus

Figure 4. (A) Schematic of theoretical phage surface attachment mechanism and rate equations (assuming Langmuir-type adsorption). θ is the surface
coverage of the phage; φ is the fraction of reactive surface sites hydrolyzed. (B) Fit to Langmuir-derived model; R2 = 0.89, AIC = 69.1, KL = 0.019, ε = 118.
(C) Fit to BSI-derived model: R2 = 0.98, AIC = 67.6, θmax = 2.69, KBSI = 1.04 � 10230, a = 2.75. Observed phage surface clustering: (D) T4 and (E) P22
phage-immobilized surfaces; (F) a T4 surface at 50k magnification exhibiting tails buried within clusters.
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decreasing the effective molecular recognition probe density on the
surface.

Similar behavior was observed for the P22 system, with a near-
optimal phage surface density of 10 ± 1 phages/mm2 capturing
4.1 ± 0.1 bacteria/100 mm2; although Salmonella counting was
difficult due to their autoagglutination or clumping. For C. jejuni,
the NCTC 12673 phage sample titer we could produce was too
low (108 pfu/mL), making it exceedingly difficult to generate a
relevant range of phage surface densities.

But, at similar phage surface densities, the three different
phage-immobilized surfaces were compared for their bacterial
capture efficiency (Table 1). We determine that both P22 and
NCTC 12673 surfaces have larger capture efficiencies than T4, at
this relatively low phage surface density where phage clustering is
not observed.

Finally, SPR was employed to detect real-time E. coli bacterial
binding to a T4 phage-immobilized surface (Fig. 5E). 107 and 108

cfu/ml concentration of the host E. coli K12 strain was employed to
illustrate the bacterial capture while 109 cfu/ml non-host 6M1N1,
NP10 and NP30 were used as controls that show negligible bacterial
capture on the surface (data not shown). The host bacterial capture

shows a distinct concentration dependent SPR intensity change that
has been demonstrated by us previously.38

Building a generalized scheme to uncover other bacterio-
phages suitable for specific capture of any bacteria of interest. In
this work, we have evaluated the ability of three bacteriophages to
specifically capture their corresponding bacterial pathogens onto a
surface. From our experience, we realize that a basic screening
process can be elucidated (Fig. 6) that can be employed to
evaluate a set of candidate bacteriophages against a bacterial
pathogen of interest. First, each candidate phage should be
amplified or concentrated to a titer of ~10^12 pfu/mL. The phage

Figure 5. Specific capture of (A) E. coli K12, (B) C. jejuni 11168H and (C) Salmonella Typhimurium (ATCC 19585). (D) E. coli K12 capture density vs. T4
phage surface density plot. Bacterial capture density peaks at ~19 phages/mm2. (E) Real-time and rapid surface plasmon resonance detection of 107 and
108 cfu/mL E. coli K12 captured by the T4 phage-immobilized surface.

Table 1. Comparative bacterial capture efficiencies

Phage

Phage Surface
Density

(phage/mm2)

Bacterial Capture Efficiency
(number of surface-

immobilized phages per
captured bacteria)

x more
efficient
than T4

T4 3.65 1887 1

P22 1.15 41 46

NCTC 12673 1.37 3 612
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suspension should then be purified by size exclusion chromato-
graphy to remove contaminating proteins. For each phage system,
the experiment should be designed to test the specific bacterial
capture density across a range of phage surface densities (Fig. 5D).
It is possible that one candidate phage may demonstrate a superior
absolute host bacterial capture density on the surface, and a
significantly better bacterial capture efficiency. This phage,
selected through this screening process, can then be exploited
for applications such as developing surface-based bacterial
biosensor.

Materials and Methods

Materials. Dithiobis(succinimidyl propionate) (DTSP), glutar-
aldehyde, cysteamine and bovine serum albumin (BSA) were
purchased from Sigma-Aldrich (D3669, G7651, M9768 and
A7906 respectively). Tween-20 was obtained from MP
Biomedicals, Inc. (11TWEEN201).

SPR gold chips were obtained from GWC Technologies and
were washed successively in acetone, isopropanol, ethanol and

water for 5 min each before use. The gold substrates were
fabricated using piranha cleaned 3'' silicon (100) substrate by
sputtering a 5 nm thick chrome adhesion layer followed by 25 nm
thick gold layer. The sputtered substrates were diced into 5 mm �
7 mm rectangular chips using a dicing saw machine.

E. coli K12 and T4 bacteriophages were kindly provided by Dr.
Mansel Griffiths (University of Guelph).

Bacteriophage preparation. The amplification of wild-type,
intact T424 and P22 phages39 was done using an established
protocol described elsewhere. Briefly, T4 and P22 phages were
amplified in E. coli K12 and Salmonella enterica serovar
Typhimurium hosts respectively. T4 phages were amplified by
incubating 100 mL of 102 pfu/mL phages in 4 mL of fresh log-
phase E. coli K12 bacteria for 15 min. This mixture was then
added to 250 mL of LB media at 37°C for 6 h. The LB media that
turns turbid after the incubation was centrifuged at 4000 rpm for
10 min to remove bacteria followed by filtration of supernatant
through sterile 0.22 mm filter. The filtered supernatant was
ultracentrifuged and the pellet was resuspended in 1 mL SM
buffer for titration. Similarly, 900 mL of 107 pfu/ml P22 phages
were mixed with 3.6 ml of Salmonella culture and incubated at
room temperature for 10 min. This mixture was added to 630 ml
of LB and was incubated at 37°C, while shaking at 150 rpm for
15 h. The amplified phages were then centrifuged at 2500 rpm for
20 min to remove bacterial cells. The supernatant was filtered,
ultracentrifuged and pellet was resuspended in 1ml SM buffer,
filtered and titrated.

For NCTC 12673 phages, C. jejuni strain 12661 was grown on
Mueller Hinton (MH) agar under microaerobic conditions for
18 h at 37°C. MH broth containing salts (filter sterilized 10 mM
MgSO4 and 1 mM CaCl) was added to the plates and the cells
were scraped off into tubes and placed in microaerobic conditions
without shaking for 4 h. C. jejuni bacteriophage NCTC 12673
was serially diluted to 106 phage/mL in 1� SSC (150 mM NaCl,
15 mM sodium citrate, pH 7.0). Then, 100 mL of C. jejuni
12661 was added to 100 mL of the 106 phage/mL suspension and
incubated together for 10 min at room temperature. The mixture
was then added to MH broth with salts at 37°C under
microaerobic conditions with shaking (125 rpm) for 24 h. The
bacteriophage lysed culture was centrifuged at 4,300 g for 10 min
at 4°C. The supernatant containing the phage was filtered through
a 0.22 mm filter into tubes and stored at 4°C. The phage
concentration was determined using a plaque assay (see below).

For all three phages, the filtered phage preparations were then
ultracentrifuged at 310,000 g (at max. radius of fixed angle rotor)
for 1 h at 20°C. The phage pellets were re-suspended in SM buffer
overnight at 4°C.

A GE Life Sciences XK 16/70 column was packed with Illustra
Sephacryl S-1000 Superfine beads to a bed height of ~60 cm. For
the first run of a new phage, 1 mL of SM suspended unpurified
phage sample was loaded onto the column. A Bio-Rad Biologic
LP FPLC system was used to pump PBS buffer through the
column at a 30 cm/h linear flow rate. Then, 1 mL fractions were
collected and combined according to peak or chromatographic
feature; then each fraction group was plaque assayed. From this
the phage peak was identified.

Figure 6. A generalized scheme for evaluating bacterial capture
efficiency for a set of candidate phages.
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For preparation, only the phage peak eluent was collected and
concentrated by ultrafiltration using a Millipore Amicon Ultra-15
centrifugal filter device. The resultant purified phage filtrant was
re-suspended in SM buffer, ready for latter surface attachment
steps.

Plaque and colony assays. Bacterial enumeration was done by
the plate count method and was expressed in cfu/mL, while the
phage suspension concentration was determined by the soft agar
overlay technique and expressed in plaque-forming units (pfu/mL).40

Specifically for NCTC 12673 phage quantification, phage samples
were serially diluted in 1� SSC buffer. Each dilution was spotted
(10 mL) onto MH agar plates overlaid with 0.6% MH agar
containing 10 mL of C. jejuni cells and grown under microaerobic
conditions for 24 h.

Reactive thiol monolayer formation on Au surface. First,
5 � 7 mm Au substrates were sonicated for 5 min in acetone
followed by cleaning in isopropanol and ethanol for 5 min each.
The surfaces were irradiated with UV light in ozone for 10 min
and finally rinsed in Milli-Q water for 5 min prior to their surface
functionalization. These cleaned Au substrates were immersed
into a pre-reduced 2 mg/mL solution of dithiobis(succinimidyl
propionate) (DTSP) in acetone for 30 min at room temperature
on a shaker for self-assembled monolayer (SAM) formation. After
this, the surfaces were rinsed with acetone to remove any
unbound DTSP followed by rinsing in water. The DTSP
modified surfaces were utilized immediately for immobilization
of bacteriophages.

Immobilization of bacteriophages on surface. The DTSP
SAM immobilized gold substrates were further washed in
isopropyl alcohol, ethanol and PBS for 5 min each on an orbital
shaker. The washed substrates were incubated in desired phage
solution for 1 h to facilitate immobilization of the phages. The
phage immobilized substrates were washed in PBS followed by
10% solution of ethanolamine in PBS to remove any physically
adsorbed phages as well as neutralize any uncoordinated DTSP
molecule. The surfaces were finally rinsed in PBS to remove excess
of ethanolamine and were incubated for 30 min in 1 mg/ml
solution of bovine serum albumin (BSA) in PBS. The BSA
blocked surfaces were finally washed twice in PBS for 5 min on an
orbital shaker and were used for bacterial capture studies.

Bacterial capture on phage immobilized surfaces. Fresh
cultures of host bacteria were grown to obtain a concentration
of 109 cfu/mL. The culture (1 mL) was then centrifuged and re-
suspended in 1 mL of phosphate buffered saline (PBS). The
phage-immobilized substrates were immersed in the bacterial
culture for 20 min at room temperature. The substrates were then
washed in TSB to remove excess stain and further thoroughly
washed in 0.05% Tween-20 in PBS to remove loosely bound
bacteria. For SEM imaging of bacterial capture, the samples were
fixed in a 2% aqueous solution of glutaraldehyde for 1 h followed
by washing twice with deionized water for 5 min on an orbital
shaker. The samples were then dried under nitrogen gas flow prior
to SEM characterization.

SPR studies. Surface plasmon resonance measurements (GWC
Technologies) have been performed to reveal the online binding
kinetics of purified T4 phages and their interaction with E. coli

K12 as model system. The SF-10 glass substrate coated with 9
isolated circular spots of 45 nm gold was used for each SPR
measurements. All the SPR measurements were acquired selecting
one region of interest (ROI) from each spot and the data was
plotted as the average from all the ROIs. The baseline for the
SAM modified electrode is established using PBS (0.01 M,
pH 7.2) for 400 sec, followed by the injection of purified phage
suspensions into the SPR flow cell at a flow rate of 100 mL/min.
The flow of T4 suspensions was performed for 30 min and then
PBS was injected to wash the surface. Then, 10% v/v solution of
ethanolamine in PBS was introduced into the flow cell and kept
flowing for 10 min to block free succinimidyl groups and to
remove physically adsorbed T4 phages from the surface. Flowing
PBS at the flow rate of 200 mL/min further washed the surface
and the change in the SPR pixels before and after T4 binding is
recorded. The bacterial capture analysis was performed by flowing
107 and 108 cfu/ml concentration of host bacteria while 109 cfu/ml
E. coli 6M1N1, NP10 and NP30 were used as non-host control
strains which show negligible binding (data not shown). The
bacterial suspension in PBS were flown on bacteriophage
immobilized surface at a flow rate of 100 mL/min for 20 min
followed by flowing PBS at the flow rate of 200 mL/min to facilitate
the removal of loosely bound bacteria. The reduction in SPR
intensity during the washing step confirms the removal of loosely/
non-specifically bound bacteria from the surface.

To quantify the amount of binding, the SPR instrument is
calibrated with different concentrations of ethanol in water, which
revealed that a change of 9 SPR pixels corresponds to a change of
0.006 refractive index of surface. The change in refractive index of
0.001 in SPR corresponds to 1 ng/mm2 binding of protein.

Summary and Conclusion

There exists an incredible biodiversity of bacteriophages, with
an accompanying body of basic scientific research that has
accumulated over more than 50 years. Intact bacteriophages are
therefore very attractive to be exploited as a new class of specific
molecular recognition probes against bacteria. This is not the first
publication demonstrating their usefulness, however we do
present significant improvements. We reveal a current upper-limit
on the covalently-attached tailed bacteriophage ability for specific
bacterial capture to a planar surface. Further methods, such as
patterned placement of phages to mitigate phage surface
clustering, would need to be explored to raise this limit.

Alternative methods involve employing M13 filamentous
phage display technology to display protein fragments for specific
recognition of bacteria. Biotinylation of phage capsid proteins—to
bias phage orientation more favorably—has been done, but
requires genetic modification.41 Finally, one may derive proteins
responsible for bacterial host recognition directly from phage tails,
and then apply them onto a surface as a monolayer.39 While
promising, there is currently no systematic way of identifying
these proteins genomically—owing to the complex evolutionary
history and biodiversity of bacteriophages. Also, tail-spike protein
monolayers will be unable to initiate the lytic pathway; conversely
this has been demonstrated by intact bacteriophage-immobilized
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surfaces.39 Bacterial pathogen lysis (killing) on the surface could be
a useful additional functionality of intact phage-immobilized
surfaces. For instance, it could be applicable to the development
of antibacterial tubing and devices for use in hospitals to prevent
biofilm formation.

Our method is simple and provides a platform to quickly
evaluate many bacteriophages and their specificities. Although we
demonstrate the application of bacteriophages for biosensor
development, it is conceivable that the methodology will be
useful for any other bioengineering applications involving the

attachment of viruses to surfaces, and to basic and applied
microbiological research.
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