
HINGE: long-read assembly achieves optimal
repeat resolution

Govinda M. Kamath,1,3 Ilan Shomorony,2,3 Fei Xia,1,3 Thomas A. Courtade,2

and David N. Tse1,2
1Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA; 2Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, California 94720, USA

Long-read sequencing technologies have the potential to produce gold-standard de novo genome assemblies, but fully ex-

ploiting error-prone reads to resolve repeats remains a challenge. Aggressive approaches to repeat resolution often produce

misassemblies, and conservative approaches lead to unnecessary fragmentation. We present HINGE, an assembler that seeks

to achieve optimal repeat resolution by distinguishing repeats that can be resolved given the data from those that cannot.

This is accomplished by adding “hinges” to reads for constructing an overlap graph where only unresolvable repeats are

merged. As a result, HINGE combines the error resilience of overlap-based assemblers with repeat-resolution capabilities

of de Bruijn graph assemblers. HINGE was evaluated on the long-read bacterial data sets from the NCTC project.

HINGE produces more finished assemblies than Miniasm and the manual pipeline of NCTC based on the HGAP assembler

and Circlator. HINGE also allows us to identify 40 data sets where unresolvable repeats prevent the reliable construction of

a unique finished assembly. In these cases, HINGE outputs a visually interpretable assembly graph that encodes all possible

finished assemblies consistent with the reads, while other approaches such as the NCTC pipeline and FALCON either frag-

ment the assembly or resolve the ambiguity arbitrarily.

[Supplemental material is available for this article.]

While genome assembly has been a central task in computational
biology for decades, only with the recent advent of long-read tech-
nologies has the goal of obtaining near-finished assemblies in an
automated fashion become within reach. However, extracting
the information present in long error-prone reads in order to reli-
ably resolve repeats is still a challenge (Myers 2016a). Attempts to
resolve repeats that are fundamentally unresolvable from the reads
at hand—a practice that can be driven by the prospect of a higher
N50 score—can lead to incorrect assemblies and ultimately impact
downstream scientific analyses. On the other hand, a conservative
approach that breaks the assembly at points of seeming ambiguity
may fail to produce the longest contigs that can be constructed giv-
en the data.

In this sense, an optimal assembler should be one capable of
identifying and resolving all, and only those repeat patterns that
are resolvable given the available read data. Equivalently, this ob-
jective can be viewed as the construction of an assembly graphwith
the maximum level of repeat resolution that is possible given the
data. If a finished assembly of the genome is possible, such a graph
would consist of a single cycle (in the case of a single circular chro-
mosome). Otherwise, the next-best objective would be the con-
struction of a repeat graph (Pevzner and Tang 2001; Mulyukov
and Pevzner 2002) where long repeats are collapsed into a single
path. Such paths capture inherent ambiguities about the target ge-
nome that cannot be resolved given the data. Thus, constructing
the maximally resolved assembly graph corresponds to minimizing
the number of repeat-induced collapsed segments.

As a prerequisite to this task, onemust first understandwhich
repeat patterns can be reliably resolved given the set of reads. Early
studies of this fundamental problem appeared in the context of se-
quencing by hybridization (Ukkonen 1992; Pevzner 1995) and
were later extended to shotgun sequencing through the notion
of bridging (Bresler et al. 2013). A repeat is said to be bridged if at
least one read completely contains one of its copies (throughout
the paper, we use theword copies to refer to the distinct occurrenc-
es of a repeat element). The notion of bridging allows us to define a
maximally resolved assembly graph as the graph where only seg-
ments corresponding to unbridged repeats are collapsed, as dis-
cussed in Supplemental Figure S1. The de novo construction of
such a graph yields the longest contigs that can be reliably con-
structed, and also describes the plausible arrangements of these
contigs in the target genome.

Assembly graphs have been a key component in assembly
pipelines since the early days of sequencing projects (Myers et al.
2000). Approaches to assembly graph construction are customarily
divided into two categories: de Bruijn graph-based approaches, and
overlap-layout-consensus (OLC) approaches. In the de Bruijn
framework (Pevzner and Tang 2001; Mulyukov and Pevzner
2002), the set of all k-mers is extracted from the reads and used to
build a graph where two k-mers that appear consecutively in a
read are connected by an edge. This construction has the desirable
property that the resultinggraph is essentiallyEulerian, and repeats
longer than k base pairs are naturally collapsed into a single path.
Furthermore, the graphconstruction is typically followedby repeat
resolution steps using reads that bridge repeats. This allows several
de Bruijn graph-based assemblers to produce amaximally resolved
assembly graph where only unbridged repeats remain collapsed3These authors contributed equally to this work and are listed in al-

phabetical order.
Corresponding authors: courtade@eecs.berkeley.edu, dntse@
stanford.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.216465.116.
Freely available online through the Genome Research Open Access option.

© 2017 Kamath et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.

Method

27:747–756 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org Genome Research 747
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
mailto:courtade@eecs.berkeley.edu
mailto:courtade@eecs.berkeley.edu
mailto:courtade@eecs.berkeley.edu
mailto:dntse@stanford.edu
mailto:dntse@stanford.edu
mailto:dntse@stanford.edu
http://www.genome.org/cgi/doi/10.1101/gr.216465.116
http://www.genome.org/cgi/doi/10.1101/gr.216465.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


(Pevzner and Tang 2001; Mulyukov and Pevzner 2002; Butler et al.
2008; Peng et al. 2010).

In the context of third-generation long-read sequencing,
however, standard de Bruijn graph approaches have not been as
successful as they were in the case of short-read sequencing. Due
to the high error rates associated with third-generation platforms,
a large number of spurious k-mers is created, disrupting the struc-
ture of the de Bruijn graph. Recently, the concept of solid k-mers
was proposed as a way to construct an “approximate” de Bruijn
graph on a restricted set of reliable k-mers (Lin et al. 2016).
However, since overlapping reads only share a handful of solid k-
mers, the resulting graph lacks the attractive features of de Bruijn
graphs. In particular, the Eulerian structure is compromised and re-
peats are no longer properly collapsed into single paths. Overlap-
based approaches, on the other hand, aremore robust to read errors
since they directly connect reads based on overlaps instead of first
breaking them into k-mers. In fact,most available long-read assem-
blers (Chin et al. 2013, 2016; Berlin et al. 2015; Li 2016) are based
on the so-called overlap-layout-consensus pipeline.

While de Bruijn graphs are Eulerian, overlap graphs are
Hamiltonian; i.e., the underlying genome sequence corresponds
to a cycle that traverses every node (read) in the graph. In addition
to well-known computational challenges (Nagarajan and Pop
2009), the Hamiltonian paradigm does not yield a natural repre-
sentation of repeat patterns, and the graph is typically riddled
with unnecessary edges. In order to combat these issues, the string
graph approach (Myers 1995, 2005) was proposed, originally for
the Celera assembler (Myers et al. 2000; Myers 2016a) and later
adopted by several assembly pipelines (Chin et al. 2013, 2016;
Berlin et al. 2015; Li 2016). Built via a transitive reduction procedure,

the string graph is an overlap graph where the unique, nonrepeti-
tive parts of the genome correspond to simple, unbranched paths.
However, long repeats—both bridged and unbridged—may result
in undesirable graph motifs. In practice, only heuristics are used
to combat thesemotifs, and building amaximally resolved overlap
graph is challenging.

Results

We propose HINGE as a way to build an assembly graph where
only the segments corresponding to unbridged repeats are col-
lapsed. This objective, which we refer to as a maximally resolved
assembly graph, is illustrated in Figure 1A–E. As depicted in
Figure 1F, this goal is naturally achieved in a de Bruijn graph frame-
work but not within an overlap graph-based framework due to the
motifs created by long repeats. HINGE seeks to simultaneously at-
tain the error resilience of overlap graph-based approaches and the
appealing graph structure and optimal repeat resolution capability
of de Bruijn graphs. Next, we briefly outline the main algorithmic
innovations that allow HINGE to achieve this goal and present re-
sults on several data sets.

Algorithmic contributions

HINGE is an assembler that follows the overlap-layout-consensus
paradigm. Its main algorithmic innovation lies in how it exploits
the alignments obtained in the overlap phase in order to identify
resolvable repeats and construct the graph layout in a repeat-aware
fashion. Next, we describe the main ideas that go into the layout

Figure 1. The goal of HINGE is to produce a maximally resolved assembly graph, where repeats that are bridged by the reads are not collapsed, and
repeats that are unbridged are collapsed in a natural way, similar to what is achieved with de Bruijn graphs. (A) If at least one of the two copies of a repeat
is bridged (green segments), the maximally resolved assembly graph should separate the two copies. In (B–E), respectively, we illustrate an unbridged re-
peat, an unbridged inverted (i.e., reverse-complemented) repeat, an unbridged triple repeat, and a single-bridged triple repeat, and the assembly graph
obtained by collapsing segments corresponding to unbridged repeats. Notice that in B,E, the graph admits a single traversal and can be further resolved,
while in C,D, the graph admits two distinct traversals and cannot be further resolved (see Supplemental Fig. S15). (F ) The representation of a bridged and an
unbridged repeat in the de Bruijn graph approach, in the standard string graph approach and according to HINGE. The de Bruijn graph approach collapses
the repeated segment, which allows a natural repeat resolution step if a bridging read is found. The representation in the string graph (if there is no read
entirely contained in the repeat) is an hourglass-like motif. HINGE emulates the de Bruijn graph layout but in an overlap graph framework.

Kamath et al.

748 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1


step. We defer a description of the overlap and consensus steps to
the Methods section.

Repeat annotation and hinging reads

HINGE utilizes the alignment information obtained in the overlap
step in order to equip some of the reads with hinges. Hinges are
placed at the beginning and end of unbridged repeats and will ul-
timately lead to bifurcations on the graph, as illustrated in Figure
1F. The first step toward hinging the reads, as illustrated in
Figure 4A below, is to find sharp gradients in the number of align-
ments on a read and annotate them as beginning or end of repeats.
Next, we identify reads that bridge a repeat by finding reads that
have both an annotation for the beginning of a repeat and an an-
notation for the end of the same repeat. Finally, we spread the in-
formation of which repeats are bridged to other reads through a
procedure that we term the Contagion algorithm (see Methods;
Fig. 5, below).

Hinge-aided greedy overlap graph construction

The Contagion algorithm allows HINGE to place exactly one in-
hinge and one out-hinge on the reads that originated from un-
bridged occurrences of a repeat. HINGE can then create a sparse
overlap graph by using a hinge-aided greedy graph construction.
In essence, we pick a best predecessor and a best successor for
each read, as in the classical greedy algorithm (Tarhio and
Ukkonen 1988) or in the best-overlap-graph approach (Miller
et al. 2008). However, since our reads are hinged, we also allow a
read’s successor or predecessor to be the interior of another read,
as long as thematch starts on a hinge.When this occurs, a bifurca-
tion is formed on the graph, corresponding to the beginning or the
end of an unbridged repeat.

As illustrated in Figure 1F, this hinge-aided approach allows
us to obtain the attractive properties of a de Bruijn graph layout
but within the OLC framework. A comparisonwith the traditional
greedy approach is provided in Supplemental Figure S2. We point
out that for higher fold repeats, where a subset of the copiesmay be
unbridged, a more careful handling of hinges is required, and that
is achieved using a new procedure that we call Poisoning, described
in the Methods section and in Figure 6 below.

Validation of hinge on data sets with ground truth

In Supplemental Figures S3–S6, we present validation results on
simulated data sets. We created sequences with specific patterns
of repeats and simulated long error-prone reads, using the DAZZ-
DB simulator. We then verified that, when run on these data
sets, HINGE produces a maximally resolved assembly graph. In
Supplemental Figure S7, we validate the structural integrity of
our assembly on an Oxford Nanopore R9 Escherichia coli data
set. In Supplemental Figure S8, we validate the structural and
sequence integrity of our assembly on a Pacific Biosciences
(PacBio) Saccharomyces cerevisiae data set.

In Supplemental Table S2, we present validation results on E.
coli data sets produced by PacBio and Oxford Nanopore sequenc-
ers. In both of these cases, HINGE produces a single circular contig
and there is no misassembly. We also compare our assembly with
the assembly produced by the NCTC pipeline (HGAP followed by
Circlator) on 10 randomly selected data sets. We verify that the as-
semblies agree and have high identity scores in all cases.

Evaluation on the NCTC database

We evaluated HINGE on the 997 bacterial genomes of the NCTC
3000 database that were publicly available at the time of writing
this manuscript (http://www.sanger.ac.uk/resources/downloads/
bacteria/nctc/). The accession number for these data sets is provid-
ed in Supplemental Tables S1 and S3. Each of these data sets con-
sists of PacBio SMRT long readswith coverage depthsmainly in the
range 30× to 80×.While the repeat complexity is relatively mild in
bacterial genomes, we chose to evaluate HINGE on these data sets
for two reasons: it allows us to carefully verify whether the HINGE
assembly graphs satisfy our goal of maximal repeat resolution, and
it allows us to run experiments on a large number of data sets, thus
avoiding overfitting.

The current NCTC manual assembly pipeline uses the HGAP
assembler (Chin et al. 2013) to produce a list of contigs, and
Circlator (Hunt et al. 2015) to circularize contigs. The assembly
graphs produced by HINGE with no parameter tuning for each
of these data sets are available online (http://web.stanford.edu/
~gkamath/NCTC/report.html) and in Supplemental Table S4,
along with the contig statistics of the NCTC pipeline results and
the assembly graph produced by Miniasm (Li 2016). We point
out that other state-of-the-art assemblers, in particular, FALCON
(Chin et al. 2016), have runtimes above one order of magnitude
greater thanHINGE (see Supplemental Fig. S11),making a compar-
ison on the entire NCTC database computationally prohibitive.

For 822 of the 997 available data sets, HINGE produced a fin-
ished nonfragmented assembly graph, with additional isolated
small plasmids inmany cases. In 40 of these data sets, HINGE iden-
tifies unresolvable repeats, and the final graph admits distinct tra-
versals (see Table 1). In order to compare our results with those
obtained by the NCTC manual pipeline, we restricted our atten-
tion to those data sets for which NCTC reports the results of their
assembly. As shown in Table 2, evenwithout a circularization tool,
HINGE obtains significantly more finished assemblies than the
NCTC pipeline.

Analysis of HINGE assembly graphs

Among the cases where HINGE produces an assembly graph with
multiple traversals, we find many examples where the intuitive
layout of the graph produced by HINGE resembles the idealized
cases in Figure 1A–E and allows one to visually assess the unresolv-
able repeat pattern in the genome.Next, we analyze three such cas-
es in depth and compare the graph produced by HINGE with the
contigs produced by the NCTC pipeline. We see that, by focusing
on obtaining a maximally resolved assembly graph rather than
large contig N50 values, HINGE prevents several misassemblies
the NCTC pipeline incurred. In Supplemental Figure S9, we pre-
sent nine additional such cases. In Supplemental Figure S10, we
present several cases where HINGE resolves all repeats, producing
a finished circular assembly, while the NCTC pipeline instead frag-
ments the assembly. In addition, in Supplemental Figures S12–S14
we provide the same comparisons but with FALCON (Chin et al.
2016) instead of the manual NCTC pipeline.

In Figure 2A, we examine NCTC11022 (E. coli). In this exam-
ple, the incorrect resolution of a 20-kbp unbridged repeat by the
NCTC pipeline (see Supplemental Fig. S16) causes the circular
chromosomal contig to lose a 780-kb segment, returned as a sepa-
rate contig. By first collapsing this repeat and then resolving it due
to the existence of a unique traversal of the graph, HINGE produc-
es a single large chromosomal contig of length 5.1Mbp. The nodes

HINGE: achieving optimal repeat resolution

Genome Research 749
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1


in the HINGE graph are colored according to the position the cor-
responding reads align to in the NCTC pipeline contigs.

On the NCTC9024 data set (E. coli) (Fig. 2B), the NCTC pipe-
line returned two long contigs, one of 4.3Mbp and one of 0.9Mbp.
The HINGE graph emphasizes the existence of a triple repeat
which, upon further inspection (see Supplemental Fig. S17), is
seen to be of length 20 kbp, unbridged, and with one inverted
copy. Even though this repeat is unbridged, both the NCTC pipe-
line and FALCON resolve one of its copies but in distinct ways. As
we point out in Supplemental Figure S9, incorrect resolution of an
inverted repeat can produce a false inversion of a long contig. In
fact, the NCTC assembly and the FALCON assembly disagree on
the orientation of the yellow-to-orange segment, and one of
them must be creating an incorrect inversion of more than 1
Mbp (the orange-to-yellow segment). By collapsing the repeat,
HINGE avoids a potential misassembly.

In Figure 2C, we consider NCTC9657 (Klebsiella pneumoniae).
In this example, the NCTC pipeline returned seven unidentified
contigs (three large ones), but HINGE returns a single large chro-
mosomal connected component and three small plasmids. In

this case, HINGE produces a graph motif
characteristic of an unbridged triple re-
peat, similar to Figure 1D. As shown by
a coverage analysis in Supplemental
Figure S18A, this is indeed a triple repeat,
and contig 1 of the NCTC pipeline incor-
rectly resolves it, creating a misassembly.
In addition, we examine the plasmids
produced by the NCTC pipeline in
Figure 2D and note that two of them
share an unbridged repeat (see also
Supplemental Fig. S18B). Therefore,
there are two possible resolutions (two
plasmids or a single, longer plasmid),
and HINGE keeps them merged on the
graph to retain this unresolvable ambigu-
ity. In Supplemental Figure S12, we verify
that the performance of FALCON (Chin
et al. 2016) on the examples in Figure 2,
A and C, is similar to that of the NCTC
pipeline.

As illustrated by these examples,
HINGE seeks to construct a user-friendly,
informative, overlap graph as its main
output, as opposed to most OLC assem-
blers, which employ assembly graphs in
their inner workings (Chin et al. 2013,
2016; Berlin et al. 2015) but focus on out-
putting a list of contigs. To the best of our
knowledge,Miniasm (Li 2016) is the only
other assembler to produce a graph as the
main assembly output. However,
Miniasm is based on the string graph
paradigm, which does not achieve the
graph layoutHINGE strives for, as we em-
pirically observe (http://web.stanford.
edu/~gkamath/NCTC/report.html).

Discussion

With HINGE, we introduce a new ap-
proach to constructing assembly graphs

in a repeat-aware fashion. While other state-of-the-art assemblers
do attempt to identify bridging reads (sometimes referred to as
spanning reads) and resolve the corresponding repeats, this is usu-
ally done as a post-processing step on the graph. HINGE, on the
other hand, seeks to identify repeats and determine whether
they should be collapsed on the graph prior to the actual construc-
tion. This way, HINGE avoids having to identify and correct graph
motifs (such as the ones created by the string graph as shown in
Fig. 1F) in a post-processing phase, which can be difficult due to
spurious and missing edges caused by the high error rates of
long-read sequencing technologies and by chimeric reads.

In order to reliably achieve this repeat-aware graph layout,
several new conceptual ideas were introduced inHINGE. First, a re-
peat annotation step is responsible for identifying the beginning
and end of repeats and which reads bridge some repeat.
However, this type of local information is not sufficient for the
construction of a maximally resolved assembly graph. Therefore,
this information must be spread to other reads, which is accom-
plished with our Contagion algorithm.

Figure 2. Analysis of HINGE graphs on selected data sets. By identifying unbridged repeats, collapsing
them, and then performing resolutions based on uniquely traversable loops, HINGE prevents misassem-
blies and produces a user-friendly, interpretable assembly graph. We color the graph nodes according to
their corresponding position on the NCTC pipeline contigs. (A) On NCTC11022, HINGE identifies an un-
bridged repeat, which is later resolved. (B) On NCTC9024, HINGE identifies an unbridged triple repeat
(with one inverted copy), which cannot be resolved due to the existence of three distinct traversals of the
graph. (C) HINGE identifies an unbridged triple repeat. (D) HINGE identifies an unresolvable repeat
shared by two small plasmids.

Kamath et al.

750 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html


Once the bridging information is known globally, HINGE uti-
lizes a hinge-aided greedy construction of the graph. This is also
different from most state-of-the-art long-read assemblers, which
rely on the string graph paradigm. Our approach bears similarities
with the best overlap graph approach in its goal of constructing a
sparse overlap graph but takes advantage of hinges as a way to
achieve this goal with maximal repeat resolution. Finally, the
sparse nature of the constructed graphs allows HINGE to identify
loops that admit a single traversal and can thus be resolved. The
conceptual contributions of HINGE are discussed in more detail
in the Methods section.

As anOLC assembler, in order to produce high quality assem-
blies, HINGE relies on good Overlapping and Consensus modules.
In its current implementation, HINGE was designed to work with
the output of DALIGNER (Myers 2014), and the consensus is per-
formed using a variant of the consensusmodule of FALCON (Chin
et al. 2016) togetherwith a straightforwardmajority-vote finishing
step. These choices are not essential to the workings of our pipe-
line. Therefore, integrating HINGE with other overlapping tools
such as MHAP or Minimap can be done if different levels of align-
ment sensitivity or memory usage are required. Similarly, different
consensus andpolishingmodules such asQuiver (Chin et al. 2013)
and Racon (Vaser et al. 2017) can be used, according to the desired
point in the accuracy-computation tradeoff.

Through a novel approach to repeat resolution and graph rep-
resentation, HINGE brings a fresh perspective to the assembly
problem. By focusing on the construction of a maximally resolved
assembly graph in a user-friendly fashion, HINGE is well aligned
with the recent push for the standardization of graph references,

as opposed to the traditional contig representation. The HINGE
graph is a natural representation of a set of possible assemblies
and is amenable to further repeat resolution, which can be at-
tempted using additional long-range information such as paired-
end reads, Hi-C reads, or by leveraging biological insight. Finally,
we point out that, while the repeat complexity is relatively mild
in the bacterial genomes we consider (as evidenced by the large
number of finished assemblies), it is much more severe in higher
organisms (Koren et al. 2013). This highlights the importance of
the careful treatment of repeats carried out by HINGE and the val-
ue of the proposed method to genome assembly.

One important aspect regarding the notion of maximal re-
peat resolution is that it assumes that long contiguous matches
identified in the read alignment step must correspond either to
the same segment on the genome or to repeats whose copies are
similar enough that they should be merged in the graph.
However, there may still be a small level of divergence between
these copies that is below the sequencing error rates and cannot
be detected by the aligner. In principle, this divergence may allow
a final “phasing” or “unzipping” step, similar to what is used in
FALCON-Unzip (Chin et al. 2016), to resolve these repeats.
Utilizing these small levels of divergence to phase or to score the
different traversals of a repeat according to their likelihood is a fu-
ture direction for improvement of the HINGE pipeline.

Methods

The HINGE assembly pipeline is an OLC pipeline designed to as-
semble long reads. The overall workflow is depicted in Figure 3

Table 1. Finished assemblies on all available NCTC data sets and comparison with Miniasm

Coverage ≥40× All coverages

Number of NCTC data sets 816 997
HINGE finished circular assembly (single traversal) 631 }691 } 729

690 }782 } 822HINGE finished assembly (lacking circularization) 60 92
HINGE finished circular assembly (multiple traversals) 38 40

Given the output graph of HINGE we classify the assembly into four categories. A finished circular assembly corresponds to a case where all nodes (small
plasmids excepted) lie on a single circle. A finished circular assembly with multiple traversals corresponds to a graph where all nodes can be visited by a
circular path, but there is more than one such path. We point out that we classify such an output as finished because such a graph can be seen as
simultaneously capturing a few (usually two) assemblies, all of which would be considered finished according to the previous rule. A finished assembly
is said to lack circularization if a single noncircular path can traverse all nodes on the graph (small plasmids excepted). If the graph produced by HINGE
does not fall into the previous three categories, we classify it as a misassembly/fragmented assembly. As reliable hinge placement requires a reasonable
coverage depth, we also considered restricting our attention to the data sets with average coverage depth above 40. We note that Miniasm needs a cir-
cularization tool to circularize assemblies, and hence, we report a Miniasm assembly as finished if it has only one contig longer than 200 kbp and fewer
than 10 contigs shorter than 200 kbp. The graph produced by HINGE and Miniasm for all these cases can be found at http://web.stanford.edu/
~gkamath/NCTC/report.html and in Supplemental Table S4, along with the corresponding classification. As can be seen on this report, the rule for de-
termining when a Miniasm assembly is finished is often quite lenient.

Table 2. Finished assemblies on NCTC data sets where NCTC manual pipeline results are reported

Coverage ≥40× All coverages

Number of NCTC data sets 688 834
NCTC manual pipeline finished assemblies 517 592
Miniasm finished assembly (not circularized) 513 592
HINGE finished circular assembly (single traversal) 531 } 583 583 } 660
HINGE finished assembly (lacking circularization) 52 77
HINGE finished circular assembly (multiple traversals) 33 33

In this table, we restrict the data sets considered in Table 1 to only those for which NCTC reports a result for comparison. The finished assemblies for
the NCTC manual pipeline correspond to the cases where they report one chromosomal contig or two chromosomal contigs (since species such as
Vibrio fluvialis and Ochrobactrum anthropi are known to have two chromosomes). We point out that, while a circularization tool (Circlator) is used in the
NCTC pipeline, we do not have a circularization finishing step and only report the output of HINGE using default configurations.

HINGE: achieving optimal repeat resolution

Genome Research 751
www.genome.org

http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://web.stanford.edu/~gkamath/NCTC/report.html
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1


and is explained in detail in this section. As the default parameters
and auxiliary tools were selected to optimize the pipeline for
PacBio reads, we focus the discussion on this setting.

Read database and alignment

We use DAZZ_DB (Myers 2016b) to maintain a database of the
PacBio reads. We use DALIGNER (Myers 2014) to obtain pairwise
alignments between all reads. We point out that HINGE does
not heavily rely on specifics of the DALIGNER output and can be
adapted to work with other aligners as well.

No initial error-correction step

Unlike most available long-read assembly pipelines, HINGE by-
passes an initial error-correction step. To the best of our knowl-
edge, Miniasm (Li 2016) is the only other OLC assembler that
dispenses with this step. ABruijn (Lin et al. 2016) also has no er-
ror-correction step, though it is not based on the OLC paradigm.
The idea of error-correction-free assembly was also utilized in
Lien et al. (2016) and Tørresen et al. (2017). The fact that long-
read aligners like DALIGNER (Myers 2014) can obtain pairwise
alignments at error rates around 15% allows us to use this ap-
proach and defer the error correction to the final consensus step.

Chimeric read filter

Chimeric reads are the result of a sequencing error and are usual-
ly made up of multiple segments that originate from different

parts of the genome. If not properly
handled, these reads create misassem-
blies, and different techniques have
been put forward to detect chimeras
(Miller et al. 2008; Li 2016). HINGE’s
chimera filter unit is the first place in
the pipeline where the visualization pro-
vided by pile-o-grams (Supplemental
Figs. S19, S20) is useful. We mark a
read segment as chimeric if the set of
reads aligned to it undergoes an abrupt
change. On the pile-o-gram, as shown
in Figure 3B, one sees a clear discontinu-
ity in the set of alignments (blue seg-
ments) of a read. We also mark a read
segment as chimeric if the number of
matches goes below a fixed threshold.
For each read, we keep the longest seg-
ment without any chimeric segments.
If this segment is shorter than a thresh-
old, we discard the read completely.

Repeat annotation

One of the main distinctive features of
HINGE is a pre-assembly step responsible
for annotating the beginning and the
end of repeats on the reads. These repeat
annotations will later be used for placing
hinges on the reads, which, in turn, will
be instrumental in the graph layout
step. The repeat annotation is done by
detecting the start/end of a large number
of matches on a read. On the pile-o-gram
(Supplemental Figs. S19, S20), this visual-
ly corresponds to a large pile of matches
starting/ending at the same point, as

shown in Figure 3C. We note that relying on coverage gradients
rather than coverage itself makes HINGE immune to coverage
fluctuations.

We then verify whether the repeat annotation corresponds to
a repeat that is bridged by that read. Intuitively, one could attempt
to do this by identifying both a sharp increase and a sharp decrease
in the number of matches on a read. However, as it turns out, such
an approach can fail in the presence of more complex repeat pat-
terns such as a repeat within a longer repeat (see Supplemental
Fig. S19E for an illustration). Therefore, a more careful processing
of the matches on a read is needed to identify the bridging condi-
tion. HINGE determines the bridging condition by checking
whether most of the matches starting on a repeat annotation
also end on a repeat annotation. If that is the case, the repeat is as-
sumed to be bridged, and the annotation is flagged as such (red an-
notations in Fig. 3C). Thus, at the end of this step, we have repeat
annotations on all reads, and these annotations are labeled as
bridged/unbridged according to the local information provided
by the reads’ alignments. The next step, the Contagion algorithm,
is applied to this set of annotated reads after we filter out reads that
are fully contained in other reads (keeping only maximal reads).

The Contagion algorithm

Notice that this local information about the bridging of repeats
may be misleading. For example, the pile-o-gram of read u in
Figure 4A may suggest that u lies partially on an unbridged repeat.
However, that repeatmight still be bridged by a different read, as in

Figure 3. HINGE pipeline. (A) The input to the HINGE pipeline is a set of long error-prone reads. (B)
Chimeric reads are detected through their pile-o-grams and are discarded. (C) The beginning/end of re-
peats are annotated on the reads. This is done by detecting a sharp increase/decrease in the number of
alignments on a read. The repeat annotations are also identified as bridged or unbridged. (D) Maximal
reads (i.e., reads that are not contained in other reads) are selected and fed to the Contagion algorithm,
which is responsible for spreading the information about which repeats are bridged to all the reads, al-
lowing us to place exactly one in-hinge and one out-hinge on the reads that originated from unbridged
occurrences of a repeat. (E) The set of maximal reads (some of which are not hinged) is the input to the
hinge-aided greedy assembly. (F ) After obtaining the read-overlap graph, we resolve repeats that admit
only one traversal. (G) Finally, bymapping all the reads onto the resulting overlap graph, we use standard
consensus methods to generate contigs.

Kamath et al.

752 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1


the case of read v in Figure 4A. Therefore, HINGE proceeds to
“spread” the local bridging information of each read to other reads
using the Contagion algorithm. At a high level, this algorithm can
be thought of as constructing a Contagion graph (see Fig. 4B), with
nodes being the repeat annotations and edges between repeat an-
notations that correspond to the beginning (or end) of the same
repeat (possibly from different copies of the same repeat).
Annotations corresponding to the beginning/end of the same re-
peat are identified based on alignments: if two reads have an anno-
tation corresponding to the beginning (respectively, end) of a
repeat and have matching segments after (respectively, before)
the annotation, the two annotations are connected in the graph.
The edge points in the direction of the read that extends the
most into the repeat. Moreover, repeat annotations that have
been identified as the beginning/end of a bridged repeat are
marked as such (red nodes in Fig. 4B).

As illustrated in Figure 4B, this graph has two connected com-
ponents for each repeat (the yellow and pink components corre-
spond to the beginning and end of an unbridged repeat). In this
graph, repeat annotations corresponding to bridged repeats are
thought of as “infected” (shown as red nodes) and can spread
the “bridging condition” to the other repeat annotations in the
same connected component. If a connected component does
not contain any infected repeat annotation, it corresponds to
the beginning/end of an unbridged repeat and will eventually
lead to a bifurcation on the graph (see hinge-aided greedy assem-
bly algorithm), as shown in Figure 4B.

The Contagion algorithm processes the Contagion graph to
kill repeat annotations that will not be useful in the overlap graph
construction. In particular, this infecting and killing process per-
forms two tasks: (1) repeat annotations corresponding to bridged
repeats should cause other annotations corresponding to the
same repeat to also be marked as bridged and ultimately killed;
(2) if two repeat annotations correspond to the beginning (or

end) of the same repeat, the one extending the most into the re-
peat should be kept, while the other one should be killed. This
global processing of the repeat annotations and bridging condi-
tion is important so that ultimately we only place one in-hinge
and one out-hinge for each unbridged repeat (on the sink node
of the corresponding connected component).

Inmore detail, theContagion algorithm comprises three steps.
In the first step, we remove all annotations whose connected com-
ponent on the Contagion graph is small. For instance, the gray-col-
orednodes in Figure 4B correspond to small connected components
that are deleted. Typically, these small components are the result of
imprecise placement of repeat annotations on reads, which then
lead to them not matching other repeat annotations that corre-
spond to the beginning/end of the same repeat. Hence, deleting
these small components prevents us from creating multiple hinges
corresponding to the beginning/end of the same repeat.

In the next step, we look for pairs of repeat annotations con-
nected by an edge in the Contagion graph (i.e., corresponding to
the beginning/end of the same repeat) and such that the corre-
sponding reads have an overlap. (Notice that by an overlap, we
mean amatch between the suffix of a read and the prefix of anoth-
er read. If the match instead occurs in the interior of at least one of
the reads, we refer to it as an internal match.) For every such pair,
we kill the annotation on the read that extends the least into the
repeat. For an illustration of this step, consider the two unbridged
repeats in Figure 5A. The reads covering the start of each repeat (u1,
u2, u3) have a start-repeat annotation at the start of the repeat. The
reads covering the end of each repeat (v1, v2, v3) have an end-repeat
annotation at the end of the repeat. As shown in Figure 5B, the
start-repeat annotation on u2 is killed by the start-repeat annota-
tion on u1 because u2 and u1 have an overlap and u2 extends
more into the repeat. Similarly, the end-repeat annotation at v2
is killed due to the overlap with v1. At the end of this step, we
have that exactly one read covering each copy of an unbridged

Figure 4. (A) Sharp changes in the number of alignments give rise to repeat annotations on each read. If a read is verified to bridge a repeated, as in the
case of read v, the corresponding read annotations are marked as such (shown as red nodes). (B) The Contagion graph is formed by having all repeat an-
notations as nodes, and using edges tomark annotations that correspond to the beginning (or end) of the same repeat. As illustrated here for NCTC11022,
connected components with no bridged repeat annotations will give rise to hinged reads, which leads to bifurcations on the graph. The repeats corre-
sponding to other connected components stay resolved in the graph.

HINGE: achieving optimal repeat resolution

Genome Research 753
www.genome.org



repeat has a start-repeat annotation on it (and exactly one read has
an end-repeat annotation on it for each copy of the repeat). In ad-
dition, we point out that when a read has its repeat annotation
killed by an annotation from a bridged repeat, we mark this anno-
tation as “poisoned.” The reason for the term is that a poisoned
read would be “deadly” for a standard greedy assembly algorithm,
as it would lead to a misassembly.

The third step of the Contagion algorithm is similar to the
second step, but instead of looking for matching annotations
whose reads have an overlap, we look for matching annotations
whose reads have an internal match. For every such pair of an-
notations, we keep the one on the read that extends the most
into the repeat, and kill the other one. As illustrated in Figure
5C, this causes the start-repeat annotation on u3 to be killed
by the start-repeat annotation on u1 and the end-repeat annota-
tion on v1 to be killed by the end-repeat annotation on v3. At the
end of this step, we have one in-hinge on u1 and one out-hinge
on v3. We point out that, in this step, we only consider nonpois-
oned reads.

Finally, all surviving annotations for the start
of unbridged repeats are marked as in-hinges and
the annotations for the end of unbridged repeats
are marked as out-hinges. One can formally show
that under the assumption that no significant
alignment is missed in the initial Overlap step,
the Contagion algorithm will place exactly one
in-hinge and one out-hinge among the reads that
originated from the set of unbridged occurrences
of a repeat and no hinge on the reads from the
bridged occurrences of a repeat.

Hinge-aided greedy assembly algorithm

A key distinction of HINGE’s approach to assem-
bly lies in its graph layout step. Many OLC assem-
blers adopt the string graph paradigm (Myers

1995, 2005), which often produces as-
sembly graphs that are unnecessarily
dense. HINGE replaces the string graph
algorithm with a variant of the greedy
algorithm. This follows a recent line of
work that found that variants of the
greedy algorithm (such as the best-over-
lap-graph [BOG] algorithm [Miller et al.
2008], “not-so-greedy” algorithm
[Shomorony et al. 2016b], and the
greedy merging algorithm [Shomorony
et al. 2016a]) can produce a sparse over-
lap graph without misassemblies.

Notice that, at the end of the Conta-
gion algorithm, we only have one
in-hinge and one out-hinge for each un-
bridged repeat. In the graph layout step,
we employ a variation of the greedy algo-
rithm that utilizes the hinge informa-
tion. Each read picks its left extension
to be its longest prefixmatch and its right
extension to be the longest suffix match.
However, unlike in the classical greedy
algorithm, we do not restrict our search
to overlaps. In addition to (prefix-suffix)
overlaps, we also consider internal
matches. Hence, a read is allowed to
find its successor/predecessor match to
be an internal segment of another read

as long as thematch starts on a hinge. An illustration of how inter-
nal matches are helpful in producing the correct graph layout and
a comparison with the classical greedy algorithm is illustrated in
Supplemental Figure S2.

The role of poisoned reads

Another important aspect of the hinge-aided layout step is how
the read poisoning information is used. As mentioned above, in
the Contagion algorithm, whenever a read has its start/end repeat
annotation killed by another overlapping read, we label it as poi-
soned. During the hinge-aided greedy algorithm, reads are pre-
vented from picking a poisoned read as their predecessor/
successor, guaranteeing that the two copies (or occurrences) of a
bridged repeat remain separate.

This process is illustrated in Figure 6. In the scenario shown
in Figure 6A, read u1 is initially given a start-repeat annotation.
However, this start-repeat annotation is removed by the

Figure 5. TheContagion algorithm. (A) Twounbridged repeats are shown as orange segments. (B) The
Contagion algorithm first kills the start-repeat annotation at u2 (due to its overlap with u1) and the end-
repeat annotation at v2 (due to its overlapwith v1). (C) The Contagion algorithm then kills the start-repeat
annotation on u3 (due to its internal matchwith u1) and the end-repeat annotation on v1 (due to its inter-
nal match with v3). (D) Finally, an in-hinge is placed on u1 and an out-hinge is placed on v3. During the
hinge-aided greedy assembly step, hinges allow u2 and u3 to choose the in-hinge at u1 as their successor.
Similarly, v1 and v2 pick the match starting at the out-hinge on v3 as their predecessor match.

Figure 6. The Poisoning algorithm. Read poisoning is part of the process by which we pre-
vent a bridged repeat from collapsing on the graph. (A) In this scenario, read u1 is initially giv-
en a start-repeat annotation, which is killed in the Contagion algorithm, as the repeat is
bridged by read w. In this case, we keep a poisoned annotation on read u1. (B) When v2 looks
for its best predecessor, it skips u1 due to the poisoned repeat annotation, preventing a
misassembly.

Kamath et al.

754 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1


Contagion algorithm, as the repeat is bridged by read w. In this
case, we keep a poisoned annotation on read u1. When a read
has a poisoned start-repeat annotation, it cannot be chosen as
a predecessor of another read if the match starts after the start-re-
peat annotation. As shown in Figure 6B, according to a non-
hinge-aided greedy assembly algorithm, v2 would choose u1 as
its predecessor. However, as the match on u1 starts after the poi-
soned start-repeat annotation, we do not allow v2 to choose u1 as
a predecessor. Instead, we look for the next best option, which in
this case is u2. This prevents a misassembly. The poisoning of
end-repeat annotations works in an analogous way.

In addition, we point out that the concept of poisoning is
what allows the proper collapsing of the unbridged copies of re-
peats with three or more copies. Notice that during the third stage
of the Contagion algorithm, we only consider nonpoisoned reads.
Therefore, we only deal with reads coming from unbridged copies
of the repeat. As a result, the set of all unbridged occurrences of a
repeat induces exactly one in-hinge and one out-hinge. On the
other hand, all reads from the bridged copies are poisoned and re-
ceive no hinge.

Repeat resolution

Another new ingredient introduced by HINGE is the use of global
information to resolve repeats. Once constructed, the graph allows
us to identify certain repeats that, although unbridged, can still be
resolved based on the graph layout. As illustrated in Figure 3A and
Supplemental Figure S15A, when a repeat loop allows only one
possible traversal, the loop can be untangled. We point out that
the sparse and Eulerian-like nature of the graph produced by the
hinge-aided greedy algorithm is important to allow this repeat res-
olution to be done in an automated fashion.We also point out that
the loop resolution step is based on a parsimony principle, but it
could be potentially incorrect if the loop corresponds to a plasmid,
to a separate chromosome, or to the genome of a different species
present in the sample. The parameter MAX_PLASMID_LENGTH
sets themaximum length of a loop that should be considered a po-
tential plasmid. HINGE will only resolve loops longer than
MAX_PLASMID_LENGTH, and this behavior can be optionally
turned off by setting MAX_PLASMID_LENGTH to a number lon-
ger than the genome length.

Handling read orientation and double-strandedness

Since the orientation of the reads is unknown, as is typical in all
assembly pipelines, one must consider each read and its reverse
complement. Hence, for each read, we in fact create two nodes
in the graph, and the constructed graph is symmetric. At the end
of the graph construction, for visualization purposes, we overlay
each node and its reverse complement.

Consensus

In order to generate consensus sequences for the resulting graph
contigs, we first create a draft assembly by simply concatenating
sections of the error-prone reads corresponding to unbranched
paths on the graph.We then consider the alignment of all the orig-
inal reads onto these draft contigs and utilize a simple majority-
based consensus to clean up these draft sequences. We reuse
some code from FALCON (Chin et al. 2016) to perform this task.
The result is output as a GFA file.We point out that the final contig
sequences can be optionally run throughQuiver (Chin et al. 2013)
to further polish the assembly.

Graph visualization

All assembly graphs produced by HINGE were visualized using
Gephi (Bastian et al. 2009).

Software availability

The HINGE assembler is available online at https://github.com/
HingeAssembler/HINGE and in the Supplemental Source Code.
The analyses presented in Figure 2 can be reproduced in https
://github.com/HingeAssembler/HINGE-analyses.

Acknowledgments

The authors thank Shoudan Liang and Jason Chin of Pacific
Biosciences for useful discussions and Lior Pachter of UC
Berkeley for helpful comments and suggestions during the prepa-
ration of this manuscript. The authors also thank Nick Grayson
and Julian Parkhill of TheWellcome Trust Sanger Institute for feed-
back and help with interpreting the results on the NCTC data sets.
G.M.K. also thanks John Lamping of Human Longevity Inc., chat-
ting with whom drove him to take a data-driven approach to this
project. Finally, G.M.K., I.S., and F.X. thank Gene Myers for pre-
sentations and work that were an inspiration to them and for sev-
eral tools that made this work possible. The authors thank the
three anonymous reviewers whose feedback helped improve the
paper significantly.

Author contributions: G.M.K. and I.S. designed the algorithm.
F.X. implemented a testbed to test and experiment with assembly
algorithms. G.M.K., I.S., and F.X. implemented the HINGE algo-
rithm, ran it on the data set, and visualized and interpreted the re-
sults. T.A.C. and D.N.T. supervised the project. All authors wrote
the paper.

References

BastianM,Heymann S, JacomyM. 2009. Gephi: an open source software for
exploring and manipulating networks. ICWSM 8: 361–362.

Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015.
Assembling large genomes with single-molecule sequencing and locali-
ty-sensitive hashing. Nat Biotechnol 33: 623–630.

Bresler G, Bresler M, Tse D. 2013. Optimal assembly for high throughput
shotgun sequencing. BMC Bioinformatics 14: S18.

Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB. 2008. ALLPATHS: de novo assembly of whole-ge-
nome shotgun microreads. Genome Res 18: 810–820.

Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished
microbial genome assemblies from long-read SMRT sequencing data.
Nat Methods 10: 563–569.

Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A,
Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016.
Phased diploid genome assembly with single-molecule real-time se-
quencing. Nat Methods 13: 1050–1054.

Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator:
automated circularization of genome assemblies using long sequencing
reads. Genome Biol 16: 294.

Koren S, HarhayGP, Smith TPL, Bono JL, HarhayDM,Mcvey SD, Radune D,
Bergman NH, Phillippy AM. 2013. Reducing assembly complexity of
microbial genomes with single-molecule sequencing. Genome Biol 14:
R101.

Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 32: 2103–2110.

Lien S, Koop BF, Sandve SR,Miller JR, KentMP, Nome T, Hvidsten TR, Leong
JS, Minkley DR, Zimin A. 2016. The Atlantic salmon genome provides
insights into rediploidization. Nature 533: 200–205.

Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. 2016.
Assembly of long error-prone reads using de Bruijn graphs. Proc Natl
Acad Sci 113: E8396–E8405.

Miller JR, Delcher AL, Koren S, Venter E,Walenz BP, Brownley A, Johnson J,
Li K, Mobarry C, Sutton G. 2008. Aggressive assembly of pyrosequenc-
ing reads with mates. Bioinformatics 24: 2818–2824.

HINGE: achieving optimal repeat resolution

Genome Research 755
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216465.116/-/DC1
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE-analyses


Mulyukov Z, Pevzner PA. 2002. EULER-PCR: finishing experiments for re-
peat resolution. Pac Symp Biocomput 199–210.

Myers EW. 1995. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol 2: 275–290.

Myers EW. 2005. The fragment assembly string graph. Bioinformatics 21:
i79–ii85.

Myers EW. 2014. Efficient local alignment discovery amongst noisy long
reads. Lect Notes Comput Sci 52–67.

Myers EW. 2016a. A history of DNA sequence assembly. Inf Technol 58:
126–132.

Myers EW. 2016b. https://github.com/thegenemyers/DAZZ_DB.
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, FlaniganMJ, Kravitz

SA, Mobarry CM, Reinert KH, Remington KA, et al. 2000. A whole-ge-
nome assembly of Drosophila. Science 287: 2196–2204.

Nagarajan N, Pop M. 2009. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. J Comput Biol
16: 897–908.

Peng Y, Yu P, Leung HCM, Yiu SM, Chin FYL. 2010. IDBA – a practical iter-
ative de Bruijn graph de novo assembler. Lect Notes Comput Sci 426–440.

Pevzner PA. 1995. DNA physical mapping and alternating Eulerian cycles in
colored graphs. Algorithmica 13: 77–105.

Pevzner PA, Tang H. 2001. Fragment assembly with double-barreled data.
Bioinformatics 17(Suppl 1): S225–S233.

Shomorony I, Kamath GM, Xia F, Courtade TA, Tse DNC. 2016a. Partial
DNA assembly: a rate-distortion perspective. IEEE International
Symposium on Information Theory 2016, pp. 1799–1803.

Shomorony I, Kim SH, Courtade TA, Tse DNC. 2016b. Information-optimal
genome assembly via sparse read-overlap graphs. Bioinformatics 32:
i494–i502.

Tarhio J, Ukkonen E. 1988. A greedy approximation algorithm for
constructing shortest common superstrings. Theor Comput Sci 57:
131–145.

Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP,
Knight J, Ekholm JM, Peluso P. 2017. An improved genome assembly
uncovers prolific tandem repeats in Atlantic cod. BMC Genomics 18: 95.

Ukkonen E. 1992. Approximate string-matchingwith q-grams andmaximal
matches. Theor Comput Sci 92: 191–211.

Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo ge-
nome assembly from long uncorrected reads. Genome Res (this issue).
doi: 10.1101/gr.214270.116.

Received September 26, 2016; accepted in revised form March 16, 2017.

Kamath et al.

756 Genome Research
www.genome.org

https://github.com/thegenemyers/DAZZ_DB
https://github.com/thegenemyers/DAZZ_DB
https://github.com/thegenemyers/DAZZ_DB
https://github.com/thegenemyers/DAZZ_DB

