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Abstract: Entropy appears in many contexts (thermodynamics, statistical mechanics, information
theory, measure-preserving dynamical systems, topological dynamics, etc.) as a measure of different
properties (energy that cannot produce work, disorder, uncertainty, randomness, complexity, etc.).
In this review, we focus on the so-called generalized entropies, which from a mathematical point
of view are nonnegative functions defined on probability distributions that satisfy the first three
Shannon–Khinchin axioms: continuity, maximality and expansibility. While these three axioms are
expected to be satisfied by all macroscopic physical systems, the fourth axiom (separability or strong
additivity) is in general violated by non-ergodic systems with long range forces, this having been the
main reason for exploring weaker axiomatic settings. Currently, non-additive generalized entropies
are being used also to study new phenomena in complex dynamics (multifractality), quantum systems
(entanglement), soft sciences, and more. Besides going through the axiomatic framework, we review
the characterization of generalized entropies via two scaling exponents introduced by Hanel and
Thurner. In turn, the first of these exponents is related to the diffusion scaling exponent of diffusion
processes, as we also discuss. Applications are addressed as the description of the main generalized
entropies advances.

Keywords: generalized entropy; Tsallis; Rényi; Hanel–Thurner exponents; non-stationary regime

1. Introduction

The concept of entropy was introduced by Clausius [1] in thermodynamics to measure the
amount of energy in a system that cannot produce work, and given an atomic interpretation in the
foundational works of statistical mechanics and gas dynamics by Boltzmann [2,3], Gibbs [4], and others.
Since then, entropy has played a central role in many-particle physics, notoriously in the description
of non-equilibrium processes through the second principle of thermodynamics and the principle of
maximum entropy production [5,6]. Moreover, Shannon made of entropy the cornerstone on which
he built his theory of information and communication [7]. Entropy and the associated entropic forces
are also the main character in recent innovative approaches to artificial intelligence and collective
behavior [8,9]. Our formalism is information-theoretic (i.e., entropic forms are functions of probability
distributions) owing to the mathematical properties that we discuss along the way, but can be translated
to a physical context through the concept of microstate.

The prototype of entropy that we are going to consider below is the Boltzmann–Gibbs–Shannon
(BGS) entropy,

SBGS(p1, ..., pW) = k
W

∑
i=1

pi ln
1
pi

= −k
W

∑
i=1

pi ln pi. (1)
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In its physical interpretation, k = 1.3807× 10−23 J/K is the Boltzmann constant, W is the number
of microstates consistent with the macroscopic constraints of a given thermodynamical system, and pi is
the probability (i.e., the asymptotic fraction of time) that the system is in the microstate i. In information
theory, k is set equal to 1 for mathematical convenience, as we do hereafter, and SBGS measures the
average information conveyed by the outcomes of a random variable with probability distribution
{p1, ..., pW}. We use natural logarithms unless otherwise stated, although logarithms to base 2 is the
natural choice in binary communications (the difference being the units, nats or bits, respectively).
Remarkably enough, Shannon proved in Appendix B of his seminal paper [7] that Equation (1) follows
necessarily from three properties or axioms (actually, four are needed; more on this below).

BGS entropy was later on generalized by other “entropy-like” quantities in dynamical systems
(Kolmogorov–Sinai entropy [10], etc.), information theory (Rényi entropy [11], etc.), and statistical
physics (Tsallis entropy [12], etc.), to mention the most familiar ones (see, e.g., [13] for an account
of some entropy-like quantities and their applications, especially in time series analysis). Similar to
with SBGS, the essence of these new entropic forms was distilled into a small number of properties
that allow sorting them out in a more systematic way [13,14]. Currently, the uniqueness of SBGS is
derived from the four Khinchin–Shannon axioms (Section 2). However, the fourth axiom, called the
separability or strong additivity axiom (which implies additivity, i.e., S(A1 + A2) = S(A1) + S(A2),
where A1 + A2 stands for a system composed of any two probabilistically independent subsystems A1

and A2), is violated by physical systems with long-range interactions [15,16]. This poses the question
of what mathematical properties have the “generalized entropies” satisfying only the other three
axioms. These are the primary candidates for extensive entropic forms, i.e., functions S such that
S(B1 ∪ B2) = S(B1) + S(B2), the shorthand B1 ∪ B2 standing for the physical system composed of the
subsystems B1 and B2. Note that B1 ∪ B2 6= B1 + B2 in non-ergodic interacting systems just because the
number of states in B1 ∪ B2 is different from the number of states in B1 + B2. A related though different
question is how to weaken the separability axiom to identify the extensive generalized entropies;
we come back briefly to this point in Section 2 when speaking of the composability property.

Along with SBGS, typical examples of generalized entropies are the Tsallis entropy [12],

Tq(p1, ..., pW) =
1

1− q

(
W

∑
i=1

pq
i − 1

)
(2)

(q ∈ R, q 6= 1, with the proviso that for q < 0 terms with pi = 0 are omitted), and the Rényi entropy [11],

Rq(p1, ..., pW) =
1

1− q
ln

(
W

∑
i=1

pq
i

)
(3)

(q ≥ 0, q 6= 1). The Tsallis and Rényi entropies are related to the BGS entropy through the limits

lim
q→1

Tq(p1, ..., pW) = lim
q→1

Rq(p1, ..., pW) = SBGS(p1, ..., pW),

this being one of the reasons they are considered generalizations of the BGS entropy. Both Tq and Rq

have found interesting applications [15,17]; in particular, the parametric weighting of the probabilities
in their definitions endows data analysis with additional flexibility. Other generalized entropies that
we consider in this paper are related to ongoing work on graphs [18]. Further instances of generalized
entropies are also referred to below.

Let us remark at this point that SBGS, Tq, Rq and other generalized entropies considered in
this review can be viewed as special cases of the (h, φ)-entropies introduced in [19] for the study of
asymptotic probability distributions. In turn, (h, φ)-entropies were generalized to quantum information
theory in [20]. Quantum (h, φ)-entropies, which include von Neumann’s entropy [21] as well as the
quantum versions of Tsallis’ and Rényi’s entropies, have been applied, for example, to the detection of
quantum entanglement (see [20] and references therein). In this review, we do not consider quantum
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entropies, which would require advanced mathematical concepts, but only entropies defined on
classical, discrete and finite probability distributions. If necessary, the transition to continuous
distributions is done by formally replacing probability mass functions by densities and sums by
integrals. For other approaches to the concept of entropy in more general settings, see [22–25].

Generalized entropies can be characterized by two scaling exponents in the limit W → ∞,
which we call Hanel–Thurner exponents [16]. For the simplest generalized entropies, which include
Tq but not Rq (see Section 2), these exponents allow establishing a relationship between the abstract
concept of generalized entropy and the physical properties of the system they describe through
their asymptotic scaling behavior in the thermodynamic limit. That is, the two exponents label
equivalence classes of systems which are universal in that the corresponding entropies have the same
thermodynamic limit. In this regard, it is interesting to mention that, for any pair of Hanel–Thurner
exponents (at least within certain ranges), there is a generalized entropy with those exponents,
i.e., systems with the sought asymptotic behavior. Furthermore, the first Hanel–Thurner exponent
allows also establishing a second relation with physical properties, namely, with the diffusion scaling
exponents of diffusion processes, under some additional assumptions.

The rest of this review is organized as follows. The concept of generalized entropy along with
some formal preliminaries and its basic properties are discussed in Section 1. As way of illustration,
we discuss in Section 3 the Tsallis and Renyi entropies, as well as more recent entropic forms. The choice
of the former ones is justified by their uniqueness properties under quite natural axiomatic formulations.
The Hanel–Thurner exponents are introduced in Section 4, where their computation is also exemplified.
Their aforementioned relation to diffusion scaling exponents is explained in Section 5. The main
messages are recapped in Section 6. There is no section devoted to the applications but, rather,
these are progressively addressed as the different generalized entropies are presented. The main text
has been supplemented with three appendices at the end of the paper.

2. Generalized Entropies

Let P be the set of probability mass distributions {p1, ..., pW} for all W ≥ 2. For any function
H : P → R+ (R+ being the nonnegative real numbers), the Shannon–Khinchin axioms for an entropic
form H are the following.

SK1 Continuity. H(p1, ..., pW) depends continuously on all variables for each W.
SK2 Maximality. For all W,

H(p1, ..., pW) ≤ H( 1
W , ..., 1

W ).

SK3 Expansibility: For all W and 1 ≤ i ≤W,

H(0, p1, ..., pW) = H(p1, ..., pi, 0, pi+1, ..., pW) = H(p1, ..., pi, pi+1, ..., pW).

SK4 Separability (or strong additivity): For all W, U,

H(p11, . . . , p1U , p21, . . . p2U , . . . , pW1, . . . , pWU) (4)

= H(p1·, p2·, . . . , pW·) +
W

∑
i=1

pi·H
(

pi1
pi·

,
pi2
pi·

, . . . ,
piU
pi·

)
,

where pi· = ∑U
j=1 pij.

Let {p11, . . . , p1U , p21, . . . p2U , . . . , pW1, . . . , pWU} be the joint probability distribution of the
random variables X and Y, with marginal distributions {pi· : 1 ≤ i ≤ W} and {p·j = ∑W

i=1 pij :
1 ≤ j ≤ U}, respectively. Then, axiom SK4 can be written as

H(X, Y) = H(X) + H(Y |X) ,



Entropy 2018, 20, 813 4 of 21

where H(Y |X) is the entropy of Y conditional on X. In particular, if X and Y are independent (i.e.,
pij = pi·p·j), then H(Y |X) = H(Y) and

H(X, Y) = H(X) + H(Y). (5)

A function H such that Equation (5) holds (for independent random variables X and Y) is called
additive. Physicists prefer writing X +Y for composed systems with microstate probabilities pij = pi·p·j;
this condition holds approximately only for weakly interacting systems X and Y.

With regard to Equation (5), let us remind that, for two general random variables X and Y,
the difference I(X; Y) = H(X) + H(Y)− H(X, Y) ≥ 0 is the mutual information of X and Y. It holds
I(X; Y) = 0 if and only if X and Y are independent [26].

More generally, a function H such that

H(p1q1, . . . , p1qU , p2q1, . . . , p2qU , . . . , pWq1, . . . , pWqU) (6)

= H(p1, . . . , pW) + H(q1, . . . , qU) + (1− α)H(p1, . . . , pW)H(q1, . . . , qU),

(α > 0) is called α-additive. With the same notation as above, we can write this property as

H(X, Y) = H(X) + H(Y) + (1− α)H(X)H(Y), (7)

where, again, X and Y are independent random variables. In a statistical mechanical context, X and Y
may stand also for two probabilistically independent (or weakly interacting) physical systems. If α = 1,
we recover additivity (Equation (5)).

In turn, additivity and α-additivity are special cases of composability [15,27]:

H(X, Y) = Φ(H(X), H(Y)), (8)

with the same caveats for X and Y. Here, Φ is a symmetric function of two variables. Composability
was proposed in [15] to replace axiom SK4. Interestingly, it has been proved in [27] that, under some
technical assumptions, the only composable generalized entropy of the form in Equation (10) is Tq,
up to a multiplicative constant.

As mentioned in Section 1, a function F : P → R+ satisfying axioms SK1–SK4 is necessarily of the
form F(p1, ..., pW) = kSBGS(p1, ..., pW) for every W, where k is a positive constant ([28], Theorem 1).
The same conclusion can be derived using other equivalent axioms [14,29]. For instance, Shannon used
continuity, the property that H(1/n, ..., 1/n) increases with n, and a property called grouping [29] or
decomposibility [30], which he defined graphically in Figure 6 of [7]:

H(p1, ..., pW) = H((p1 + ... + pr), (pr+1 + ... + pW)) (9)

+(p1 + ... + pr)H
(

p1

∑r
i=1 pi

, ...,
pr

∑r
i=1 pi

)

+(pr+1 + ... + pW)H

(
pr+1

∑W
i=r+1 pi

, ...,
pW

∑W
i=r+1 pi

)

(1 ≤ r ≤W − 1). This property allows reducing the computation of H(p1, ..., pW) to the computation
of the entropy of dichotomic random variables. According to ([15], Section 2.1.2.7), Shannon missed
in his uniqueness theorem to formulate the condition in Equation (5), X and Y being independent
random variables.
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Nonnegative functions defined onP that satisfy axioms SK1–SK3 are called generalized entropies [16].
In the simplest situation, a generalized entropy has the sum property [14], i.e., the algebraic form

Fg(p1, ..., pW) =
W

∑
i=1

g(pi), (10)

with g : [0, 1]→ R+.
The following propositions are immediate.

(i) Symmetry: Fg(p1, ..., pW) is invariant under permutation of p1, ..., pW .
(ii) Fg satisfies axiom SK1 if and only if g is continuous.
(iii) If Fg satisfies axiom SK2, then

W

∑
i=1

g(pi) ≤Wg( 1
W )

for all W ≥ 2 and p1, ..., pW with p1 + ... + pW = 1.
(iv) If g is concave (i.e., ∩-convex), then Fg satisfies axiom SK2.
(v) Fg satisfies axiom SK3 if and only if g(0) = 0.

Note that Proposition (iv) follows from the symmetry and concavity of Fg (since the unique
maximum of Fg must occur at equal probabilities).

We conclude from Propositions (ii), (iv) and (v) that, for Fg to be a generalized entropy,
the following three condition suffice:

(C1) g is continuous.
(C2) g is concave.
(C3) g(0) = 0.

As in [16], we say that a macroscopic statistical system is admissible if it is described by a
generalized entropy Fg of the form in Equation (10) such that g verifies Conditions (C1)–(C3).
By extension, we say also that the generalized entropy Fg is admissible. Admissible systems and
generalized entropies are the central subject of this review. Clearly, SBGS is admissible because

g(x) = −x log x, (11)

0 ≤ x ≤ 1. On the other hand, Tq corresponds to

g(x) =
1

1− q
(xq − x). (12)

For Tq to be admissible, Condition (C1) requires q ≥ 0 and Condition (C3) requires q > 0.
An example of a function F : P → R+ with the sum property that does not qualify for admissible

generalized entropy is

F(p1, ..., pW) =
W

∑
i=1

(
pi −

1
W

)2
=

W

∑
i=1

p2
i −

1
W

. (13)

Indeed, g(x) = (x − 1
W )2 is not ∩-convex but ∪-convex and g(0) = 1

W2 6= 0. This probability
functional was used in [31] to classify sleep stages.

Other generalized entropies that are considered below have the form

FG,g(p1, ..., pW) = G

(
W

∑
i=1

g(pi)

)
, (14)
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where G is a continuous monotonic function, and g is continuous with g(0) = 0. By definition, FG,g is
also symmetric, and Proposition (iii) holds with the obvious changes. However, the concavity of g is
not a sufficient condition any more for FG,g to be a generalized entropy. Such is the case of the Rényi
entropy Rq (Equation (3)); here

G(u) =
1

1− q
ln u and g(x) = xq, (15)

but g(x) (and, hence, ∑W
i=1 g(pi)) is not ∩-convex for q > 1. Furthermore, note that axiom SK3 requires

q > 0 for Rq to be a generalized entropy.
Since Equation (10) is a special case of Equation (14) (set G to be the identity map id(u) = u),

we can refer to both cases just by using the notation FG,g, as we do hereafter.
We say that two probability distributions {pi} and {p′i}, 1 ≤ i ≤W, are close if

∥∥{pi} − {p′i}
∥∥ = ∑W

i=1

∣∣pi − p′i
∣∣ ≤ δ,

where 0 < δ� 1; other norms, such as the two-norm and the max-norm, will do as well since they are
all equivalent in the metric sense. A function F : P → R+ is said to be Lesche-stable if for all W and
ε > 0 there exists δ > 0 such that

∥∥{pi} − {p′i}
∥∥ ≤ δ ⇒

∣∣∣∣
F({pi})− F({p′i})

Fmax

∣∣∣∣ < ε, (16)

where Fmax = max{pi}∈P F({pi}). It follows that

lim
δ→0

lim
W→∞

∣∣∣∣
F({pi})− F({p′i})

Fmax

∣∣∣∣ = 0.

Lesche stability is called experimental robustness in [15] because it guarantees that similar
experiments performed on similar physical systems provide similar results for the function F.
According to [16], all admissible systems are Lesche stable.

3. Examples of Generalized Entropies

As way of illustration, we put the focus in this section on two classical generalized entropies as
well as on some newer ones. The classical examples are the Tsallis entropy and the Rényi entropy
because they have extensively been studied in the literature from an axiomatic point of view too.
As it turns out, they are unique under some natural assumptions, such as additivity, α-additivity or
composability (see below for details). The newer entropies are related to potential applications of
the concept of entropy to graph theory [18]. Other examples of generalized entropies are listed in
Appendix A for further references.

3.1. Tsallis Entropy

A simple way to introduce Tsallis’ entropy as a generalization of the BGS entropy is the
following [15]. Given q ∈ R, define the q-logarithm of a real number x > 0 as

lnq x =

{
ln x if q = 1,

x1−q−1
1−q otherwise.
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Note that ln1 x is defined by continuity since limq→1 lnq x = ln x. If the logarithm in the definition
of SBGS, Equation (1), is replaced by lnq, then we obtain the Tsallis entropy:

Tq(p1, ..., pW) =
W

∑
i=1

pi lnq(1/pi) =
1

1− q

(
W

∑
i=1

pq
i − 1

)
. (17)

As noted before, q > 0 for Tq to be an admissible generalized entropy.
Alternatively, the definition

SBGS(p1, ..., pW) = − d
dx

W

∑
i=1

px
i

∣∣∣∣∣
x=1

can also be generalized to provide the Tsallis entropy via the q-derivative,

Tq(p1, ..., pW) = −Dq

W

∑
i=1

px
i

∣∣∣∣∣
x=1

,

where

Dq f (x) :=
f (qx)− f (x)

qx− x
.

Set qx = x + h, i.e., h = (q − 1)x, and let h → 0 to check that D1 f (x) ≡ limq→1 Dq f (x) =

d f (x)/dx.
Although Tsallis proposed his entropy (Equation (17)) in 1988 to go beyond the standard statistical

mechanics [12], basically the same formula had already been proposed in 1967 by Havrda and Charvát
(with a different multiplying factor) in the realm of cybernetics and control theory [32].

Some basic properties of Tq follow.

(T1) T1 = SBGS because ln1 pi = ln pi (or D1 f (x) = d f (x)/dx).
(T2) Tq is (strictly) ∩-convex for q > 0. Figure 1 plots Tq(p, 1− p) for q = 0.5, 1, 2 and 5. Let us

mention in passing that Tq is ∪-convex for q < 0.
(T3) Tq is Lesche-stable for all q > 0 [33,34]. Actually, we stated at the end of Section 2 that all

admissible systems are Lesche stable.
(T4) Tq is not additive but q-additive (see Equation (6) or (7) with α replaced by q). This property

follows from [15]
lnq xy = lnq x + lnq y + (1− q)(lnq x)(lnq y).

(T5) Similar to what happens with the BGS entropy, Tsallis entropy can be uniquely determined
(except for a multiplicative positive constant) by a small number of axioms. Thus, Abe [35]
characterized the Tsallis entropy by: (i) continuity; (ii) the increasing monotonicity of
Tq(1/W, ..., 1/W) with respect to W; (iii) expansivity; and (iv) a property involving conditional
entropies. Dos Santos [36], on the other hand, used the previous Axioms (i) and (ii), q-additivity,
and a generalization of the grouping axiom (Equation (9)). Suyari [37] derived Tq from the
first three Shannon–Khinchin axioms and a generalization of the fourth one. The perhaps
most economical characterization of Tq was given by Furuichi [38]; it consists of continuity,
symmetry under the permutation of p1, ..., pW , and a property called q-recursivity. As mentioned
in Section 2, Tsallis entropy was recently shown [27] to be the only composable generalized
entropy of the form in Equation (10) under some technical assumptions. Further axiomatic
characterizations of the Tsallis entropy can be found in [39].



Entropy 2018, 20, 813 8 of 21

Figure 1. Tsallis entropy Tq(p, 1− p) for q = 0.5, 1, 2 and 5.

An observable of a thermodynamical (i.e., many-particle) system, say its energy or entropy, is said
to be extensive if (among other characterizations), for a large number N of particles, that observable is
(asymptotically) proportional to N. For example, for a system whose particles are weakly interacting
(think of a dilute gas), the additive SBGS is extensive, whereas the non-additive Tq (q 6= 1) is
non-extensive. The same happens with ergodic systems [40]. However, according to [15], for a
non-ergodic system with strong correlations, SBGS can be non-extensive while Tq can be extensive for
a particular value of q; such is the case of a microcanonical spin system on a network with growing
constant connectancy [40]. This is why Tq represents a physically relevant generalization of the
traditional SBGS. Axioms SK1–SK3 are expected to hold true also in strongly interacting systems.

Further applications of the Tsallis entropy include astrophysics [41], fractal random walks [42],
anomalous diffusion [43,44], time series analysis [45], classification [46,47], and artificial neural
networks [48].

3.2. Rényi Entropy

A simple way to introduce Rényi’s entropy as a generalization of SBGS is the following [17].
By definition, the BGS entropy of the probability distribution {p1, ..., pW} (or of a random variable X
with that probability distribution) is the linear average of the information function

I(pi) = ln
1
pi

, 1 ≤ i ≤W,

or, equivalently, the expected value of the random variable ln 1
p(X)

:

SBGS(p1, ..., pW) = Ep[ln 1
p(X)

] =
W

∑
i=1

pi I(pi).

In the general theory of expected values, for any invertible function φ and realizations x1, ..., xW
of X in the definition domain of φ, an expected value can be defined as

Ep,φ[X] = φ−1

(
W

∑
i=1

piφ(xi)

)
.
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Applying this definition to ln 1
p(X)

, we obtain

Ep,φ[ln 1
p(X)

] = φ−1

(
W

∑
i=1

piφ(I(pi))

)
.

If this generalized average has to be additive for independent events, i.e., it has to satisfy
Equation (6) with α = 1, then

φ(x) = c1x or φ(x) = c(1−q)x
2

must hold, where c1, c2 are positive constants, and q > 0, q 6= 1. The first case leads to
SBGS, Equation (1), after choosing c1 = e. The second case leads to the Rényi entropy (actually,
a one-parameter family of entropies) Rq, Equation (3), after choosing c2 = e as well.

Next, we summarize some important properties of the Rényi entropy.

(R1) Rq is additive by construction.
(R2) R1 ≡ limq→1 Rq = SBGS. Indeed, use L’Hôpital’s Rule to derive

lim
q→1

1
1− q

ln

(
W

∑
i=1

pq
i

)
= − lim

q→1

d
dq

ln

(
W

∑
i=1

pq
i

)

= − lim
q→1

1

∑W
i=1 pq

i

W

∑
i=1

pq
i ln pi

= −
W

∑
i=1

pi ln pi.

(R3) Rq is ∩-convex for 0 < q ≤ 1 and it is neither ∩-convex nor ∪-convex for q > 1. Figure 2 plots
Rq(p, 1− p) for q = 0.5, 1, 2 and 5.

(R4) Rq is Lesche-unstable for all q > 0, q 6= 1 [49].
(R5) The entropies Rq are monotonically decreasing with respect to the parameter q for any

distribution of probabilities, i.e.,

q < q′ =⇒ Rq ≥ Rq′ .

This property follows from the formula

−dRq

dq
=

1
(1− q)2

W

∑
i=1

p′i ln
p′i
pi

=
1

(1− q)2 D({p′i} ‖{pi}) ,

where p′i = pq
i / ∑W

k=1 pq
k, and D({p′i} ‖{pi}) ≥ 0 is the Kullback–Leibler divergence of the

probability distributions {p′1, ..., p′W} and {p1, ..., pW}. D({p′i} ‖{pi}) vanishes only in the event
that both probability distributions coincide, otherwise is positive [26].

(R6) A straightforward relation between Rényi’s and Tsallis’ entropies is the following [50]:

Tq =
1

1− q

(
e(1−q)Rq − 1

)
or Rq =

1
1− q

ln
(
1 + (1− q)Tq

)
.

However, the axiomatic characterizations of the Rényi entropy are not as simple as those for the
Tsallis entropy. See [27,51,52] for some contributions in this regard.
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Figure 2. Rényi entropy Rq(p, 1− p) for q = 0.5, 1, 2 and 5.

For some values of q, Rq has particular names. Thus, R0 = ln W is called Hartley or max-entropy,
which coincides numerically with SBGS for an even probability distribution. We saw in (R2) that Rq

converges to the BGS entropy in the limit q→ 1. R2 = −∑W
i=1 p2

i is called collision entropy. In the limit
q→ ∞, Rq converges to the min-entropy

R∞(p1, ..., pW) = min
1≤i≤W

(− ln pi) = − max
1≤i≤W

ln pi = − ln max
1≤i≤W

pi.

The name of R∞ is due to property (R5).
Rényi entropy has found interesting applications in random search [53], information theory

(especially in source coding [54,55]), cryptography [56], time series analysis [57], and classification [46,58],
as well as in statistical signal processing and machine learning [17].

3.3. Graph Related Entropies

As part of ongoing work on graph entropy [18], the following generalized entropies are defined:

H1(p1, ..., pW) =
W

∑
i=1

(1− (pi)
pi ) , (18)

H2(p1, ..., pW) =
W

∏
i=1

(2− (pi)
pi ) = exp

(
W

∑
i=1

ln (2− (pi)
pi )

)
, (19)

and

H3(p1, ..., pW) = 1 + ln H2(p1, ..., pW) =
W

∑
i=1

(pi + ln (2− (pi)
pi )) . (20)

Note that H1(..., 0, 1, 0, etc.) = 0, while H2(..., 0, 1, 0, ...) = H3(..., 0, 1, 0, ...) = 1. Other oddities of
the above entropies include the terms (pi)

pi in their definitions, as well as the presence of products
instead of sums in the definition of H2.

First, H1 is of the type in Equation (10) with

g1(x) =

{
0 if x = 0,

1− xx if 0 < x ≤ 1.
(21)
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By definition, g(x) is continuous (even smooth), concave on the interval [0, 1], and g1(0) = 0.
Therefore (see Conditions (C1)–(C3) in Section 2), H1 satisfies the axioms SK1–SK3, hence it is a
generalized entropy.

As for H2, this probability functional is of the type in Equation (14) with

g2(x) =

{
0 if x = 0,

ln (2− xx) if 0 < x ≤ 1,
(22)

and G(u) = eu. To prove that H2 is a generalized entropy, note that

ln H2(p1, ..., pW) =
W

∑
i=1

ln (2− (pi)
pi )

satisfies axioms SK1–SK3 for the same reasons as H1 does. Therefore, the same happens with
H2 on account of the exponential function being continuous (SK1), increasingly monotonic (SK2),
and univalued (SK3).

Finally, H3 is of the type in Equation (10) with

g3(x) =

{
0 if x = 0,

x + g2(x) if 0 < x ≤ 1.
(23)

Since H3 = 1 + ln H2, it is a generalized entropy because, as shown above, ln H2 satisfies
axioms SK1–SK3.

Figure 3. Entropies Hi(p, 1− p), i = 1, 2, 3, along with SBGS(p, 1− p) and H2− SBGS− 1 for comparison.
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Figure 3 depicts H1(p, 1 − p), H2(p, 1 − p), H3(p, 1 − p), along with SBGS(p, 1 − p) and
H2 − SBGS − 1 for comparison. As a curiosity, let us point out that the scaled versions

H̃i(p, 1− p) =
Hi(p, 1− p)− Hi(0, 1)

Hi(
1
2 , 1

2 )− Hi(0, 1)
, (24)

(i = 1, 2, 3), see Figure 4, approximate SBGS(p, 1 − p) measured in bits very well. In particular,
the relative error in the approximation of SBGS(p, 1− p) by H̃2(p, 1− p) is less than 2.9× 10−4, so their
graphs overlap when plotted.

A further description of the entropies in Equations (18)–(20) is beyond the scope of this section.
Let us only mention in this regard that these entropies can be extended into the realm of acyclic
directed graphs.

Figure 4. Scaled entropies H̃i(p, 1− p), i = 1, 2, 3, see Equation (24).

4. Hanel–Thurner Exponents

All generalized entropies FG,g group in classes labeled by two exponents (c, d) introduced by
Hanel and Thurner [16], which are determined by the limits

lim
W→∞

FG,g(p1, ..., pλW)

FG,g(p1, ..., pW)
= λ1−c (25)

(W being as before the cardinality of the probability distribution or the total number of microstates in
the system, λ > 1) and

lim
W→∞

FG,g(p1, ..., pW1+a)

FG,g(p1, ..., pW)
Wa(c−1) = (1 + a)d (26)

(a > 0). Note that the limit in Equation (26) does not depend actually on c. The limits in Equations (25)
and (26) can be computed via the asymptotic equipartition property [26]. Thus,

FG,g(p1, ..., pλW) ≈ G
(

λWg
(

1
λW

))

and

FG,g(p1, ..., pW1+a) ≈ G
(

W1+ag
(

1
W1+a

))
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asymptotically with ever larger W (thermodynamic limit). Set now x = 1/W to derive

lim
x→0+

G
(

λ
x g
( x

λ

))

G
(

1
x g (x)

) = λ1−c (27)

and

lim
x→0+

G
(

1
x1+a g

(
x1+a))

xa(c−1)G
(

1
x g (x)

) = (1 + a)d. (28)

Clearly, the scaling exponents c, d of a generalized entropy FG,g depend on the behavior of g in an
infinitesimal neighborhood (0, ε] of 0 (i.e., g(ε) with 0 < ε � 1), as well as on the properties of G if
G 6= id. We call (c, d) the Hanel–Thurner (HT) exponents of the generalized entropy FG,g.

When G = id, Equations (27) and (28) abridge to

lim
x→0+

g(zx)
g(x)

= zc (29)

(after replacing λ−1 by z), and

lim
x→0+

g(x1+a)

xacg(x)
= (1 + a)d, (30)

respectively. In this case, 0 < c ≤ 1, while d can be any real number. If c = 1, the concavity of g implies
d ≥ 0 [16]. The physical properties of admissible systems are uniquely characterized by their HT
exponents, i.e., by their asymptotic properties in the limit W → ∞ [16]. In this sense, we can also speak
of the universality class (c, d).

As way of illustration, we are going to derive the HT exponents of SBGS, Tq and Rq.

(E1) For the BGS entropy, g(x) = −x ln x (see Equation (11)), so

g (zx)
g (x)

=
zx ln(zx)

x ln x
=

z ln z + z ln x
ln x

→ z

as x → 0+. Therefore, c = 1. Furthermore,

g
(

x1+a)

xacg (x)
=

x1+a ln x1+a

xa+1 ln x
=

(1 + a) ln x
ln x

= 1 + a

for all x > 0, so d = 1.
(E2) For the Tsallis entropy, see Equation (12),

g(x) =





1
1−q xq +O(x) if 0 < q < 1,

− 1
1−q x +O(x) if q > 1.

It follows readily that (c, d) = (q, 0) if 0 < q < 1, and (c, d) = (1, 0) if q > 1. Hence, although
limq→1 Tq = SBGS, there is no parallel convergence concerning the HT exponents.

(E3) For the Rényi entropy, g(x) = xq and G(u) = 1
1−q eu (see Equation (15)), so

G( λ
x g
( x

λ

)
)

G( 1
x g (x))

=
ln
(

λ
x (

x
λ )

q
)

ln
(

1
x xq
) =

ln xq−1 − ln λq−1

ln xq−1 → 1
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as x → 0+ (both for 0 ≤ q ≤ 1 and q ≥ 1). Therefore, c = 1. Furthermore,

G
(

1
x1+a g

(
x1+a))

G
(

1
x g (x)

) =
ln
(

1
x1+a xq(1+a)

)

ln
(

1
x xq
) =

ln x(q−1)(1+a)

ln xq−1 = 1 + a

for all x > 0, so that d = 1. In sum, (c, d) = (1, 1) for all q.

As for the generalized entropies H1, H2, and H3 considered in Section 3.3, we show in Appendix B
that their HT exponents are (1, 1), (0, 0), and (1, 1), respectively. Thus, H1 and H3 belong to the
same universality class as SBGS, while the HT exponents of H2 and Rq (both of the same the type
in Equation (14)) are different. Moreover, the interested reader will find in Table 1 of [16] the HT
exponents of the generalized entropies listed in Appendix A.

An interesting issue that arises at this point is the inverse question: Given c ∈ (0, 1] and d ∈ R,
is there an admissible system such that its HT exponents are precisely (c, d)? The answer is yes, at least
under some restrictions on the values of c and d. Following [16], we show in Appendix C that, if

d > −1 for 0 < c ≤ 1
2 ,

d ≥ 1− 1
c for 1

2 < c ≤ 1,
(31)

then the “generalized (c, d)-entropy”

Sc,d(p1, ..., pW) = eA
W

∑
i=1

Γ(d + 1, 1− c ln pi), (32)

has HT exponents (c, d). Here, A > 0 and Γ is the incomplete Gamma function (Section 6.5 of [59]),
that is,

Γ(r, s) =
∫ ∞

s
tr−1e−tdt (r > 0). (33)

Several application cases where generalized (c, d)-entropies are relevant have been discussed by
Hanel and Thurner in [40] (super-diffusion, spin systems, binary processes, and self-organized critical
systems) and [60] (aging random walks, i.e., random walks whose transition rates between states are
path- and time-dependent).

5. Asymptotic Relation between the HT Exponent c and the Diffusion Scaling Exponent

In contrast to “non-interacting” systems, where both the additivity and extensivity of the BGS
entropy SBGS hold, in the case of general interacting statistical systems these properties can no longer be
simultaneously satisfied, requiring a more general concept of entropy [16,40]. Following [16] (Section 4),
a possible generalization of SBGS for admissible systems is defined via the two asymptotic scaling
relations in Equations (29) and (30), i.e., the HT exponents c and d, respectively. These asymptotic
exponents can be interpreted as a measure of deviation from the “non-interacting” case regarding the
stationary behavior.

5.1. The Non-Stationary Regime

In this section, we describe a relation between the exponent c and a similar macroscopic
measure that characterizes the system in the non-stationary regime, thus providing a meaningful
interpretation of the exponent. The non-stationary behavior of a system can possibly be described by
the Fokker–Planck (FP) equation governing the time evolution of a probability density function
p = p(x, t). In this continuous limit, the generalized entropy Fg is assumed to be written as
Fg[p(s)] =

∫
g(p(s))ds, where g is asymptotically characterized by Equation (29) and s = s(x) is

a time-independent scalar function of the space coordinate x (for example, a potential) [61,62].
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Going beyond the scope of the simplest FP equation, we consider systems for which the correlation
among their (sub-)units can be taken into account by replacing the diffusive term ∂2

x p with an effective
term ∂2

xΦ[p], where Φ[p] is a pre-defined functional of the probability density. Φ[p] can be either
derived directly from the microscopical transition rules or it may be defined based on macroscopic
assumptions. The resulting FP equation can be written as

∂t p(x, t) = Dβ∂x (p(x, t)∂xu(x)) + D∂2
xΦ[p(x, t)], (34)

where D, β are constants and u(x) is a time-independent external potential.
For simplicity, hereafter we exclusively focus on one dimensional FP equations. In the special case

of Φ[p] = p and no external forces, Equation (34) reduces to the well-known linear diffusion equation

∂t p(x, t) = D∂2
x p(x, t). (35)

The above equation is invariant under the space-time scaling transformation

p(x, t) = τ−γ p
(

x
τγ

,
t
τ

)
(36)

with γ = 1
2 [63,64]. This scaling property opens up the possibility of a phenomenological and

macroscopic characterization of anomalous diffusion processes [15,44] as well, which correspond to
more complicated non-stationary processes described by FP equations in the form of Equation (34)
with a non-trivial value of γ. With the help of the transformation in Equation (36), we can also
classify correlated statistical systems according to the rate of the spread of their probability density
functions over time in the asymptotic limit and, thus, quantitatively describe their behavior in the
non-stationary regime.

5.2. Relation between the Stationary and Non-Stationary Regime

To reasonably and consistently relate the generalized entropies to the formalism of FP
equations—corresponding to the stationary and non-stationary regime, respectively—the functional
Φ[p] has to be chosen such that the stationary solution of the general FP equation becomes equivalent
to the Maximum Entropy (MaxEnt) probability distribution calculated with the generalized entropies.
These MaxEnt distributions can be obtained analogously to the results by Hanel and Thurner
in [16,40], where they used standard constrained optimization to find the most general form of
MaxEnt distributions, which turned out to be p(ε) = Ec,d,r(−ε) with

Ec,d,r(x) ∝ exp
[
− d

1− c
Wk

(
B(1− x

r
)1/d

)]
. (37)

Here, B, r are constants depending only on the c, d parameters and Wk is the kth branch of the
Lambert-W function (specifically, branch k = 0 for d ≥ 0 and branch k = 1 for d < 0). The consistency
criterion imposed above accords with the fact that many physical systems tend to converge towards
maximum entropy configuration over time, however, it specifies the limits of our assumptions.

Consider systems described by Equation (34) in the absence of external force, i.e.,

∂t p(x, t) = D∂2
xΦ [p(x, t)] . (38)

By assuming that the corresponding stationary solutions can be identified with the MaxEnt
distributions in Equation (37), it can be shown that the functional form of the effective density Φ[p]
must be expressed as

Φ[p] ∝
∫ p

0
q ∂2

qg (q)dq, (39)
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where we neglected additive and multiplicative constant factors for the sake of simplicity. Similar
implicit equations have already been investigated in [61,62,65]. Once the asymptotic phase space
volume scaling relation in Equation (29) holds, it can also be shown that the generalized FP in
Equation (38) (with Φ as in Equation (39)) obeys the diffusion scaling property in Equation (36) with a
non-trivial value of γ in the p→ 0 asymptotic limit [66] (assuming additionally the existence of the
solution of Equation (38), at least from an appropriate initial condition). A simple algebraic relation
between the diffusion scaling exponent γ and the phase space volume scaling exponent c can be
established [66], which can be written as

γ =
1

1 + c
. (40)

Therefore, this relation between c and γ defines families of FP equations which show asymptotic
invariance under the scaling relation in Equation (36).

6. Conclusions

This review concentrates on the concept of generalized entropy (Section 2), which is relevant in
the study of real thermodynamical systems and, more generally, in the theory of complex systems.
Possibly the first example of a generalized entropy was introduced by Rényi (Section 3.2), who was
interested in the most general information measure which is additive in the sense of Equation (5),
with the random variables X and Y being independent. Another very popular generalized entropy
was introduced by Tsallis as a generalization of the Boltzmann–Gibbs entropy (Section 3.1) to describe
the properties of physical systems with long range forces and complex dynamics in equilibrium.
Some more exotic generalized entropies are considered in Section 3.3, while other examples that have
been published in the last two decades are gathered in Appendix A. Our approach was to a great
extent formal, with special emphasis in Sections 2 and 3 on axiomatic formulations and mathematical
properties. For expository reasons, applications are mentioned and the original references given as
our description of the main generalized entropies progressed, rather than addressing them jointly in a
separate section.

An alternative approach to generalized entropies other than the axiomatic one (Section 2) consists
in characterizing their asymptotic behavior in the thermodynamic limit W → ∞. Hanel and Thurner
showed that two scaling exponents (c, d) suffice for admissible generalized entropies, i.e., those
entropies of the form in Equation (10) with g continuous, concave and g(0) = 0 (Section 4); it holds
c ∈ (0, 1] and d ∈ R. As a result, the admissible systems fall in equivalence classes labeled by the
exponents (c, d) of the corresponding entropies. Conversely, to each (c, d), there is a generalized
entropy with those Hanel–Thurner exponents (see Equation (32)), at least for the most interesting
value ranges.

It is also remarkable that, at asymptotically large times and volumes, there is a 1-to-1 relation
between the equivalence class of generalized entropies with a given c ∈ (0, 1] and the equivalence
class of Fokker–Planck equations in which the invariance in Equation (36) holds with γ = 1

1+c ∈
[

1
2 , 1
)

(Section 5). This means that the equivalence classes of admissible systems can generally be mapped
into anomalous diffusion processes and vice versa, thus conveying the same information about the
system in the asymptotic limit (i.e., when p(x, t)→ 0) [66]. A schematic visualization of this relation is
provided in Figure 5. Moreover, the above result can actually be understood as a possible generalization
of the Tsallis–Bukman relation [44].
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Figure 5. Visual summary of the main result presented in Section 5 schematically depicting the relation
between the exponents γ and c. Source: [66].
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Appendix A

We list in this appendix further generalized entropies of the form in Equation (10) and the original
references (notation as in Table 1 of [16]). Γ(·, ·) is the incomplete Gamma function, in Equation (33).

1. Sη({pi}) = ∑i Γ( η+1
η , ln pi)− piΓ(

η+1
η ) (η > 0) [67].

2. Sκ({pi}) = ∑i
p1−κ

i −p1+κ
i

2κ (0 < κ < 1) [68].
3. Sb({pi}) = ∑i(1− ebpi ) + e−b − 1 (b > 0) [69].
4. SE({pi}) = ∑i pi(1− e(pi−1)/pi ) [70].

5. Sβ({pi}) = ∑i pβ
i ln(1/pi) (0 < β ≤ 1) [71].

6. Sγ({pi}) = ∑i pi ln1/γ(1/pi) ([15], page 60).
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Appendix B

From Equations (18)–(20), it follows that the functions g of H1, H2, and H3 are the following:

g1(ε) ≡ 1− εε ≈ −ε ln ε,

g2(ε) ≡ ln(2− εε) ≈ 1− εε ≈ −ε ln ε,

g3(ε) ≡ ε + ln (2− εε) ≈ ε− ε ln ε ≈ −ε ln ε.

Since H1 and H3 are generalized entropies of the type in Equation (10), we conclude that both
belong to the same class as SBGS (see Equation (11)), hence (c, d) = (1, 1).

H2 is a generalized entropy of the type in Equation (14) with G(u) = eu. Therefore,

G( λ
ε g2

(
ε
λ

)
)

G( 1
ε g2 (ε))

≈
exp

(
− λ

ε
ε
λ ln ε

λ

)

exp (− ln ε)
=

λ/ε

1/ε
= λ.

Comparison with Equation (27) shows that c = 0.
Moreover,

G
(

1
ε1+a g2

(
ε1+a))

εa(c−1)G
(

1
ε g2 (ε)

) ≈ exp (−(1 + a) ln ε)

ε−a exp (− ln ε)
=

ε−(1+a)

ε−(1+a)
= 1.

Comparison with Equation (28) shows that d = 0.

Appendix C

1. First, note from Equation (32) that

gc,d(x) = eAΓ(d + 1, 1− c ln x), (A1)

where the incomplete Gamma function Γ(d + 1, 1 − c ln x) exists for d > −1 and all x ∈ (0, 1]
(see Equation (33)), with gc,d(0) = limx→0+ eAΓ(d + 1, 1− c ln x) = 0.

Among Conditions (C1)–(C3) on gc,d (Section 2), for the entropy Sc,d in Equation (32) to be
admissible, only concavity (Condition (C2)) needs to be checked. Since

d2

dx2 gc,d(x) = eA
d2

dx2 Γ(d + 1, 1− c ln x)

= eA
( c

x

)2
e−1+c ln x(1− c ln x)d−1 ×

×
(

1− 1
c + (1− c) ln x− d

)
,

it holds g′′c,d(x) ≤ 0 if and only if d ≥ 1− 1
c + (1− c) ln x, where −∞ < (1− c) ln x ≤ 0 for each

c ∈ (0, 1] and x ∈ [0, 1]. Therefore, g′′c,d(x) ≤ 0 for all x ∈ [0, 1] if and only if d ≥ 1− 1
c , where −∞ <

1− 1
c ≤ 0. On the other hand, d > −1 for the integral Γ(d + 1, 1− c ln x) to exist. Both restrictions

together lead then to the condition in Equation (31) on d for Sc,d to be a generalized entropy.
2. Use the asymptotic approximation 6.5.32 of [59]

Γ(d + 1, 1− c ln ε) = (1− c ln ε)dec ln ε−1 +O( 1
ln ε )

≈ e−1εc(1− c ln ε)d (A2)

(d > −1, 0 < c ≤ 1) to obtain the leading approximation of gc,d(x) in an infinitesimal neighborhood
of 0:

gc,d(ε) ≈ Aεc(1− c ln ε)d ≈ Acdεc(ln 1
ε )

d. (A3)
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Using Equation (A3), the following can be derived:

gc,d (zε)

gc,d (ε)
≈ zcεc(ln 1

zε )
d

εc(ln 1
ε )

d
= zc (ln

1
z + ln 1

ε )
d

(ln 1
ε )

d
≈ zc (A4)

(see Equation (29)) and

gc,d
(
ε1+a)

εacgc,d (ε)
=

εc(1+a)(1 + a)d(ln 1
ε )

d

εacεc(ln 1
ε )

d
= (1 + a)d (A5)

(see Equation (30)).
3. From Equation (A3), we obtain

g1,1(ε) ≈ −Aε ln ε (A6)

(see Example (E1)) and,
gc,0(ε) ≈ Aεc (A7)

(see Example (E2)). Set A = (1− c + cd)−1 [16] in Equations (A6) and (A7) to reproduce the g functions
of SBGS (A = 1) and Tc, 0 < c < 1 (A = 1

1−c ), respectively.
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