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1. Introduction
Silver (Ag) is a rare, naturally occurring element in the earth. It is considered as one of the more important metals after gold, 
for the preparation of  ornaments. It is widely used in a variety of objects, especially in jewelry and tableware. It has versatile 
nature and exhibits many industrial and medicinal properties, such as, being a catalyst, used in photography, brazing alloys, 
electrical conductors, batteries, imaging, silver solder, biomedical, dental alloys, pharmaceutical, and antibacterial activities 
[1–4]. However, some adverse effects have been reported on the human body due to the use of silver in the dental amalgam, 
catheters, accidental wounds, and needles [5]. Additionally, high intake of silver may lead to blood pressure, stomach 
irritation, decreased respiration, and increase in diarrhea [6], whereas, prolonged ingestion of low doses of silver may 
produce fatty liver and kidney disease [7]. Similarly, argyrosis disease is also caused by long term ingestion of soluble silver 
compounds, as their small amount accumulates in the brain and muscles. Decrease in mitochondrial functions, organ failure 
and cytotoxicity may also be due to the chronic exposure of silver ions (Ag+) [4]. Therefore, the maximum permitted level of 
silver in drinking water by Environmental Protection Agency of US is 0.9 µM [5]. Assessment of silver is very important in 
marine ecosystems for environmental monitoring and public health.[6]. Negative impacts of silver on human health are still 
controversial and are not very well established [7]. However, it is well known fact that high amounts of silver have adverse 
effects on aquatic life and are considered as one of the main environmental pollutants [8]. Consequently, determination 
of Ag+ at trace level in water has remained a very important task for many researchers for health and economical reasons. 
Already, various techniques such as inductive couple plasma mass spectrometric methods (ICP-MS) [9], stripping 
voltammetry [10], atomic emission and electrochemical methods [11], and  stripping and Kelvin force probe microscopic 
methods [12] have been reportedly used for the detection of silver ion at trace level. But these methods require lengthy 
sample preparation, hazardous chemicals, sophisticated instruments, and need trained operators. To overcome these issues, 
optical sensors based on metal nanoclusters for determination of silver ion have been developed due to cost-effectiveness, 
simple, and quick observation [13]. Colorimetric method for the detection of Ag+ at trace level has also been reported by 
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many researchers [1, 14, 15]. Research is based on continuous improvements. From an economic and an environmental 
point of view, a favorable method for the synthesis of nanoparticles may include working at room temperature, at neutral 
pH, and green reducing and capping materials.  Generally, plants are considered as natural “chemical factories”. It has 
been confirmed through various studies that the reduction of metals into their respective metals nanoparticles has been 
carried out through plant extracts containing polyphenols, terpenoids, alkaloids, sugars, proteins, and phenolic acids. A 
variety of plant extracts have been used for green synthesis of different metal nanoparticles such as cobalt [16], Ag [17], 
Au [18], Pd [19], ZnO [20], magnetites (Fe and Ni) [21–22], and Cu NPs [23–26]. Ziziphus mauritiana L. (Zm) is a fruit 
tree and well known for its medicinal as well as nutritional benefits [27,28]. It is commonly known as Jujube and locally 
known as ‘Ber’. It is a tropical fruit found in many parts of the world including Pakistan, Africa and India. It belongs to the 
family Rhamnaceae [29]. It has multiple medical advantages like antihyperglycemic, antiinflammatory, antiplasmodial, and 
antimicrobial activities, as well as hemolytic anemia, sedative (tranquilliser), anxiolytic, diuretic, analgesic (pain reliever), 
and antioxidant properties. The leaves of Zm are are also very beneficial to human health and are eaten with catechu as an 
astringent. They are considered as diaphoretic and especially preferred for typhoid in children [10]. 

In the current study, the synthesis of CuNPs involves aqueous leaves extract of Zm and hydrazine hydrate as a reducing, 
as well as, an oxygen removing agent. Fabricated copper nanoparticles (CuNPs) were used as a colorimetric sensor for the 
detection of silver (Ag+) at trace level in real water samples. As we know, there are the two novel aspects of the current 
work; it is the first time that Zm plant extract has been used for the synthesis of copper nanoparticles, and there are 
currently no other studies on copper nanoparticles for colorimetric sensing of Ag+. 

2. Experimental
2.1. Chemicals and reagents
In the current study, all chemicals and reagents were of analytical grade and used without any further treatment. Copper 
chloride (CuCl2.2H2O), hydrazine monohydrate (N2H4.H2O 99.9%), silver nitrate (AgNO3 99.9%), potassium nitrate 
(KNO3 99.9%), zinc chloride (ZnCl2 97%), calcium chloride (CaCl297%), cadmium chloride (CdCl2 98 %), lead chloride 
(PbNO3 99.5%), sodium nitrate (NaNO3 99%), magnesium chloride (MgCl2 99.9%), hydrochloric acid (HCl 37%), nitric 
acid (HNO3 98%), sodium hydroxide pellets (NaOH 99%), and ethanol (C2H5OH 97%) were obtained from Sigma-Aldrich 
Corp. (St. Louis, MO, USA). The preparation of solution was carried out by dissolving a specific amount of each chemical 
in Milli-Q water (EMD Millipore Corp., Billerica, MA, USA).
2.2. Instrumentation
Ultraviolet-visible (UV-vis) absorption spectra of synthesized Zm-CuNPs were recorded on Lambda 356 spectrophotometer 
(PerkinElmer Inc., Waltham, MA, USA) between 200–800 nm. Interaction between CuNPs and phytochemicals of plant 
extract was confirmed by FT-IR spectrophotometer (Nicolet 5700 of Thermo Madison, Thermo Electron Scientific 
Instruments Corp., Madison, WI, USA). Scanning electron microscopy (SEM JSM-6380 LV,  JEOL Ltd., Tokyo, Japan) was 
used to analyze the structural characterization and morphology of prepared Zm-CuNPs. To confirm the size and shape 
of NPs, atomic force microscope (Agilent 5500, Agilent Technologies, Inc. Santa Clara, CA, USA) was used. Crystalline 
properties of fabricated Zm-CuNPs were confirmed by XRD (D-8, Bruker AXS GmbH, Karlsruhe, Germany). Digital 
camera was used to record visual colorimetric detection of Ag+ by copper nanoparticles.
2.3. Preparation of plant leaves extract
Fresh leaves (25 g) of Ziziphus mauritiana were weighted and added into 100 mL volumetric flask. The solution was boiled 
at 100 °C for 15 min then cooled at room temperature. Whatman filter paper (No.1) was used for filtration of the extract 
to get a clear solution. The filtrate was stored at 4 °C for further synthesis of nanoparticles.
2.4. Synthesis protocol of copper nanoparticles
Various parameters, such as, volume of aqueous extract of Zm leaves, volume of reducing agent (1 M hydrazine solution), 
volume of precursor salt (0.01 M CuCl2.2H2O), and pH were optimized by UV-vis spectrometer and the data represented 
in the supplementary file as Figures S1–S4, respectively.

As per optimization study, 1 mL of 0.01 M CuCl2.2H2O, 0.5 mL of plant extract, and 2 mL of 1 M hydrazine hydrate 
were added into a 10 mL test tube and filled with Mili-Q water up to the mark at neutral pH. The solution mixture was left 
at room temperature until it appeared brown in color, which indicated the successful formation of Zm-CuNPs. No stirring 
or heating was involved in the process. UV-vis spectroscopy was used for initial confirmation of the formation and stability 
of the Zm-CuNPs.
2.5. Procedure for colorimetric sensing of silver ion
The colorimetric detection of silver ion was carried out at room temperature. For the development of calibration, known 
concentration of Ag+ ranging from 0.67 to 9.3 µM prepared from silver nitrate stock solution (0.1 μM) mixed with 3 mL 
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of biosynthesized copper nanoparticles solution. After a few minutes the solution was transferred into a 1 cm quartz cell 
to check colorimetric response. Spectroscopic study was conducted at spectral range from 200 to 800 nm by using Milli-Q 
water as reference reagent. Change in color from brown to blackish color was considered as a visual check and change in 
absorbance (delta absorbance) during LSPR study and  was used as a quantitative response for the determination of silver 
in colorimetric system. Color change was observed from brown to blackish with change in absorbance from lower to 
higher against a blank solution for calibration. The analogous color alterations were also achieved with digital camera after 
reaction time and it was compared with previously reported detection of silver by other nanoparticles.
2.6. Preparations of real water samples
Different types of water samples such as tape water, surface water, and other sources from different localities were collected, 
filtered, and diluted to the desired volume. Various concentrations of analyte (Ag+) were spiked from stock solution (0.1 
μM) into 3 mL of Zm-CuNPs. The solutions were kept for 3–4 min at room temperature and then data recorded for each 
sample in triplicate with the help of UV-vis spectrophotometer.

3. Results and discussion
3.1. UV-visible spectroscopy
In the last few decades, several studies reported that the optical response of metal nanoparticles (NPs) can be adjusted 
to control size and shape of synthesized nanoparticles [23]. Localized surface plasmon resonance (LSPR) modes of 
metallic nanoparticles (such as copper, silver, and gold) exist in the visible region of the electromagnetic spectrum. UV/
Vis spectroscopy was used for the optimization of different parameters such as precursor salt (CuCl2), reducing agent 
(hydrazine hydrate), capping agent (leaves extract), and pH for the synthesis of small size CuNPs. 

Effect of volume of aqueous extract of Ziziphus mauritiana leaves on λmax of CuNPs is shown in Figure S1. 
Different volumes ranging from 0.5 to 3 mL of Ziziphus mauritiana (Zm) leaves extract were used to obtain the optimum 

volume on the basis of blue shift which indicated smaller size of copper nanoparticles. The best result was achieved by 
using 0.5 mL of plant extract (Zm) at a wavelength of 590 nm by keeping the amount of precursor salt and reducing agent 
constant. CuNPs have an affinity to oxidize immediately in aqueous medium which is a major negative aspect for using 
these particles as colorimetric sensors. Hence, to provide an inert environment and to stabilize CuNPs, hydrazine hydrate 
was used as a reducing agent, which resists the oxidation of CuNPs by evolving nitrogen. Results show  the change in LSPR 
band from 590 nm to a hypsochromic shift of 587 nm by using 1 mL of hydrazine hydrate 0.5–3 mL keeping the constant 
volume of Zm plant extract. The effect of the volume of 1 M hydrazine solution on λmax shift of CuNPs is shown in Figure 
S2. 

Effect of volume of precursor salt (0.01 M CuCl2) ranging from 0.5 to 3 mL solutions is shown in Figure S3. The 
bathochromic shift and precipitation occurred with bigger particle size using an increased quantity of precursor salt (3 
mL). This change in LSPR band may be result of an increased rate of nucleation with greater quantity of copper II ions 
present in solution. However, 1 mL of precursor salt was selected for further studies. 

pH is an important factor for the stability of nanoparticles. Figure S4  shows pH effect on the blue shift, λmax, and shape 
of the peak, which is related to the size of copper nanoparticles in the pH range between 4 and 10.  

Furthermore, various factors such as the size of nanoparticles, agglomeration, and nature of capping agents also play 
important roles in the position, shape, and size of LSPR band. Conversely, protonation/deprotonation of acidic group 
present in Zm-CuNPs might be followed due to change in pH of solution. Substantial changes occurr in shape and width 
of LSPR band as pH increases from 4 to 10 and pH 7 was selected as optimum pH for Zm-CuNPs on the basis of blue shift 
and shape of SPR band from broad to narrow.

Figure 1 shows UV-visible spectra of synthesized CuNPs with respect to the stability. No significant change was observed 
in either the color, or in the wavelength of colloidal solution with passage of time. The results show that synthesized Zm-
CuNPs under optimized parameters were found to be stable for upto 1 month. Therefore, fabricated Zm-CuNPs could 
be used as sensing probe during a wider period and could be stored at room temperature without using special storage 
conditions. 
3.2. Fourier transform infrared spectroscopy 
FTIR technique was used to observe interaction between CuNPs and biomolecules of plant extract. Figure 2a shows the 
FTIR spectrum of plant material and Figure 2b shows the spectrum of Ziziphus mauritiana extract capped CuNPs. Bands 
at 3430.4 cm–1and 3348 cm–1in the FTIR spectrum of the leaves extract are shifted to 3298 cm–1 in the FTIR spectrum 
of Zm-CuNPs. Moreover, band at 1729.1 cm–1 is due to carbonyl group present in the plant extract (Figure 2a) which 
has disappeared in FTIR spectrum of Zm-CuNPs (Figure 2b). There is also a band at 1618.3 cm–1 due to NH bending of 
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amide group in both spectra. Also, by comparing the fingerprint region, a new signal at 674.5 cm–1was observed in FTIR 
spectrum of Zm-CuNPs due to the presence of CuNPs, as it is not present in FTIR spectrum of leaves extract. Therefore, 
absence of carbonyl band of leave extract and appearance of new peak at 675.5 cm–1 in FTIR spectrum of Zm-CuNPs 
indicated that interaction of biomolecules of leaves extract occurred through carbonyl band with CuNPs.
3.3. Scanning electron microscopy (SEM)
Surface morphology of Zm-CuNPs was studied by SEM image of Zm-CuNPs (Figure 3). It was observed that NPs have a 
rough surface with a spongy, flower like shape. Greater catalytic activity may be due to roughness of surface of Zm-CuNPs 
with larger surface areas [30].
3.4. Atomic force microscopy (AFM)
AFM technique offers visualization and analysis of nanomaterial in three dimensions. As per AFM images (Figure 4a), 
Zm-CuNPs ranged between 7 and 17 nm with an average size of 11.3 nm which was calculated by ImageJ software. Figure 
4b shows that size was increased after addition of silver into synthesized Zm-CuNPs up to 55 nm. Before sensing Zm-
CuNPs were monodispersed and spherical in shape as shown in Figure 4a but after the addition of Ag+, the morphology 
and size of Zm-CuNPs were totally altered as shown in Figure 4b, may be due to the formation of alloy of Cu and Ag [31]. 
Figure 4c shows size distribution histogram for Zm-CuNPs on the basis of data achieved from AFM.

Figure 1. Time based stability of synthesized Zm-CuNPs.

Figure 2. FTIR Spectrum of (a) Zm leaves extract (b) Zm 
capped CuNPs.
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Figure 3. SEM image of Zm-CuNPs.

Figure 4. AFM images of Zm-CuNPs (4a) before sensing of Ag+ (4b) after addition of Ag+ (4c) size distribution histogram for Zm-
CuNPs.
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3.5. X-ray diffractometry (XRD)
X-ray powder diffraction (XRD) is a rapid analytical technique basically used for phase recognition of a crystalline 
material and can provide information on unit cell dimensions. Figure 5 indicates that the diffraction pattern of Zm-CuNPs 
was distinctive face center cubic (FCC) planes of CuNPs at (111),(100), and (220) with high crystalline level at 2θ angles 
of 31.7°, 45.3°, and 56.4° respectively. These standard planes at particular angles prove that Zm-CuNPs are crystalline in 
nature, verified with the JCPDS data (card no. 89-5899). XRD pattern is comparable with the already reported study [32]. 
3.6. Colorimetric sensing of Ag+

Figure 6a illustrates colorimetric performance of Zm-CuNPs after the addition of different concentrations of Ag+ in the 
range between 0.6 × 10–6 – 9.3 × 10–6M using UV-vis spectroscopy. Calibration curve showing increase in absorbance with 
increasing concentration of Ag+ from 0.67–9.3 × 10–6 M, inset shows color change with respective addition of Ag+. The 
color change was observed gradually from brown to blackish after each addition of Ag+. Figure 6b shows the linear plot of 
added Ag+ concentration in µM versus ∆ absorbance. The LOD and LOQ values for Ag+were found to be 100 × 10–9,and 
330 × 10–9M, respectively. LOD was determined as (3*σ)/ slope of linear plot while LOQ was determined as (10*σ)/ slope 
of linear plot; σ is denoting the standard deviation of at least 3 blank runs measured in ∆ absorbance value. 
3.7. Selectivity of sensor
Selectivity of colorimetric sensor for Ag+ in the presence of Zn2+, Ni2+, Pb2+, Ca2+, Mg2+, Na+, Cd2+, As3+, and K+ at the 
concentration of 10 µM was evaluated. The absorption intensity was examined under the same experimental conditions 
for other metal ions. From Figure 7, it is very clear that no substantial decrease of the absorption signal was observed in 
the presence of tested interfering ions. The results clearly indicate that there is no significant effect on absorbance and color 
change of Zm-CuNPs solution upon the addition of other tested metal ions, except silver ion which showed distinctive 
color change with the change in absorbance of surface plasmonic resonance (SPR) band.
3.8. Figures of merit
Comparative results of the currently developed colorimetric sensor with already reported studies [12,14,33–36] are 
illustrated in Table 1. Although, AuNPs were successfully applied as sensors for the detection of Ag+, the good ranges 
but the use of Au salts makes these sensors highly expensive. Therefore, developed Zm-CuNPs based Ag+ sensor is highly 
sensitive as LOD is much lower than most of the reported sensors. All the reported colorimetric sensors for the detection 
of Ag+ are based on AuNPs. According to our best knowledge, our work is the first report of using CuNPs for Ag+ detection. 
Moreover, Ziziphus mauritiana plant extract was used as capping agent which is easily available, cheap, and many active 
bio-molecules have been already reported in Ziziphus mauritiana plant extract [29].
3.9. Comparative studies
Table 2 shows that aqueous extract of different plants has been reported for preparation of various nanoparticles [22,37–
44]. In the present study, aqueous leaves extract of Zm plant was used as a green material for the synthesis of CuNPs. A 
small size of Zm-CuNPs ranging from 7 to 17 nm was achieved, compared to reported studies.

Figure 5. Diffraction patterns of Zm-CuNPs with face center cubic planes (FCC) at (111), 
(100), and (220).
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3.10. Detection of Ag+ from different real water samples
For practical application of synthesized plant extract based CuNPs sensor, a river water sample was collected from river 
Indus, Pakistan along with some tape water samples. Ag+ was determined by standards addition method. Six known 
concentrations of Ag+ (3, 4, and 5 µM in river water and 2, 7, and 9 μM in tape water) were prepared using spiking protocol. 
The desired volume of each standard was mixed with Zm-CuNPs solution and 3 replicate runs were recorded for each 
analysis. Detection of spiked Ag+ in real water samples with percentage recovery is demonstrated in Table 3. The result 

Figure 6. (a) UV-visible spectra of Zm-CuNPs with different concentration of Ag+ (0.67–9.3 × 10–6 M) while inset shows color change 
with respective addition of Ag+ (b) Linear regression plot of added concentration of Ag+ (µM) to Zm-CuNPs versus change in absorbance 
(ΔA).

Figure 7. Selectivity of the proposed sensor for Ag+ detection in 
the presence of possible interfering ions.
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revealed that Ag+ in real water sample was successfully detected by Zm-CuNPs as a colorimetric sensor with recovery 
between 96.2 and 102.5%.

4. Conclusion
We conclude that the present work focuses on a new strategy with a greener, cheaper, and facile way of producing highly 
stable Zm-CuNPs using a newer capping agent from Ziziphus mauritiana leaves extract. These synthesized nanoparticles 
are highly stable for up to one month at room temperature and neutral pH (7), without the need of any inert environment. 
This synthetic strategy is highly economical, more simple, efficient, and less time consuming. Moreover, these stable Zm-
CuNPs were applied as a sensitive, selective, and economical colorimetric sensor for detection of silver ion at micro molar 

Table 1. Figures of merit of reported and present studies using various metal nanoparticles for 
detection of Ag+ in water.

Method Probe Linear range (M) LOD (M) Reference

Colorimetric BSA@AuNCs 0.5–1 × 10–6 0.204 × 10–6 [14]
Colorimetric AuNPs 1–9 × 10–6 0.41 × 10–6 [33]
Colorimetric AuNPs 0.01–1 × 10–6 7.4 × 10–6 [34]
Colorimetric AuNPs 5–40 × 10–6 1 × 10–6 [35]
Colorimetric AuNPs 0.1–4 × 10–6 0.05 × 10–6 [12]
Colorimetric AuNPs 2–28 × 10–6 0.85 × 10–6 [36]
Colorimetric CuNPs 0.6–9.3 × 10–6 0.1 × 10–6 Current work

Table 2. Different plants used for synthesis of copper nanoparticles by different researchers.

Plant Precursor salt Particle size (nm) Reference
Ocimum sanctum CuSO4 8–140  [22]
Nerium oleander CuSO4 40–100 [37]
Punica granatum CuCl2 40–80 [38]
Eclipta prostrate Cu(CH2COO)2 28–45 [39] 
Punica tenuiflorum CuSO4 56–59  [40]
Asparagus adscendens CuSO4 50–65 [41]
Aloe vera CuSO4 15–30 [42]
Hemidesmus indicus CuSO4 26–30  [43]
Allium sativum CuSO4 83–130  [44]
Ziziphus mauritiana CuCl2 7–17 Current work

Table 3. Detection of spiked Ag+ in real water samples with percentage recovery.

Samples  Actual (µM) Spiked (µM) Found (µM) SD (±) % Recovery

S-1 0 3 2.96 0.02 98.6
S-2 0 4 4.10 0.01 102.5
S-3 0 5 4.81 0.01 96.2
Tape water 
S-4 0 2 1.98 0.03 99.0
S-5 0 7 6.90 0.50 98.5
S-6 0 9 8.89 0.01 98.7
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level concentration. The best merit of the study lies in the fact that highly stable CuNPs are due to strong capping potential 
of phytochemicals of plant extract with a small size (11.3 nm), compared to other reported studies.
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