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Bioactive peptides exhibit key roles in a wide variety of complex processes, such
as regulation of body weight, learning, aging, and innate immune response. Next to
the classical bioactive peptides, emerging from larger precursor proteins by specific
proteolytic processing, a new class of peptides originating from small open reading
frames (sORFs) have been recognized as important biological regulators. But their
intrinsic properties, specific expression pattern and location on presumed non-coding
regions have hindered the full characterization of the repertoire of bioactive peptides,
despite their predominant role in various pathways. Although the development of
peptidomics has offered the opportunity to study these peptides in vivo, it remains
challenging to identify the full peptidome as the lack of cleavage enzyme specification
and large search space complicates conventional database search approaches.
In this study, we introduce a proteogenomics methodology using a new type of
mass spectrometry instrument and the implementation of machine learning tools
toward improved identification of potential bioactive peptides in the mouse brain. The
application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass
analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in
chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine
learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting
retention times, improve the database searching based on a large and comprehensive
custom database containing both sORFs and alternative ORFs. Finally, the identification
of peptides is further enhanced by applying the post-processing semi-supervised
learning tool Percolator. Applying this workflow, the first peptidomics workflow combined
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with spectral intensity and retention time predictions, we identified a total of 167
predicted sORF-encoded peptides, of which 48 originating from presumed non-
coding locations, next to 401 peptides from known neuropeptide precursors, linked
to 66 annotated bioactive neuropeptides from within 22 different families. Additional
PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to
84, while an additional 204 peptides completed the list of peptides from neuropeptide
precursors. Altogether, this study provides insights into a new robust pipeline that fuses
technological advancements from different fields ensuring an improved coverage of the
neuropeptidome in the mouse brain.

Keywords: peptidomics, proteogenomics analysis, neuropeptide, sORF-encoded polypeptide (SEP),
micropeptide, spectral intensity prediction, non-coding, timsTOF Pro mass spectrometry

INTRODUCTION

The term “peptidomics” was first used two decades ago to
describe a quantitative and qualitative analysis of the endogenous
peptide pool in biological samples (Clynen et al., 2001; Schulz-
Knappe et al., 2001; Verhaert et al., 2001; Baggerman et al.,
2002). Since then, it has evolved from a new promising “omics”
field into a successful method in a wide variety of research
areas such as drug and biomarker discovery (Gelman et al.,
2013; Hou et al., 2020) along with other clinical applications
(Kim et al., 2012; Ghezellou et al., 2021; Melby et al., 2021).
The subfield of neuropeptidomics comprises the efforts in
characterizing the full repertoire of neuropeptides in the brain
or nervous system (Svensson et al., 2007; Gelman and Fricker,
2010; Le et al., 2013) and has led to the identification of several
bioactive peptides exerting key roles in complex processes, such
as regulation of body weight, learning, aging, and innate immune
response (Gelman and Fricker, 2010; Budamgunta et al., 2018).
While most established bioactive neuropeptides are cleaved
from larger precursor proteins and further modified through
the secretory pathway (Gelman and Fricker, 2010; Hayakawa
et al., 2019) an emerging field in neuropeptidomics is the study
of proteins smaller than 100 amino acids directly translated
from open reading frames (Budamgunta et al., 2018). The
coding potential of these small open reading frames (sORF)-
encoded peptides (SEPs) has been a point of dispute for years,
but advances in high-throughput methods and integration of
several datatypes (reviewed in Peeters and Menschaert, 2020) has
demonstrated their potential as biological regulators. Recently,
a peptide encoded in the 5’ untranslated region (UTR) of
the calcitonin gene-related peptide (CGRP/Calca) has been
reported to trigger pain-associated behavioral responses in vivo,
emphasizing a role for upstream open reading frame (uORF)
translation in nociceptor plasticity (Barragan-iglesias et al.,
2021). Besides uORFs, sORF-encoded peptides translated from
originally “non-coding” RNAs are another category of peptides
reported with functions in important processes like inflammation
and metabolism (Chen et al., 2021). For example, the long non-
coding RNA (lncRNA) Aw112010 harbors a peptide vital to
the mucosal immunity (Jackson et al., 2018) where the peptide
produced from LINC00493 interacts with mitochondrial proteins
(Wang et al., 2021). Another example is Nobody, a recently

characterized human microprotein involved in the mRNA
decapping machinery, translated from a transcript originally
annotated as non-coding (D’Lima et al., 2017) and also identified
in mouse (Budamgunta et al., 2018).

The identification of sORFs and their encoded peptides
benefits greatly of the combination of multiple techniques
(Peeters and Menschaert, 2020). A broad set of computational
approaches applied to ribosome profiling data, the sequencing
technique capturing the translational landscape at single-
nucleotide resolution (McGlincy and Ingolia, 2017), has been
used to predict thousands of sORFs across all species (Pueyo et al.,
2016; Fabre et al., 2021). However, the true existence of these
peptides can be validated only by mass spectrometry (MS)-based
technologies. Although the latter is essential for confirmation
of the translation and for in-depth functionalization, it remains
challenging due to intrinsic characteristics of the said peptides
(Wang et al., 2021) such as their specific translation patterns
(Budamgunta et al., 2018; Peng et al., 2020) and low copy
numbers. The presumable time- and cell specific translation of
sORF-encoded peptides (Hollerer et al., 2018) together with their
short half-life generally results in an overall low abundance in
biological samples, necessitating the reduction of the sample
complexity by either enrichment for small peptides or depletion
of larger complexes (Petruschke et al., 2020). A broad selection
of separation techniques has been applied in several optimized
workflows (reviewed in Peng et al., 2020; Fabre et al., 2021).
For example, Bartel et al. (2020) increased the identification rate
by applying an gel filtration enrichment based on a column
coated with small-pore sized solid-phase material, while Kaulich
et al. (2020) evaluated separation with SDS-PAGE gels followed
by different staining methods. Besides the low abundance, the
MS-based identification of the digested SEPs is further impeded
by their small size, possibly limiting the number of detectable
tryptic peptides using bottom-up proteomic approaches (Orr
et al., 2020). Efforts in optimizing the distinct steps of the MS-
based workflow for robust SEP detection are ongoing but a digest
with trypsin prior to the data-dependent acquisition during MS
analysis has become the most common method for general SEP
identification (Fabre et al., 2021). Due to the highly variable
physicochemical characteristics of these peptides such as different
hydrophobicity (Piovesana et al., 2020), a variety of workflows
can result in distinct sets of SEPs with specific biochemical
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properties related to the applied method. As such, a mixture of
workflows and alternative techniques, such as diverse collision
energy leading to different types of fragmentation spectra (Peng
et al., 2020; Fabre et al., 2021) or other digestion methods
resulting in a distinct pool of peptides (Bartel et al., 2020), could
yield new identifications.

Neuropeptidomics aims to characterize the full
neuropeptidome, including SEPs besides other endogenous
peptides. Apart from the challenges described above, additional
factors further complicate the comprehensive identification of
the total bioactive peptide pool. Contrary to proteomics methods,
(neuro)peptidomics aims to study peptides in their naturally
occurring state (Maes et al., 2019), usually omitting the use of a
cleavage enzyme during sample preparation. The high abundance
of post-translational modifications (PTMs) in bioactive peptides,
often necessary for their biological function (Secher et al., 2016),
combined with the lack of knowledge of specific cleavage pattern
that has produced the endogenous peptides from their precursor,
strongly expands the search space in the peptide to spectrum
matching process (Menschaert et al., 2010; Cerrato et al., 2020).
The explosion of possible candidates during database searching
decreases the sensitivity, thereby increasing the risk for false
positives (Bouwmeester et al., 2020; Verbruggen et al., 2021).
Hayakawa and colleagues (Hayakawa et al., 2019) tried to
circumvent this issue by performing a selective extraction for
neuropeptides and searching MALDI MS/MS data against a
reduced protein database, only considering in silico predicted
neuropeptides. Next to that, de novo search approaches could
potentially offer a solution for more robust searches taking the
highly variable PTMs into account (Romanova and Sweedler,
2015; Maes et al., 2019). Proper bioactive peptide identification
is further complicated by the lack of digestion leading to a
pool of peptides without the regular patterns of typical tryptic
peptides with a basic amino acid at the C-terminus that facilitates
ionization and fragmentation (Menschaert et al., 2010; Maes
et al., 2019). Consequently, mature endogenous peptides often
possess unfavorable ionization properties, like multiple internal
basic residues (Tabb et al., 2004) and charge heterogeneity (Maes
et al., 2019), generating less informative fragmentation patterns
and lower quality spectra. Therefore, the number of spectra per
individual endogenous peptide is prone to be low, emphasizing
the demand for an alternative validation method to improve
neuropeptidomics identifications.

Recent advances in machine learning tools and widespread
use of high throughput techniques provides a massive amount
of data as a source to develop tools for every step in MS-
based workflows (Bouwmeester et al., 2020). For example, the
post-processing tool Percolator (Käll et al., 2007; Halloran and
Rocke, 2018) integrates several features into a semi-supervised
learning algorithm to improve the distinction between true and
false peptide-spectrum matches. Next to that, spectrum intensity
predictors, such as MS2PIP (Degroeve et al., 2015; Gabriels et al.,
2019) and Prosit (Gessulat et al., 2019) are new models that
incorporate fragment ion intensities predictions as additional
features next to the standard m/z ratio during spectral library
searching to increase the resolution of the identification, even
in challenging workflows such as proteogenomics (Verbruggen
et al., 2021). Despite the great promise of these tools, only a

limited number have been integrated in common workflows
(Bouwmeester et al., 2020).

In this study, we introduce a two-step methodology
combining firstly a trapped ion mobility spectrometry coupled
to a time-of-flight mass analyzer (timsTOF) to generate the
highest quality MSMS spectra, secondly the MS2ReScore (Silva
et al., 2019) application leading to an improved identification
of potential bioactive peptides in different regions of the
mouse brain. timsTOF offers an enhanced peptide coverage and
reduction in chemical noise (Lubeck et al., 2018) because of its
extra dimension of separation (Meier et al., 2018), previously
described in different applications in the field of clinical
proteomics (Azkargorta et al., 2020; Macron et al., 2020; Hamada
et al., 2021; Liu et al., 2021). The MS2ReScore tool, including
MS2PIP that predicts the fragment ion intensity as an additional
feature, DeepLC predicting retention times (Bouwmeester et al.,
2021) and the post-processing tool Percolator, further boost the
yield of identified peptides. Additional PEAKS analysis further
expanded the pool of neuropeptides and SEPs on non-coding
regions. In conclusion, this study fuses technological advances
of different fields leading to an improved coverage of the
neuropeptidome in the mouse brain.

MATERIALS AND METHODS

Sample Collection
Experimental procedures and protocols were performed
following European Directive 86/609/EEC Welfare and
Treatment of Animals and were approved by the local ethical
committee (2019-50, University of Antwerp, Belgium). Brains
from early postnatal Swiss CD1 mice were dissected and flash
frozen: one brain from a postnatal day 1 (P1) mouse (in its
entirety) and one brain from a P5 mouse that was separated in
four parts (after removal of cortex and cerebellum the remaining
part was divided by a coronal section in an anterior and a
posterior part). After storage at −80◦C an icecold mixture of
methanol:water:acetic acid (90:9:1) was added and samples
were stirred 15 min at full speed in a Thermomixer at 4◦C.
Samples were centrifuged 15 min at 16,000 g after which the
supernatants was dried in a speedvac vacuum concentrator. The
dried pellet was resuspended in 1% acetonitrile, 0.1% formic
acid after which the sample was cleaned up using C18 reversed
phase spin columns (Thermo Fisher Scientific) according to
manufacturer’s protocol.

Liquid Chromatography Mass
Spectrometry
The sample was dissolved in 10 µl of 6% ACN and 0.1% FA and
separated on a ACQUITY UPLC M-Class System (Waters), fitted
with a nanoEaseTM M/Z Symmetry C18 trap column (100 Å,
5 µm, 180 µm × 20 mm) and a nanoEaseTM M/Z HSS C18 T3
Column (100 Å, 1.8 µm, 75 µm × 250 mm, both from Waters).
The sample was loaded onto the trap column in 2 min at 5 µl/min
in 94% solvent A 6% solvent B (solvent A is 0.1% FA in 18.2
MOhm∗cm water (MilliQ), solvent B 0.1% FA in 80% ACN).
The flow over the main column was 0.4 µl/min and the column
was heated to 40◦C. After an isocratic flow of 4 min at 6% B,
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the concentration of B increased in 36 min to 50% B, to 94% B
in 4 min. After again an isocratic flow of 4 min at 94% B, the
concentration of B decreased in 4 min to 6% which was followed
by 15 of equilibration at 6%.

The column was online with a timsTOF Pro operating in
positive ion mode, coupled with a CaptiveSpray ion source
(both from Bruker Daltonik GmbH, Bremen). The timsTOF
Pro was calibrated according to the manufacturer’s guidelines.
The temperature of the ion transfer capillary was 180◦C. The
Parallel Accumulation–Serial Fragmentation DDA method was
used to select precursor ions for fragmentation with 1 TIMS-
MS scan and 10 PASEF MS/MS scans, as described by Meier
et al. (2018). The TIMS-MS survey scan was acquired between
0.70 and 1.45 Vs/cm2 and 100–1,700 m/z with a ramp time of
166 ms. The 10 PASEF scans contained on average 12 MS/MS
scans per PASEF scan with a collision energy of 10 eV. Precursors
with 1–6 charges were selected with the target value value set to
20,000 a.u and intensity threshold to 2,500 a.u. Precursors were
dynamically excluded for 0.4 s. The timsTOF Pro was controlled
by the OtofControl 5.1 software (Bruker Daltonik GmbH). Ten
PASEF scans can contain up to 12 MS/MS scans per PASEF
scan. Raw data was analyzed with the DataAnalysis 5.1 software
(Bruker Daltonik). The resulting d folder obtained from the
Bruker software for each run individually was uploaded into the
alphatims tool1 (Willems and Mann, 2021) (run via command
line) to create a centroid mgf file for further processing. The mass
spectrometry data have been deposited to ProteomeXchange
Consortium via the PRIDE partner repository with the dataset
identifier PXD026584.

Peptide Identification: Database
Construction and Searching
A custom proteogenomic search database was constructed
combining the known Mus musculus UniProt reference proteome
(downloaded at 8/10/2020) and an alternative proteome based
on the sORFs.org method (Olexiouk et al., 2016, 2018) and
the OpenProt repository (Brunet et al., 2021). First, seven
publicly available ribosome profiling datasets from mouse brain
tissues were downloaded from NCBI Gene Expression Omnibus
(GEO) [GSE140565, GSE143330, and GSE143331 (Shah et al.,
2020), GSE94982, GSE112223 (Gerashchenko et al., 2021),
GSE119681 (Zhao et al., 2019), GSE51424 (Gonzalez et al.,
2014), and GSE74683 (Laguesse et al., 2015)]. These datasets
were subjected to the previously published sORF prediction
pipeline (Olexiouk et al., 2018) with minor code modifications
(available upon request). The sORF predictions of all datasets
were combined into one FASTA file, where only the longest
predicted sORF sequence for each stop position was considered
and sORF predictions only spanning over a single exon of
annotated protein coding genes removed. Additionally, the
combined FASTA file was deduplicated and analyzed by an
in-house scripting module (written in Python 3.7, available
upon request) to exclude identical overlapping sequences with

1GitHub - MannLabs/alphatims: An open-source Python package for efficient
accession and analysis of Bruker TimsTOF raw data from the Mann Labs at the
Max Planck Institute of Biochemistry.

the reference proteome and to construct compatible headers.
Next, the alternative proteome was downloaded from OpenProt
(Brunet et al., 2021) (on 25/6/2020, release 1.5, only containing
altprots and isoprots) and compared against the sORFs.org
predictions for overlapping sequences with the same previously
mentioned module. Finally, all different parts were concatenated
with the cRAP database (downloaded on September 16, 2020)
to account for common contaminants in proteomics samples,
reverse sequences were added as decoys and the resulting fasta
file was used in subsequently database searches in SearchGUI
(v4.0.32) (Barsnes and Vaudel, 2018). MSGF + was chosen as
the search engine (Kim and Pevzner, 2014), setting respectively
the precursor mass and fragment mass tolerance to 20 ppm and
0.05 Da, the instrument to TOF and the peptide length from 8
to 50. Additionally, no cleavage enzyme was specified and the
modifications (amidation of the peptide C-terminal, oxidation
of methionine and pyro-glu formation from glutamine and
glutamic acid) were defined as variable. Database searches against
the UniProt reference proteome (UP000000589_10090) were
performed in a similar manner. All searches (five brain samples
from different mice in triplicate) were run on a Linux server.

The raw files were also analyzed with PEAKS Online
(Bioinformatics Solutions Inc., Canada) with precursor tolerance
set to 20 ppm and a fragment tolerance of 0.05 Da and no
cleavage enzyme (unspecific digestion). Amidation, Deamidation
(NQ), Oxidation (M), Pyro-glu from E and Q were set as
variable modifications. Peptide to spectrum matches (PSMs)
were filtered at 1% FDR. More search details can be found in
Supplementary Table 1.

Peptide Validation and Interpretation
In order to determine a reference list of identifications, the search
results (mzid files) obtained with SearchGUI were analyzed with
PeptideShaker (v2.0.27) (Vaudel et al., 2015) and the default PSM
(Peptide-to-Spectrum Matches), Peptide and Protein Reports
were extracted. Next to that, the same search results (mzid files)
were used as input for the post-processing tool MS2ReScore (Silva
et al., 2019) in a conda environment (Python 3.7) to predict the
theoretical spectral intensities using the developers HCD model
of the MS2PIP tool (Gabriels et al., 2019) for non-tryptic peptides
with the fragment mass error set to 0.02 Da, expanding the
number of features for further validation. Additionally, retention
time predictions were added by the DeepLC tool (Bouwmeester
et al., 2021) included in the MS2ReScore tool. As a final validation
step, the different feature sets (search engine only (SE features),
and search engine and MS2ReScore combined (All features))
were analyzed by Percolator (v3.05.0) (The et al., 2016) to
improve the scoring between target and decoy sequences. All
default parameters were applied at an FDR of 0.01.

Finally, the output files generated by MS2ReScore
(Supplementary Data Sheets 1–5) were loaded into a Jupyter
Notebook for further processing and interpretation. A summary
table with all neuropeptide identifications (Supplementary
Table 2) based on the MS2ReScore output was constructed as
follows. First, the PSMs of the “All feature” set of each replicate
individually were filtered for a q-value below 0.01. Secondly,
the peptides identified by those filtered PSMs were grouped
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by identical peptide sequence (column of MS2ReScore output)
and merged per brain section, resulting in a look-up table
summarizing the MS2ReScore output on peptide level. This
table was complemented with the information of the publicly
available neuropeptide database Neuropep (Y. Wang et al., 2015)
(downloaded at January 4, 20212) to further filter and analyze
the present neuropeptide identifications (Supplementary
Table 2). A similar approach was performed to summarize the
information for the sORF-encoded peptide identifications, where
the grouped peptides files (as described above) were additionally
grouped by protein Ids (column in output MS2ReScore) for each
replicate individually before merging all replicates per brain
type in a summary table. Furthermore, the identifications were
supplemented with extra information extracted from the publicly
available OpenProt database (version 1.5, based on protein Ids)
and Ensembl (version 104, via BioMart based on gene names)
repository and filtered for a protein length equal to or below 100
amino acids (aa) resulting in the final sORF-encoded peptide
look-up table (Supplementary Table 3). A subset of non-coding
identifications was generated out of the summary table by
excluding all proteins identified on a gene of the type “protein-
coding” according to added information. Of these identifications,
the spectra were manually inspected in PeptideShaker for
appropriate signal to noise ratio. Additionally, the coverage of
the MS-peptide of the micropeptide was added and the PSM
ids were checked for presence in the parallel searches against
the reference proteome. Neuropeptide identifications and non-
coding sORF selection was performed in a similar fashion as
described above for the PEAKS search output, using the peptide
reports filtered for a FDR below 0.01.

RESULTS

Peptidomics Workflow With timsTOF
To explore the benefits of the trapped ion mobility Q-TOF
MS-strategy in the context of neuropeptidomics, we devised
a workflow integrating peptidomics, proteogenomics and
machine-learning-based post-processing (Figure 1A). In the
peptidomics analysis, peptides were carefully extracted from
mouse brains and analyzed using a Bruker timsTOF Pro
instrument. Then, experimentally generated spectra were
matched to peptides using a conventional database search with
a custom database constructed with ribosome profiling data
and predicted three-frame RNA translations. The size of our
custom database increased a 5-fold compared to the reference
proteome search space. Out of the 546,530 sequences present,
83.3% (455,015) originate from a proteogenomics source, while
only 9.5% (51,995) are derived from the annotated proteome and
7.2% (39,520) from the annotated proteome overlapping with
predicted proteins. Additionally, the majority (83.6%) consists of
proteins smaller than 100 AA, with over 50% originating from
OpenProt predictions and 20% based on ribosome profiling
predictions of sORFs.org (Figure 1B). In the last step of the
workflow, several machine learning-based tools were applied to
further increase the peptide identifications. More specifically, the

2Neuropeptide Database - Browse (isyslab.info).

feature set generated for each PSM by the search engine MSGF+
during the database searching was expanded with additional
features obtained from MS2ReScore. Next to the fragment ion
peak intensities predicted by MS2PIP, retention times predicted
by DeepLC were included, finally increasing the information for
every PSM from 26 to 103 features. This information matrix was
subsequently fetched into the semi-supervised post-processing
tool Percolator, that used this data to learn a new scoring function
to accurately separate decoy from target PSMs as a final step
of the workflow.

Feature Predictions in a Peptidomics
Context
The effect of the post-processing tools and the expanded feature
set on the final identifications was evaluated on several layers,
starting with the PSM level. The incorporation of the Percolator
tool led to a considerable increase of PSMs with a false discovery
rate (FDR) below 0.01 at PSM level (overview in Supplementary
Table 1). When using the search engine (SE) feature set in
combination with Percolator, the number of valid PSMs below
the PSM FDR threshold of 0.01 is almost doubled compared to
the number of identified PSMs obtained with only PeptideShaker
(PS), lacking the rescoring power of Percolator (Figure 2A
and Supplementary Figures 4–7 and Table 1). The addition
of the predicted spectral intensities and retention times to the
feature set, further referred to as “All features,” only marginally
impacted the total number of identified PSMs (2% more PSMs on
average). Despite the limited increase of validated PSMs, the gain
of additional information is evidenced by a higher confidence
in the identifications, visualized by the increased Percolator
scores and decreased posterior error probabilities (PEP) for
the target PSMs (Figure 2B and Supplementary Figures 4–7).
Additionally, MS2PIP and DeepLC features are among the top
10 features contributing to the Percolator rescoring function
(Supplementary Figures 1–3).

The influence of the “All features” set is further noted by
a slight increase of the peptide identifications. In total, 3,322
unique peptides were identified across the five brain sections
using the “All features” set. Of those, 84% overlapped with the
3,074 unique peptides identified with only the SE features and
Percolator. Both sets resulted in a small fraction of peptides solely
identified with respective features (Figure 3A). To investigate
the impact of the database size, the MS-identified peptides were
compared to the peptides identified during a database search
with only the UniProt Mouse reference proteome as search
space. The proteogenomic search resulted in a similar number
of peptides identified (Figure 3B) with the reference searches.
Next to using an enlarged search space, non-tryptic peptides
form an additional challenge during peptidomics studies. To
evaluate the performance of the intensity predictions by
MS2PIP (Supplementary Figures 8, 9), the Pearson correlation
coefficients (PCC) were investigated for both tryptic-like (basic
aa at the C-terminus) and non-tryptic-like peptides. This
coefficient is calculated by comparing the predicted intensities
to the corresponding empirical spectra. Here, around 80%
of the identified peptides are considered non-tryptic-like (not
ending on R or K). These peptides resulted in lower Pearson
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FIGURE 1 | Peptidomics workflow with timsTOF. (A) The applied workflow consists of three major steps: 1. Peptidomics, where brain tissue samples are analyzed
on the sensitive timsTOF MS, 2. Proteogenomics, where translatomics information from ribosome profiling data and 3-frame RNA translations is complemented with
the reference proteome to create a custom search database for subsequently conventional database searching with MSGF+, and 3. Post-processing with
machine-learning based tools. MS2ReScore adds spectral intensity and retention time predictions to the feature matrix later fetched into the post-processing tool
Percolator, improving the scoring of target PSMs, leading to the list of peptide identifications. (B) The composition of the proteogenomics database used in this
study. Out of the total 546,530 sequences present, 309,463 originate from OpenProt only, 32,106 overlap between OpenProt and sORFs.org and 113,446 exist only
in sORFs.org. Next to that, 51,995 are unique to the reference proteome, while 16,430 overlap between the reference proteome and OpenProt, 11,744 between the
reference proteome and sORFs.org and 11,346 were present in the three parts.

correlations in contrast to the tryptic-like peptides, but only
slightly so (Figure 3C).

Neuropeptides and sORF-Encoded
Peptides
In total, 346 unique MS-peptides supported by 4,645 valid
PSMs were identified from 31 known neuropeptide precursors.

Cross-referencing the sequences of the identified peptides
with the publicly available neuropeptide database Neuropep
(Wang et al., 2015) revealed 66 different known neuropeptides
from 22 different families. Members of the highly expressed
secretogranins, proSAAS and cholecystokinin families were
detected in addition to cerebellins, galanins, Neuropeptide Y
and vasopressins (Supplementary Table 2). Of those peptides,
20 peptides were identified on five different neuropeptide
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FIGURE 2 | Impact of feature prediction on PSM level. (A) Visualization of the number of identified spectra for a range of FDRs when using only the features
generated by MSGF+ (Search Engine, blue) in Percolator and using the features of MSGF+ and the predicted features generated by MS2PIP and DeepLC (All
features, orange) in Percolator. (B) Increased discrepancy power between targets and decoys is illustrated by an increase of the Percolator score of the target PSMs
and decrease of the posterior error probability (PEP) when including all the features (bottom row) compared to solely the search engine features (upper row). (Data of
posterior brain samples is shown, similar graphs for the other four brain samples are found in Suppl. Fig. 1-4).

precursors (Penk, Vip, Scg2, Nmb, and POMC) but without
sequence overlap with the refence sequences present in the
Neuropep database. For those, the name of the annotated

neuropeptide was added based on UniProt annotations. Lastly,
an additional 55 peptides were identified on the Neurosecretory
protein VGF (Uniport accession Q0VGU4). This precursor
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FIGURE 3 | Impact of feature prediction on peptide level. (A) Overlap of unique peptides identified considering “All features” and considering only the “SE features”
during proteogenomic searches. (B) Overlap of unique peptides identified searching against the custom proteogenomics database versus the functional proteome
(Uniprot). (C) Boxplot of the Pearson correlation coefficient (PCC) of the predicted spectrum intensities by MS2PIP and the observed spectrum intensities, for the
tryptic peptides (ending on R or K) and non-tryptic-like peptides (others).

was not included in the Neuropep database for mouse but
is well documented for Rattus norvegicus and Homo Sapiens.
All together, we identified a total number of 401 peptides
originating from known neuropeptide precursors with our
described method (Supplementary Table 2). However, PEAKS
analyses on peptide level resulted in 805 PSMs and 153
peptides extra (Supplementary Table 2). Despite these higher
number of identifications, only one family of neuropeptides,
Sauvagine/corticotropin-releasing factor/urotensin I, was missed
by the MS2ReScore method, while two other families, Galanins
and Nucleobindins, were lacking in the list of peptides
identified with PEAKS. In total, 344 peptides including different
modifications were identified by both methods, while 203
and 60 were unique to PEAKS and MS2ReScore respectively.
Additionally, both methods succeeded in capturing several
truncated peptides only single amino acids different in length,
illustrating the endogenous proteolytic processing (Figure 4).

Next to the peptides originating from known neuropeptide
precursors, our proteogenomics database was designed to enable
identification of new sORF-encoded peptides. We obtained
1,277 unique protein ids throughout all experiments, of which
167 were proteins with a length below or equal to 100 aa.
Of these, 40 were already annotated in Uniprot or TrEMBL,
while 127 were predicted sORFs from OpenProt or sORFs.
org (Table 1). These sORFs were identified with a total of
1242 peptides originating from 3397 PSMs. As a comparison,
the peptide reports of PEAKs lead to 213 ids with a length
below or equal to 100 aa, of which 132 were predicted by
OpenProt or sORFs.org. Since we take particular interest in
sORFs predicted in non-coding regions, out-of-frame sORF
predictions on fully characterized known protein-coding genes
were excluded for further analysis. Of the OpenProt predictions,
44 of these sORFs were located on transcripts assigned as either
long-non-coding RNA (lncRNA) (17), To be Experimentally
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FIGURE 4 | timsTOF data enables study of endogenous proteolytic processes. Illustration of the neuropeptide precursor Vasopressin-neurophysin 2-copeptin
(P35455) and the annotated peptides as reported in Uniprot in bold. Below are the MS-identified peptides illustrating the proteolytic process. The peptide in yellow
was identified in this study, but not present in the Neuropep reference database or annotated in Uniprot.

Confirmed (TEC) transcripts (9) and pseudogenes (14). Four
additional sORFs were considered in the selection since they are
located on predicted genes (Gm1141, Gm14391, 4933416I08Rik,
2900026A02Rik) with limited experimental evidence. In addition,
two identifications in the Uniprot group, the protein product
on the RIKEN cDNA 1500009L16 gene [overexpressed in colon
carcinoma 1 protein homolog (OCC-1)] and the UPF0729
protein C18orf32 homolog on the BC031181 gene, were
also included for further analysis due to the limited public
information on either gene. Finally, two uncharacterized proteins
(Q3TP86 and Q9CU37) in UniProt completed our short list of
48 sORFs identified in a non-coding context by the MS2ReScore
approach (Table 1 and Supplementary Table 3). A total of 60
PSMs and 56 peptides (Supplementary Table 3) resulted in
the MS identification of these sORFs. Only five sORF-encoded
peptides were identified with more than one PSM. To avoid
erroneous identifications, additional information was added to
increase the confidence of the identifications serving as validation
steps. First, the MS-identified sequence tags were tested for
uniqueness by the Blastp algorithm against the Mus Musculus
consensus database. Four sequence tags, two from the Swiss-
TrEMBL group and two predicted sORFs, resulted in hits with
an e-value below 10−10, further confirming the uniqueness of
the other sequence tags. Secondly, all MS-spectra were manually
evaluated and for every PSM id, the occurrence in the parallel
reference proteome searches was verified. None of the PSMs
providing MS evidence for a presumable non-coding sORF-
encoded peptide was assigned during the searches against the
reference proteome. Additionally, 17 of the candidates were
covered for more than 30% by the identified MS-peptide, while
only 2 were only covered for less than 10% (Supplementary
Table 3). Finally, the 48 non-coding sORFs were inspected for
extra indications supporting their biological relevance. A Blastp
search against all proteomes revealed significant hits with an
e-value below 10−10 for 17 sORFs, hypothesizing conservation

for those and thus biological relevance. For 10 of the predicted
sORFs and the two sORFs of the Swiss category, the OpenProt
repository reported homology in other species and for one of
them, IP_950537, previous MS evidence was also reported. We
further inspected the presence of specific biochemical properties
such as short disordered regions and transmembrane helices
(features sometimes described to be enriched in sORFs). From
these predictions, seven sORFs contain a transmembrane region,
while all but two possessed some evidence of short disordered
regions according to IUPred2A (Table 2). Taken together, our
strategy resulted in MS-evidence for 127 predicted sORFs of
which 48 sORFs on non-coding regions and additional features
hinting toward their translation. Next to our method, 40 sORFs
on presumably non-coding locations were identified based on the
analysis with the PEAKs software (Supplementary Table 3). Of
those, only four were detected by both methods, namely three
identifications for the Uniprot group (OCC-1, UPF0729 protein
C18orf32 homolog and uncharacterized protein Q9CU37) and
only one predicted sORF (IP_871601) situated on the predicted
Gm19033 gene. Two additional uncharacterized proteins from
the UniProt group (Q3V047 and A0A5F8MQ94), located on
predicted gene Gm10640 and the lncRNA 1810058I24Rik
respectively, were supported by MS-peptides identified with
PEAKS, as well as 34 other sORFs predicted by OpenProt,
located on predicted protein coding genes (1), lncRNAs (7),
TECs (4), pseudogenes (20), and other non-coding RNA types
(2). Although PEAKS supported four sORFs of the MS2ReScore
selection with additional information, 21 sORFs uniquely found
in the PEAKS analysis are solely identified by a single peptide
and a single PSM, illustrating the challenges in accurately
identifying sORFs on non-coding regions. In conclusion, analysis
of our timsTOF data from the mouse brain by two independent
strategies resulted in MS-evidence for 84 potential sORFs on
presumed non-coding locations and offers a pool of potential
biological candidates for further studies.
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TABLE 1 | Overview general sORF identifications identified by the
MS2ReScore approach.

Category sORFs Total
PSMs

Total
pept

Non-coding Total
PSMs

Total
pept

SWISS 24 1,235 516 2 2 2

TrEMBL 16 1,989 562 2 6 8

OpenProt
predicted

105 128 123 44 52 46

sORFs.org
predicted

22 45 41 0 0 0

Total sORFs 167 3,397 1,242 48 60 56

TABLE 2 | Additional features for sORFs identified from non-coding regions by
MS2ReScore and PEAKS.

Category Total BLASTp MS
evidence

TE
evidence

Orthology TMH

Swiss 2 2 2 2 2 0

TrEMBL 4 4 No info No info No info 0

OpenProt 78 31 1 5 22 9

Total 84 37 3 7 24 9

A summary of the number of sORFs on non-coding regions with additional features
hinting toward their biological relevance. MS evidence, TE (translation efficiency)
evidence and Orthology are extracted from the OpenProt repository, while TMH
(transmembrane helix) was predicted by the online tool TMHMM Server v. 2.0.

DISCUSSION

In this explorative study, we integrated novel developments
in the peptidomics and proteogenomics fields to study the
neuropeptidome of mice. Next to the total of 607 peptides
originating from known neuropeptide precursors, many of
which performing fundamental biological roles (Le et al., 2013;
Hayakawa et al., 2019), we were interested in identifying
sORF-encoded peptides from so-called non-coding regions.
Over the last years, the number of sORFs predicted by
conservation tools (Mackowiak et al., 2015) or ribosome
profiling data (Erhard et al., 2018; Olexiouk et al., 2018; Brunet
et al., 2021) has increased significantly, while the number of
functionally characterized sORF-encoded peptides still remains
rather limited. One potential explanation is that it is challenging
to confidently identify these sORF-encoded peptides using
proteomics techniques. Much efforts have focused on optimizing
MS-based workflows (Bartel et al., 2020; Peng et al., 2020; Fabre
et al., 2021), where a traditional bottom-up strategy with an
enzymatic digestion prior to MS-analysis has often been favored
(Fabre et al., 2021). Several adaptations of the separation (Kaulich
et al., 2020) or enrichment (Petruschke et al., 2020) and digestion
methods (Kaulich et al., 2021) have been investigated and further
applied in a wide variety of biological settings, but only a
limited number of studies consider the top-down strategy as a
potential workflow in SEP discovery (Li et al., 2017; Budamgunta
et al., 2018; Cassidy et al., 2021). Nevertheless, unlike bottom-up
workflows, this alternative method delivers valuable information
about proteoforms, C- or N-terminal specific characteristics
and post-translational modifications (Cassidy et al., 2021) that

are linked to biological functions. Additionally, the potential
limited number of tryptic peptides present in SEPs (Kaulich
et al., 2021) or short neuropeptides is counteracted by
omitting the enzymatic digestion prior to analysis. Here, 48
sORFs of 84 sORFs identified on non-coding regions are
peptides without a basic C-terminus, which would have been
lost during conventional bottom-up strategies. Next to SEP
identification, top-down strategies were originally introduced
to study peptide hormones and neuropeptides (Romanova
and Sweedler, 2015). The proteolytic processing of precursors
proteins into these peptides by specific proteases is fundamental
for their bioactive function, but pinpointing the cleavage sites
and the peptidases involved remains challenging with bottom-up
workflows. Since top down MS approaches omit pre-processing
with a digestion enzyme, it opens up opportunities to study
naturally occurring degradation products (Kim et al., 2012). In
this study, we illustrated the potential of timsTOF data to further
facilitate this research. Besides the detection of fragments of
neuropeptides demonstrating the proteolytic process (Figure 4
and Supplementary Table 2), we managed to detect new
sequences not present in the widely used reference Neuropep
(Wang et al., 2015).

Another key element in SEP discovery is the efficient
separation of proteins to reduce the sample complexity and thus
increase the SEP sensitivity (Petruschke et al., 2020; Cassidy et al.,
2021). In this study, we employ the relatively recent timsTOF
technique (Lubeck et al., 2018), where an increased sensitivity
is achieved by separation, trapping and accumulation of peptide
ions based on ion mobility (Lubeck et al., 2018).The mobility of
an ion is determined by the three-dimensional shape and charge
in the gas phase, adding an additional separation dimension extra
to mass over charge ratio and retention time (Meier et al., 2018).
Also, the combination of trapped ion mobility spectrometry
(tims) and Parallel Accumulation Serial Fragmentation (PASEF)
effectively allows to maximize both throughput and sensitivity.
This new technology has recently been used for analysis
of complex samples in different research fields, such as the
exploration of the proteome in human cerebrospinal fluid
(Macron et al., 2020), detection of antibacterial peptides in
the human endometrial fluid (Azkargorta et al., 2020) or the
proteome of the malaria parasite Plasmodium (Hamada et al.,
2021). To our knowledge, this is the first study where timsTOF
is applied for neuropeptide and sORF discovery and only the
second top-down MS study where non-digested peptide samples
are identified using a timsTOF. The other study using top-down
sample developed a new method for antibody-drug conjugate
identification (Larson et al., 2021). To accommodate the four-
dimensional data space (4D) of timsTOF data, mass over charge,
retention time, intensity and ion mobility, specific modifications
were newly implemented to commonly used search engines.
The search engine MSFragger was adapted to process timsTOF
data and supplemented with a new quantification tool IonQuant
(Yu et al., 2020), while a new algorithm was implemented
alongside the commonly used MaxQuant software to extract 4D
features also enabling a new matching between runs algorithm
(Prianichnikov et al., 2020). A third option for timsTOF analysis
is the de novo-based PEAKS software. In the current workflow,
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we used the robust search engine MSGF+ due to its advantages
in peptidomics searches (Kim and Pevzner, 2014; Sherafat et al.,
2020) and compatibility with our post-processing tools of choice
(Silva et al., 2019). But the integration of more specialized
search engines that omit data manipulation prior to searches
like MaxQuant or MSFragger into the MS2ReScore pipeline in
the future could further expand the information extracted from
timsTOF data and advance neuropeptide and sORF-encoded
peptide identification.

One of the major drawbacks of peptidomics and
proteogenomics is the enlarged search space, leading to reduced
sensitivity and increased false positive rates (Maes et al., 2019;
Verbruggen et al., 2021). To overcome this drawback, Hayakawa
et al. (2019) reduced the search space based on predicted
neuropeptides enabling a more sensitive peptide identification,
but this approach is limited to samples purified from larger
proteins and less sensitive MS data. Another recent proteomics
study (Verbruggen et al., 2021) used a search space of up to 50
times the size of their reference proteome, but achieved accurate
and confident identifications by applying machine-learning
based rescoring tools. In our study, we applied a similar strategy
with no increased identification using a reduced search space
(Figure 2B). Additionally, we observed an improved separation
between target and decoy spectra, shown by increased Percolator
scores and lower PEP (Figure 2). While the application of
machine-learning based tools partly compensated for the
enormous search space, we here found that, unlike previously
reported (Verbruggen et al., 2021), the integration of spectral
intensity and retention time prediction are only responsible for
a marginal increase of valid PSMs. We hypothesize that this
discrepancy can be explained by the different nature of the spectra
used to train the spectral intensity prediction model of MS2PIP
and the spectra generated by timsTOF MS or the difference in
complexity between proteomics and peptidomics samples. An
evaluation of three available MS2PIP models trained for different
fragmentation methods (HCD, TOF, and CID) fails to pinpoint
an outperforming model for our timsTOF data (Supplementary
Table 8). Additionally, another factor influencing fragmentation
patterns is the length and charge of the peptides (Huang et al.,
2008, 2005; Ramachandran and Thomas, 2020). Since no
digestion enzyme is used, peptidomics harbor longer and more
highly charged peptides leading to an extra challenge for spectral
intensity predictions. A recent comprehensive comparison of
several available spectral intensity prediction tools illustrates the
decrease of prediction accuracy for the machine learning-based
tool MS2PIP compared to deep learning methods as the peptide
length and charge increases (Xu et al., 2020). These conclusions
were drawn based on analyses with tryptic shotgun proteomics,
but we hypothesize that these effects are even more prominent
in a peptidomics context. Indeed, the non-tryptic model used
in this study performs slightly better for longer and highly
charged peptides (Supplementary Figure 9). A recent attempt
was made to improve predictions for double and triply charged
tryptic peptides by using a deep convolutional neural network
(Lin et al., 2019) but a general model for peptidomics data
is currently lacking. Thus, in order to fully benefit from the
additional information that spectral intensity predictions can

provide, a new model should be trained tailored to timsTOF data
in a peptidomics context. This can only be done when sufficient
timsTOF datasets become available in the future. Together with
a recent study to identify antibody-based drug products (Larson
et al., 2021), this is only the second study where top-down
strategies are analyzed on a timsTOF pro mass spectrometer.
Alternatively, the spectral intensities could be predicted by a
different algorithm, that is reported to be more robust toward
different data characteristics, like PROSIT (Gessulat et al., 2019).
This deep neural network was originally trained on tryptic
peptides, but succeeds in predicting spectra from non-tryptic
peptides, as well as spectra from data-independent acquisition
settings (Xu et al., 2020). Although both prediction tools
performed equally well in a proteogenomics study (Verbruggen
et al., 2021), the flexibility of PROSIT could be an advantage to
analyze more challenging timsTOF and peptidomics data. As
the machine learning field continues to evolve and more tools
become available, more timsTOF-specific properties could be
predicted and incorporated as additional information next to
the spectral intensity and retention time described in this study.
For example, a newly published model (Meier et al., 2021), based
on a deep recurrent neural network trained with timsTOF data,
can now predict the collisional cross section (CCS) values for
any peptide. Since these values can be derived from the ion
mobility, this feature is a promising characteristic to include.
More so, the CCS values are largely independent of experimental
circumstances, so they are highly precise and reproducible.

In this study, we aimed to identify sORF-encoded peptides,
and more specifically on non-coding regions. We chose to
strictly apply the “non-coding” filter on gene level instead
of the more commonly used transcript level to avoid
identifications supported by experimental evidence originating
from overlapping protein-coding regions mistakenly considered
as non-coding hits. With this stringent setting, 84 potential
sORF-encoded peptides on non-coding regions or regions
with limited information were detected with MS evidence.
Several of these contain additional features supporting their
translation and potential biological importance (Table 2),
such as disordered regions, that are reported to be enriched
in SEPs (Mackowiak et al., 2015) and transmembrane helices,
which are essential in a wide variety of processes like cell-cell
communication (Makarewich, 2020). Besides the technological
challenges during SEP discovery, the in-depth validation of
spectra and identified peptides remains a hurdle that needs
to be overcome. Several attempts, both in bottom-up (Slavoff
et al., 2013) and top-down approaches (Budamgunta et al.,
2018) are made to construct a robust method for validation
of so called “one-hit wonders,” identifications based on only
one PSM. As discussed above, the properties of timsTOF
fragmentation spectra in a peptidomics context might differ
from other MS-methods, indicating the need for adjusted
validation criteria for this specific data. One potential solution
to validate spectra from one-hit wonders is the comparison
between the experimental spectra of the endogenous peptide
and the spectra from its chemically synthesized counterpart
(Chandra et al., 2020). This in combination with parallel
reaction monitoring (PRM) successfully validated one-hit
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wonder missing proteins in the human spermatozoa proteome
(Vandenbrouck et al., 2016).In our study, we manually inspected
the spectra, together with some additional validation steps
and managed to identify several previously described sORF-
encoded peptides (D’Lima et al., 2017; Budamgunta et al., 2018;
Bhatta et al., 2021). Among those was the mouse equivalent
of the human micropeptide Nobody which interacts with
the mRNA decapping complex (D’Lima et al., 2017). It was
identified on what was previously thought to be a lncRNA
transcript. Likewise, another sORF-encoded peptide identified
in our study, the mitochondrial transmembrane micropeptide
Mm47 was localized on lncRNA 1810058I24Rik (Bhatta et al.,
2021). This recently characterized micropeptide is required for
the activation of the Nlrp3 inflammasome, indicating a vital
biological function. This illustrates the growing number of SEPs
on locations previously thought to be non-coding included into
the reference proteome due to intense research over the past
years. This, together with our strict filter for the non-coding
gene type and the incomplete analysis of timsTOF data with
the available prediction tools, leads to a modest number of SEPs
identified hereof potential SEPs identified here that require
further validation to exclude false positive hits. Potential other
MS-based validation strategies to limit false positive hits and
thus increase the confidence of SEPs on non-coding regions are
selected reaction monitoring (SRM) and PRM for individuals
SEPs, while the biological mechanism could be studied by the
identifications of interaction partners (J. Chen et al., 2020) with
several techniques (reviewed in Peeters and Menschaert, 2020)
or with the analysis of knock-out or knock downs of the specific
genes. For example, a CRISPR-based screening strategy revealed
an essential biological function for hundreds of non-canonical
coding sequences in human cells (Chen et al., 2020). Besides
knock-out or knock downs of the precursor protein to evaluate
biological effect, the bioactivity of neuropeptides can be assessed
by specific assays (reviewed in Corbière et al., 2019). A recent
study (Palkeeva et al., 2019) generated structural analogues of
Galanin peptides to investigate the biological activity of new
forms in comparison to previously described ones. Among
the tested sequences was one detected in this study, solely by
the MS2ReScore approach. By using rat model of myocardial
I/R injury ex and in vivo, the peptide was reported to exert
cardioprotective properties. All together, these identifications
demonstrate the robustness of our method and the potential
biological functions that sORF-encoded peptides originating
from non-coding transcripts can exercise.

In conclusion, we managed to overcome some of the well-
known challenges in peptidomics and proteogenomics studies
by integrating machine-learning based tools into our post-
processing workflow leading to the identification of a wide set
of neuropeptides and sORF-encoded peptides with a focus on
the ones in a non-coding context. However, the full potential
of the sensitive timsTOF Pro MS will further benefit from
specialized timsTOF prediction models for spectral intensities
combining timsTOF specific features such as CCS. A tailored
validation strategy is also recommended to exclude false positives
as well as in-depth follow-up analysis to explore the biological
function. Combining these adaptations in future workflows will

lead to a better coverage of the neuropeptidome and sORF-
encoded peptides.
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Supplementary Figure 5 | Impact of feature prediction on PSM level for anterior
brain section.

Supplementary Figure 6 | Impact of feature prediction on PSM level for
cerebellum brain section.

Supplementary Figure 7 | Impact of feature prediction on PSM level for cortex
brain section.

Supplementary Figure 8 | Evaluation of the available MS2PIP models of the
Pearson Correlation Coefficient for four different models, trained with tryptic
peptides of different fragmentations (CID, HCD, TOF) and the non-tryptic model

used in this study for b and y-ions combined (A), only y-ions (B) and only
b-ions (C).

Supplementary Figure 9 | Evaluation of peptide of lengths and charge. Boxplots
of the Pearson Correlation Coefficient for the different MS2PIP models.

Supplementary Table 1 | Summary Search Results.
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Supplementary Table 3 | sORFs identifications.

Supplementary Data Sheet 1–5 | MS2ReScore output.
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