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Cassava is one of the most important food security crops in tropical countries, and a competitive resource for the
starch, food, feed and ethanol industries. However, genomics research in this crop is much less developed com-
pared to other economically important crops such as rice or maize. The International Center for Tropical Agricul-
ture (CIAT)maintains the largest cassava germplasm collection in theworld. Unfortunately, the genetic potential
of this diversity for breeding programs remains underexploited due to the difficulties in phenotypic screening
and lack of deep genomic information about the different accessions. A chromosome-level assembly of the cas-
sava reference genomewas released this year and only a handful of studies have beenmade,mainly to find quan-
titative trait loci (QTL) on breeding populations with limited variability. This work presents the results of pooled
targeted resequencing of more than 1500 cassava accessions from the CIAT germplasm collection to obtain a
dataset of more than 2000 variants within genes related to starch functional properties and herbicide tolerance.
Results of twelve bioinformatic pipelines for variant detection in pooled samples were compared to ensure the
quality of the variant calling process. Predictions of functional impact were performed using two separate
methods to prioritize interesting variation for genotyping and cultivar selection. Targeted resequencing, either
by pooled samples or by similar approaches such as Ecotilling or capture, emerges as a cost effective alternative
to whole genome sequencing to identify interesting alleles of genes related to relevant traits within large germ-
plasm collections.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cassava is one of the most important crops in the tropics, surpassed
only bymaize and rice [1], and it is usually grown by poor farmers living
in marginal and submarginal lands of the tropics [2]. It provides staple
food for over 700 million people in Africa (51%), Asia (29%) and South
America (20%) [3], being their main source of carbohydrates, in part
due to its capacity to produce more energy per hectare than other
crops [4,5]. Cassava is also preferred among other crops in these areas
because it keeps competitive yields under poor soils, drought, acidic
conditions, high air temperatures and evapotranspiration, pests, and
diseases [6–8]. In marginal areas where grain crops often fail, cassava
can strive, allowing farmers to harvest it when needed [9,10].
otá, Colombia.
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In addition to human and animal consumption, cassava has great
potential as a source of industrial starch [11]. In fact, cassava is the sec-
ondmost important source of starchworldwide. In the last two decades,
cassava production has increased mainly owing to its superior starch
quality; which is used primarily in food-processing, paper, glue, textiles,
and pharmaceutical industries or occasionally for ethanol production
[8]. Therefore one important goal of cassava breeding programs is to de-
velop new varieties with high starch content [12] and with variation in
its starch functional properties [13,14]. The biosynthesis of starch in-
volves the production of amylose and amylopectin molecules, which is
catalyzed by a series of enzymes (Fig. 1). The synthesis of amylose is cat-
alyzed by the GBSSI (Granule bound starch synthase) enzyme [15]. Mu-
tations that knock out this protein are known as waxy mutations,
because the resulting starches lack amylose [16]. There is a whole com-
plex of enzymes involved in the synthesis of amylopectin: four soluble
starch synthases (SSI, SSII, SSIII and SSIV), two types of starch branching
enzymes (SBEI and SBEII), the GlucanWater Dikinase (GWD), and vari-
ous debranching enzymes and kinases [17]. The SS and the SBE enzymes
contribute glucose units to the main chain, and mediate the cleavage
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1.Metabolic reactions related to starch biosynthesis. Arrows indicate reactions catalyzed by the enzymes listed close to the corresponding arrow.

186 J. Duitama et al. / Computational and Structural Biotechnology Journal 15 (2017) 185–194
and branch formation of the amylopectin units [18]. Alteration in SBE
activity affects the number of and size distribution of amylopectin
branches [17]. It is hard to determine the exact role of each isoform of
the soluble starch synthases in this process due to their different gene
expression, which depends on both genotypic and environmental vari-
ations [18]. GWD controls the overall rate of starch breakdown with a
central rate limiting role in starch breakdown machinery and down-
stream starch synthesis [19]. Plants lacking this protein accumulate ab-
normally high levels of starch [20].

Another central goal in cassava breeding is the development of
herbicide-tolerant cultivars, because the use of herbicides is an effective
mechanism to control weeds, reducing labor and alleviating problems
of soil erosion associated with mechanical weeding [21]. Studies on
the impact of introducing herbicide resistance cassava in Colombia esti-
mated production cost savings between 15% and 25% [22]. Additionally,
the positive environmental effects which reduce tillage would bring for
increased sustainability of the crop on marginal lands [23].

Resistance to two types of herbicides, inhibiting amino acid biosyn-
thesis, has been commercially exploited in different crops and was
targeted in this study. The first group of herbicides (imidazolinones,
sulfonylureas, triazolopyrimidine, pyrimidinyl-thiobenzoates, and
sulphonyl-aminocarbonyl-triazolinone), interact with the enzymes
Acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS)
[24,25]. AHAS has an important role during the synthesis of branched
chain amino acids such as valine, leucine, and isoleucine, which are im-
portant for the synthesis of several proteins [24]. However, variations in
just one amino acid in the binding site of AHAS enzymes can lead to a
change in their quaternary structure, blocking herbicide binding and
conferring tolerance in the plant. At least five naturally occurringmuta-
tions in AHAS, leading to resistance, have been reported in different
plant species [24]. The second class of herbicides also affecting amino
acid synthesis is the PPT (L-phosphinothricin), also known as
glufosinate, and act on the glutamine synthase enzyme (GS). GS synthe-
sizes glutamine and is very important in the regulation of the nitrogen
metabolism [26,27]. With the development of transgenic technology,
studies established a protocol of using somatic cotyledons as explants
for the transformation of cassava [28] successfully transformed a
herbicide-resistance gene into the cotyledons of cassava Per 183 by
the Agrobacterium mediated method [21]. However, the development
of transgenic herbicide-resistant cassava faces regulatory problems
that have restricted the adoption of the technology in Africa (with the
exception of South Africa).

CIAT holds in trust the largest global germplasm collection of cassava
and other Manihot species (more than 6000 accessions). The in vitro
collection at CIAT was initiated in 1978 soon after the technology for
slow growth in vitro became available [29]. The germplasm collection
is a valuable asset and the main repository of genetic variability of cas-
sava. Advanced materials developed from it were the sources of amy-
lose free starch mutations [14]. Although these discoveries provided
important proof of the value of the collection, it also highlighted the lim-
ited exploration and exploitation of its genetic variability. Thiswork also
highlighted how time consuming and inefficient it is to expose useful
recessive traits by conventional self-pollination methods. A recent par-
tial screening of the collection allowed discovering varieties carrying
two mutations responsible for improved starch quality traits [30].
These findings are encouraging to explore cost-effective alternatives to
screen the germplasm collection in search for usefulmutations for agro-
nomically relevant traits.

In recent years, the development of high throughput sequencing
technologies led tomajor progress in theunderstanding of genomic var-
iation in plants, increasing the number of sequenced genomes [31].
However, despite the economic importance of cassava, studies of its ge-
nomic diversity are much less complete, compared to other crops such
as rice, wheat or maize. Up-to-date the largest study of genomic vari-
ability in cassava, which includes 1280 accessions, is based on 402 single
nucleotide polymorphisms (SNPs) scattered across the genome [32]. Al-
though a draft cassava genome was assembled and made available in
2012 [33], a chromosome-level assembly was only achieved in 2016
[34]. In themeantime, genotyping by sequencing (GBS) has been a com-
monly used alternative to obtain dense datasets of genome-wide SNP
markers [35]. These SNPs have been used to develop saturated genetic
maps for breeding populations, genetic mapping of traits [36–38], and
markers for fingerprinting [39]. More recently they have been used to
perform a Genome-wide Association Study (GWAS) to identify loci re-
lated to resistance to the Cassava mosaic disease [40]. Although GBS is
an efficient technique to screen markers and gather information across
the genome, it does not allow the study and discovery of variability
within specific genes. Sequencing of RNA has also been used as an alter-
native to identify expressed variation across thousands of genes [41].
However, the cost per sample of this technique is still prohibitive for
large numbers of samples. For this reason, targeted resequencing re-
mains an alternative approach to study genetic variability in specific
loci.

In this study, we performed pooled targeted resequencing of DNA
from 1667 cassava accessions to detect rare SNPs in specific genes asso-
ciated with the starch biosynthesis pathway and with herbicide resis-
tance. Selected accessions represent about one fourth of the entire
collection and include landraces from the most important regions of
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cassava production in Latin America. We combined the results of 7 var-
iant calling tools applied to aligned reads obtainedwith two different al-
gorithms to develop a dataset of more than 2000 SNPs within the genes
of interest. These SNPs can be prioritized and validated for allele mining
and efficient identification of mutated genes in accessions within the
cassava germplasm collection.

2. Results

2.1. Targeted Pooled Sequencing of the Cassava Germplasm Bank

DNA was extracted from a total of 1728 accessions from the germ-
plasm collection (Supplementary Table 1). In general, DNA quality
was good,with 70% of the samples showing clear shaped bandswithout
significant smearing (Supplementary figure 1). Only 61 samples were
discarded due to low DNA concentration. For pooled resequencing
two possible methods to normalize DNA concentration across samples
were evaluated: theuse of paramagnetic beads and visual concentration
determination using agarose gels (see Section 4.2). Owing to inconsis-
tencies observed when using beads, a 96 well agarose gel system was
adopted. Based on a literature review and on blast searches of the cassa-
va reference genome [34], a total of 6 genes related to herbicide toler-
ance and 8 genes related to starch biosynthesis were chosen for this
study (Supplementary Table 2). To capture the exonic regions of the
targeted genes, a total of 121 primer pairs having an expected amplicon
length of 600 bp, were designed (Supplementary Table 3). This resulted
in an expected total length of 72 kbp of DNA sequence targeted in the
assay. To assess the quality of these primers, PCR assayswere performed
Fig. 2. Read alignment statistics per pool. a) Number of fragments sequenced as paired-end
expected distance and orientation (proper pair) to a unique region of the genome, fragments
a proper pair. The line indicates the percentage of fragments that could be uniquely assig
b) Distribution of the number of fragments assigned to each target region within each pool.
on one of the pooled samples. Only 18 primers failed to amplify, 13 of
them located within the gene GWD (Supplementary figure 2).

Amplicon products for each pool were sent to the high throughput
sequencing Illumina MiSeq instrument available at the Plant Breeding
and Genetics Laboratory from the International Atomic Energy Agency
(IAEA) in Seibersdorf, Austria. After one 2 × 300 paired-end sequencing
run, around 2.5 million fragments were obtained for each pool. Assum-
ing that these fragments are evenly distributed across the targeted re-
gions, this raw sequencing production represents a expected read
depth of around 20,000× per targeted base pair within each pool.
Reads were trimmed to 240 bp for the first read and to 170 bp for the
second read to remove low quality ends. Alignment of the trimmed
reads to the reference genome yielded an overall alignment rate of
97%, with 89% of the fragments aligning to unique locations and with
the expected distance and orientation (Fig. 2a). Even requiring a strin-
gent reciprocal overlapping of 90% between each aligned fragment
and a targeted region, 91% of the total fragments could be reliably
assigned to a single region defined by one primer pair (Supplementary
Table 3). This percentage represents the capture success rate of the ex-
periment.Moreover, fragmentswithin each pool were assignedmore or
less evenly to the targeted regions for which primer amplification was
successful (Fig. 2b). Besides 17 of the 18primers forwhich amplification
failed, onlyfive additional primers had less than20 reads assignedwith-
in each pool. Except for the case of pool 7, more than half of the regions
had more than 20,000 fragments assigned within each pool. Pool 7 had
only 38 regions with this minimum read depth because about 600,000
fewer fragments were sequenced for this pool. In principle, each frag-
ment assigned to a region represents one read of the entire region.
reads for each pool. Counts are discriminated as number of fragments aligning with the
aligning as a proper pair to multiple regions and fragments not aligned or not aligned as
ned to a targeted region defined by the coordinates of its corresponding primer pair.
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However, the initial trimming performed on each read reduced the
sequenced portion of its corresponding region, leaving uncovered the
central parts of some of the regions (Supplementary figure 4).

2.2. Comparison of Tools for SNP Discovery in Pooled Data

The number of fragments assigned to each region is tightly related to
the total read depth available within each particular locus to assess the
presence of non-reference alleles, call variation, and estimate relative
allele frequencies based the number of reads supporting each allele.
Theoretically, if 10,000 fragments are assigned to one region within
one pool, the minor allele of a biallelic variant with a frequency of 0.01
within the samples included in the pool should be observed in about
100 reads. Because about 200 samples were included in each pool,
heterozygous variants present in only one sample would have a minor
allele frequency (MAF) of 1/400 = 0.0025 within one pool. Although
in this experiment some of these variants would have enough read
support be detected, it becomes increasingly difficult to separate the
support of true alleles with low frequency from sequencing errors.

To identify sites with evidence of variation within the pools, we
combined the results of 12 previously published bioinformatic pipelines
Fig. 3. Comparison of variant calls with different pipelines. a) Number of total variants detected
on alignments obtained with bowtie2 and with BWA; c) Comparison of number of SNPs called
SNPs called between different SNP calling tools on BWA alignments; e) Distribution of differenc
f) Distribution of minor allele frequency for SNPs identified only by VipR discriminating SNPs fo
such SNPs within each category.
designed to discover single nucleotide polymorphisms (SNPs) and in
some cases small indels. The pipelines are the combination of 2 read
alignment tools, Bowtie2 [42] and the Burrows-Wheeler Aligner
(BWA) [43] with 7 variant discovery programs: Freebayes [44], the
Genome Analysis Toolkit (GATK) [45], the Next Generation Sequencing
Experience Platform (NGSEP) [46], Samtools [47], SNVer [48], VarScan
[49] and VipR [50]. From these tools, SNVer and VipR were particularly
designed to identify variation in pools. Because Freebayes and GATK
presented problems or were not compatible with bowtie2 alignments,
we only ran these tools using as input BWA alignments. On average
1350 variants (1270 SNPs) were predicted within each pool, being
SNVer on BWA alignments the pipeline reporting the smallest number
of SNPs (294) and VipR on bowtie2 alignments the pipeline reporting
the largest number (4354) (Fig. 3a). The average number of indels
was 80. VipR and SNVer were not able to detect any indel and VarScan
detected indels only from bowtie2 alignments.

Merging the variants predicted by the different pipelines, a raw
dataset of 7925 variants was obtained, including 7348 biallelic SNPs,
258 biallelic indels and 319 multiallelic variants. Reads supporting
each allele of each variant within each pool were counted following
the genotyping step of the NGSEP pipeline and allele frequencies were
by each variant caller; b) Comparison of number of SNPs called by each SNP discovery tool
between different SNP calling tools on bowtie2 alignments; d) Comparison of number of
es in predicted alternative allele frequency between pools for the curated dataset of SNPs;
und in a dataset of variants obtained fromWGS data. The line indicates the percentage of
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estimated from these counts. About 70% of the raw variants are located
within the targeted regions. Atfirst sight, this percentage looks inconsis-
tent with the capture success rate of 91% reported above. The explana-
tion for this outcome is that variants outside targeted regions are
called from the few reads falling away from targeted regions and then
the total read depth of those variants ismuch lower than that of the var-
iants within the targeted regions (Supplementary figure 3). The raw
variants were filtered by minimum read depth, number of pools in
which the variant is observed, andminimum alternative allele frequen-
cy. To differentiate true rare SNPs from sequencing errors, the number
of errors for each raw SNP was estimated as the average between the
third and the fourth smallest allele read depth. Then, the ratio between
the read depth of the allele with the second count and the estimated
number of sequencing errors was calculated and the SNP was filtered
out if this ratiowas less than5. Thisfiltering procedure yielded a curated
dataset of 2614 SNPs (Supplementary Table 4). Estimated allele fre-
quencies for curated SNPs were adjusted taking into account read
counts of the two predicted alleles. Contrasting the raw calls obtained
using each tool during the discovery step with this filtered dataset, we
found that 80% of the SNPs in the final set were discovered only by
VipR and only 46 SNPs were reported by tools different than VipR. The
filters reduced the number of SNPs called by each method to about
half in the case of vipR and SNVer, and up to 1 over 10 in the case of
Samtools. Samtools only reported 108 of the filtered SNPs with only
one SNP not shared by other tools. SNVer and NGSEP were the second
and third tools reporting more SNPs within this dataset with 398 and
330 SNPs respectively. The SNPs contributed by the same discovery
tool using different read alignment methods were compared to assess
the consistency of each method relative to the input alignments (Fig.
3b). Although Varscan only called a total of 163 SNPs, 87% of them
were consistently called from bowtie2 and BWA alignments. 80% of
the SNPs called by NGSEP were consistent across alignment tools. The
smallest percentage of intersection (25.6%) was reported by SNVer.
With the exception of Samtools, the other tools reported more SNPs
using bowtie2 alignments than BWA alignments.

In absence of a gold-standard to perform a formal quality assessment
of the variants predicted by different pipelines, we also calculated the in-
tersections between SNP discovery tools, excluding vipR (Fig. 3c and d).
Starting from alignments built using bowtie2, Varscan calls every SNP
called by Samtools, and NGSEP calls every SNP called by Varscan or by
Samtools. NGSEP and SNVer share 209 SNPs, which represents the 58%
of the SNPs called by SNVer and the 64% of the SNPs called by NGSEP.
Starting from BWA alignments the sharing between the same 4 tools re-
mains consistent, with the exception of one SNP called by Samtools,
which is not called by any other tool (including vipR) and four SNPs
called by samtools, NGSEP and SNVer and not called by Varscan.
Every SNP called by Varscan is also called by NGSEP. GATK and
Freebayes were added to the comparison performed starting from BWA
alignments. 47 SNPs were identified by the four methods and 117 addi-
tional SNPs were called by three out of four methods. The number of
shared SNPs between NGSEP and SNVer (89) still represents 63% of the
total SNPs called by SNVer. However, in this case the same number only
represents 33% of the SNPs called by NGSEP. From the 182 SNPs called
by NGSEP and not called by SNVer, 83% are called either by GATK or by
Freebayes.

We also investigated the consistency of allele frequency estimations
between pools, taking into account that the samples were pooled with-
out information of population structure and hence the allele frequencies
of variants should be stable across pools. Fig. 3e shows that the differ-
ences between the largest and the smallest predicted allele frequency
for each variant are generally small, having only 213 cases of differences
larger than 0.05 and 78 cases of differences larger than 0.1. Because the
set of SNPs identified in this study is largely dominated by the SNPs only
identified by VipR, this comparison was performed independently for
the SNPs predicted only by VipR and for the SNPs predicted by at least
one of the other tools. As expected, the subset of variants only called
by vipR consists on SNPs with low MAF (Fig. 3f). Overall, this result in-
dicates that the predictions are stable, especially for the SNPs with
high MAF in which large errors on the prediction of allele frequencies
could be expected. The largest differencewas observed in the SNP locat-
ed at 27,238,423 of chromosome 3. Whereas the alternative allele
(Guanine) is predominant in pool 4 with 27,876 reads supporting this
allele and only 989 reads supporting the alternative allele (Adenine),
in pool 8 the alternative allele is supported by only 6 reads, which is
much smaller than the read support of the reference allele (13,028)
and it is even smaller than the read counts for cytosine and thymine
(9 and 13 respectively). Read counts in the other pools are relatively
balanced between the reference and the alternative allele.

Looking for further evidence to assess the precision of the SNP call-
ing procedure, we compared the SNPs predicted in this work with the
SNPs identified from an analysis of whole genome sequencing (WGS)
data from 58 cassava varieties [34]. Due to the reduced number of sam-
ples, it would be expected that most SNPs with low MAF would not be
observed in the WGS panel. However, to the best of our knowledge,
this is the only publicly available dataset of SNPs aligned to the current
cassava reference genome. A total of 350 SNPs (13.4%) appear in the two
datasets (Supplementary Table 4). Whereas 54.3% (272) of the variants
called by at least one of the other tools appear in theWGS dataset, only
3% (78) of the variants predicted only by vipR appear in the WGS
dataset. However, these 78 SNPs are not skewed toward the highest
MAF ranges within the subset of VipR SNPs, as it would be the case if
the SNPs in the lower MAF ranges would be mostly false positives. The
SNPs present in the WGS dataset are well distributed across the differ-
ent ranges of MAF and in particular 10% of the SNPs with MAF less
than 0.01 appear in the WGS dataset.

2.3. Functional Characterization of Variants within Targeted Genes

Functional annotations of the dataset of filtered SNPs using both
NGSEP and SNPeff were performed, obtaining 317 synonymous, 1037
missense and 59 non sense mutations (Fig. 4a). At first sight, the num-
ber of missense mutations looks unexpectedly high. However, this can
be explained by the accumulation of rare mutations over the varieties
sequenced in the pools. Keeping only variants called by at least one
method different than VipR, the number ofmissensemutations (91) be-
comes similar to the number of synonymous mutations (84). Fig. 4a
shows that the percentage of rare variants reduces to 35% and that syn-
onymous mutations and mutations in introns tend to have larger allele
frequencies than non-synonymous mutations. Fig. 4b shows the distri-
bution of mutations in coding regions per gene. The AHAS genes accu-
mulate 55% of the mutations and seem to have larger SNP density
than the genes related to amylose content, even after normalizing by
the length of the covered exonic regions. Within the SS family, SSIII
and SSIV show a larger SNP density and for SSIV in particular the number
of synonymousmutations (3) is much smaller than the number of mis-
sense mutations (11). Six of these missense mutations have a predicted
MAF larger than 0.1. The number of non-sense mutations reduced
to only seven. Interestingly, two of these mutations, which modify the
codons 141 and 143 at exon 4 of the gene GWD showed alternative
allele frequencies close to 0.5 and to 0.25 respectively over the 8
pools. Read counts indicate that in almost all pools the alternative
alleles of both mutations were supported by over 3000 reads and that
the number was always 5-fold higher than the number of reads
supporting other alternative allele. Three additional mutations with
MAFs larger than 0.15 are located close to the end of the SSIII and the
AHAS4 genes.

Unfortunately vipR and SNVer, which were the two software pack-
ages implementing models for pooled sequencing data, were not de-
signed to call small indels. Combining results of the other tools, 4
small indels were identified within coding regions of the sequenced
genes (Supplementary Table 5). One of these indels, located within
the gene SBE was a missense 3 bp deletion, which removes a lysine



Fig. 4. Functional analysis of variants. a) Distribution of alternative allele frequencies observed over the 8 pools for the dataset obtained removing SNPs that were called only by vipR.
b) Distribution of SNPs within coding regions of the genes sequenced in this study. The line represents the number of SNPs per kilo base pair c) Reads supporting a 1 bp deletion
changing the open reading frame to generate an early stop codon in the allele of the AHAS gene at chromosome 17. The upper panel is a visualization using the integrative genomics
viewer (IGV) of the reads spanning the region (gray rectangles). Colors different than gray indicate base calls different than the reference allele. The highlighted column shows reads
reporting a 1 bp deletion. The lower panel shows a view of the JBrowse visualizer available in phytozome of the highlighted subregion, including the nucleotide sequence and the six
possible amino acid translations. The arrow indicates the location of the frameshift deletion.
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amino acid. The three remaining indel mutations are all 1 bp deletions
located at the AHAS 4 gene located at chromosome 17 (Fig. 4c). The
three mutations are predicted to change the open reading frame of the
gene, which is likely to produce an early stop codon. Predicted allele fre-
quencies based on read counts indicate that thesemutations are present
in about 15% of the sequenced cultivars.

3. Discussion

The recent releases of chromosome-level assemblies for different
plants and the continuous reduction in sequencing costs allows research
in staple crops such as cassava to enter the post-genomic era in which
comprehensive characterization of genomic diversity across complete
genebank collections becomes a feasible task [51]. However, because
whole genome sequencing (WGS) costs are still in the order of $500
per sample for cassava, cost-effective sequencing alternatives are
preferred for different applications. Genotype by Sequencing (GBS),
which recently became the method of choice for applications such as
construction of genetic maps, population structure and association
mapping, has asmain disadvantage that it does not allow to obtain com-
plete sequencing of any single gene. Because the objective in this work
was to perform allele mining over the CIAT germplasm collection for
genes already known to be related to starch content and herbicide toler-
ance, we decided to implement a targeted sequencing approach based
on PCR assays guided by carefully selected primers. This strategy
allowed maximizing the power of high throughput sequencing (HTS)
to obtain accurate information of variability across more than 1500 va-
rieties from the germplasmcollection. To thebest of our knowledge, this
study is up-to-date the sequencing effort involving the largest number
of samples in cassava.

The targeted sequencing strategy followed in this experiment in-
deed revealed a large amount of variants at different allele frequencies
within the targeted genes. A comparison with the SNPs identified by
whole genome sequencing of 58 African varieties (Bredeson, 2016)
served as validation of the variants with high Minor Allele Frequency
(MAF) but also showed that sequencing a limited number of varieties
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does not allow identification of a large amount of genetic variation that
could be potentially relevant for breeding purposes. The consistency in
predictions of allele frequencies observed across the eight pools sug-
gests that the method employed for DNA normalization and the bioin-
formatic analysis were generally effective and hence they can be used
for future pooled sequencing experiments. The main drawback that
we could observe using the pooled targeted sequencing approach was
a reduction of the regions effectively sequenced by the experiment
due to the increased error rates toward the 3′ ends of the reads. Because
reads are directly sequenced from PCR products and not randomly sam-
pled within the targeted regions, high error rates at the 3′ end of the
reads will accumulate at the central parts of the targeted regions, pro-
ducing a large amount of false positives. If reads are trimmed to prevent
this effect, central parts of someof the targeted regions are lost. In future
experiments, amplicon lengths of PCR products should be reduced to
take into account the error rate of the sequencing instrument. A second
drawback of this approach is that individual genotyping of the variants
revealed by the experiment can not be achievedwithin the experiment.
We are currently evaluating different techniques to perform direct
genotyping of the most promising SNPs identified in this work.

Themost commonly used tools for variants discovery (NGSEP, GATK,
Samtools, Freebayes and Varscan) are not designed to detect low fre-
quency variants in pooled samples, because they were designed to per-
form variants discovery from alignments of reads sequenced from
individual samples. Hence, one of the assumptions to improve the
genotyping quality in these tools is that the two alleles in heterozygous
sites will have even representation in the sample. This is not the normal
case for pooled samples because population allele frequencies deter-
mine the relative proportion of read counts supporting each allele with-
in variant sites. However, we could only find two additional software
tools (VipR and SNVer) that would be feasible to run on current aligned
HTS reads and that implemented statistical models to find the low fre-
quency variants that could potentially be extracted from these data.
An initial comparison of the variants obtained with these two tools
showed that their results were very divergent, with VipR reporting be-
tween five and twelve times more variants than SNVer, depending on
the read alignment tool (Fig. 3a). Although SNVer could effectively iden-
tify some low frequency variants that the other pipelines could not
identify, these variants were not consistently identified across read
alignment tools. Moreover, SNVer missed some variants with large fre-
quency that could be discovered even with the traditional tools. On the
other hand, manual examination of the read counts for some of the raw
SNPs with low frequency alternative nucleotides predicted by VipR
showed that these counts were almost the same as the read counts
supporting the other two nucleotides, whichwere likely to be produced
by sequencing errors. Regarding other types of variation, VipR and
SNVer were not designed to call variants beyond SNPs. Finally, the out-
put VCF format provided by both tools was largely outdated, which
made us feel reluctant of the sustainability of these tools over time. In
this scenario, we considered a good alternative to try all the options
that we had available, and compare the variants obtained using the
different pipelines. As expected, the commonly used tools for variants
discovery reported between 4 and 13 times less variants than VipR. A
comparison between them was consistent with a previous benchmark
that we performed using GBS data, in which NGSEP identifies more
SNPs than the other tools [52]. In this case, a possible reason for this dif-
ference is that Samtools, GATK and Freebayes were designed to analyze
WGS data of human samples. Hence, the models implemented in these
tools include filters of balance between read alignment strands, which
are not adequate for analysis of reads taken from region-specific PCR
products. It is worth to clarify that in the absence of a gold-standard
dataset, the comparison presented in this manuscript is not a formal
benchmark between methods but a survey of the available alternatives
performed from a user perspective. We believe that the results present-
ed in this survey would be helpful for other researchers performing
pooled resequencing experiments and also that improved methods for
variants discovery in pooled samples could be developed to take full ad-
vantage of the data generated by similar experiments.

The final outcome of the comparison between pipelines for variants
discovery and the filtering process, including the filtering of variants in
which the minor allele could not be clearly separated from sequencing
errors, is a dataset of 2614 SNPs within the targeted genes (Supplemen-
tary Table 4). Despite of the filtering procedure, close to 80% of these
variants are still SNPs with low MAF identified only by VipR. Although
we could follow a more conservative approach and report only SNPs
called by a certain type of intersection between the tools, this would re-
move most of the rare mutations that are actually interesting for follow
up genotyping experiments. For this reason, we decided to retain the
union of the SNPs identified by the different tools after performing the
filters described above. However, each SNP is reported with functional
annotations, intersection with SNPs obtained fromWGS data, predicted
allele frequencies, raw read counts andpipelines that reported each var-
iant. This allows different researchers to use common excel filters to se-
lect the most appropriate variants for different follow up experiments.

Given the total length of the targeted region, the SNPs identified in this
study amount to a density of one SNP for each 26 base pairs. Althoughwe
initially found this number surprisingly high, the latest release of the 3000
rice genomes project [53] includes 32 million SNPs for a 400 Mega base
pair genome, which corresponds to a density of one SNP for each 12.5
base pairs. In the rice dataset, the number of variants is also increased
by accumulation of rare alleles as the sample size increased. Individual
genotyping should provide us with a more accurate measure of genetic
variability such as the number of pairwise differences per kbp. The
AHAS genes seem to have larger variability than the genes related to
starch production, even after normalization by the covered portion of
coding regions. GBSSI is the gene with the lowest variability, probably be-
cause it is the main enzyme that catalyzes the reaction to produce amy-
lose. Conversely AHAS4 shows the largest number of variants and also
contains three frameshift indels that potentially produce silencing of
this paralog. Other interesting variants are the non-sensemutations iden-
tified in the single copy GWD gene. If thesemutations have a silencing ef-
fect, plants carrying these SNPs could accumulate abnormally high levels
of starch as shown in previous studies [20].

The SNPs identified in this study can be prioritized based on read
evidence and predictions of functional consequences, and then they
can be tested in a direct genotyping platform. We are currently explor-
ing different alternatives to perform individual genotyping, not only for
validation but also to identify varieties with rare alleles that could ex-
hibit interesting characteristics for the traits of interest that then could
be selected as new sources of genetic variability for the cassava breeding
program. The publication of the SNPs identified in this experiment is
helpful to encourage other groups to perform individual genotyping of
these SNPs in their own germplasm collections, accelerating the discov-
ery of varieties with improved phenotypes. Moreover, the genetic vari-
ation that we could identify in the CIAT collection, within genes that a-
priori could be thought as completely conserved, is also encouraging to
try alternative cost-efficient techniques such as multi-dimensional
pooled EcoTILLING [54] in future experiments. Although EcoTILLING is
in principle a more expensive technique because it requires the design
of a tridimensional pooling strategy in which each sample is included
in three different pools, it allows direct identification of samples carry-
ing rare alleles. Based on the results of this experiment, we believe
that improved methods for targeted resequencing, such as those used
in this study, will provide cost-effective valuable information to acceler-
ate breeding cycles through the use of molecular techniques.

4. Methods

4.1. DNA Extraction

DNA was extracted from a total of 1728 accessions from the germ-
plasm collection at CIAT. The DNA was isolated by using 1 g of cassava
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leaf tissue groundedwith liquid nitrogen in 15mL tubes using the CTAB
method. Thereafter, 3 mL of the prewarmed extraction buffer was
added (100 mM tris HCl (pH 8), 20 mM EDTA (pH 8), 2 M NaCl, 2%
CTAB (w/v), 2% PVP) to each sample and they weremixed. The samples
were incubated at 65 °C for 1 hwith frequent swirling. An equal volume
of phenol: chloroform: isoamyl alcohol (25:24:1) was added to each
sample and mixed gently for 30 min. The samples were centrifuged at
3000 rpm for 30 min at room temperature. Approximately 2 mL of the
supernatantwas transferred to a new tube. The supernatantwas precip-
itated with 1/1 volume of isopropanol and was incubated for 30 min at
4 °C. The precipitated nucleic acids were collected and washed twice
with 70% ethanol. The obtained nucleic acid pellet was air-dried until
the ethanol was evaporated and dissolved in 200 uL of TE buffer
(10 mM tris-HCl pH 8, 1 mM EDTA pH 8). The nucleic acid dissolved
in TE buffer was treated with ribonuclease A (RNase A, 10 mg/mL)
and incubated at 37 °C for 30 min. The quality of extracted DNA was
stained with SYBR safe (Invitrogen) and visualized by agarose gel elec-
trophoresis (1%). The purity of the DNA was estimated by spectropho-
tometry, which estimates A260/280 and A260/230 ratio. After this, the
dried samples were packed to be shipped to the Plant Breeding and Ge-
netics Laboratory in Austria.

4.2. Determination of DNA Quality and Quantity, and Sample Pooling

Once the DNA samples arrived to the Plant Breeding and Genetics
Laboratory in Austria for processing and sequencing, were centrifuged
and then hydrated by the addition of 100 uL (water). Samples were in-
cubated at room temperature for 10min followed by a short vortex and
an additional 5 min incubation to ensure that DNA was completely in
solution. Samples were stored at 4 °C for aminimum of 24 h prior to ad-
ditional processing.

To ensure even sequencing coverage of all DNA samples in a pool,
methods were evaluated to normalize DNA concentrations. Experi-
ments employing paramagnetic bead-based purification systems
(e.g. MagQuantTM) yielded inconsistent concentrations, possibly due
to variations of input DNA (data not shown). Therefore a system using
96well gels and image based quantification was employed [55]. Briefly,
12.5 μL of DNA from each tube was transferred to a well in a 96 well
plate to facilitate liquid handling. 5 μL of DNA was loaded onto 96 well
E-gels® 2%. Five microliters lambda DNA standards diluted to specific
concentrations (3, 4.5, 6.8, 10.1, 15.2, 22.8, 34.2, 51.3 ng/μL) in the last
column of the gel. Samples were electrophoresed, the gel photographed
and concentrations determined with the aid of the image analysis pro-
gram ImageJ. Samples' concentrations were adjusted, samples pooled
together and the final concentration of each of 8 pools was adjusted to
3.57 ng/μL for PCR.

4.3. Primer Design and PCR Performance

A total of 121 primer pairs were designed for the exonic regions of
genes related to herbicide tolerance (AHAS1, AHAS2, AHAS3, AHAS4,
GS-C1 and GS-C3), and starch biosynthesis, (GWD, GBSSI, SS-H2, SSI,
SSII, SSIII, SSIV and SBE). Primer3 [56] was used to design primers with
a length between 25 and 30 bp, with a Tm between 65 °C and 72 °C,
with an optimal of 70 °C, to amplify fragments between 550 and
650 bp. The TaKaRa Ex Taq® polymerase was used to perform the PCR
using 17.85 ng of pooled DNA according to manufacturer's recommen-
dations. Amplification was performed as follows: The initial denaturing
cycle was 2 min at 95 °C, followed by 8 cycles of denaturing at 94 °C for
20 s, annealing at 65 °C for 30 s and extension at 72 °C for 1min. The last
cycle extensionwas held for an extra 5min, followed by holding at 8 °C.
The concentration of PCR products was determined using 96 well
E-gels® 1%. PCR products produced from the same DNA were pooled
together such that 8 samples of pooled PCR products deriving from
the 8 DNA pools created.
4.4. Sequencing

Illumina library preparationwas performed using the TruSeq®Nano
DNA Library Prep (version 15041110 Rev. D) with minor modification.
Briefly, the first normalization and fragmentation steps were not per-
formed and library preparation beganwith the first bead-based cleanup
step. All other steps were followed according to the protocol. Dual in-
dexes were used. Quantification was performed using Qubit fluorome-
try. Libraries were normalized to 4 nM and pooled together. The
concentration of this pool was further checked, adjusted, and the pool
denatured and diluted to 17.5 pM according to the Illumina protocol.
Samples were sequenced on an Illumina MiSeq using 2 × 300 Paired
End version 3 chemistry. Fastqc [57]was used to perform an initial qual-
ity assessment of the raw reads. The reads did not pass the base quality
filter after 240 bp in the first read and after 170 bp of the second read.
Accordingly, reads were trimmed to these lengths.
4.5. Read Alignment

The reference genomeManihot esculenta v6.1was downloaded from
the webpage of Phytozome 11 [58], including the corresponding GFF3
file with gene functional annotations. Two different tools were used to
align reads to the reference genome: bowtie2-2.2.5 [42] and BWA
0.7.12-r1039 [43]. The alignment using bowtie2-2.2.5wasmade accord-
ing to the documentation, indexing the cassava reference genome first.
The programwas runwith default parameters, except for themaximum
number of alignments per read, which was set to 3, the minimum frag-
ment length to 0 and themaximum fragment length to 800. Picard-2.2.4
[59] was used to sort the BAM files. BWA 0.7.12-r1039 was also used to
align reads to the reference genome according to the documentation.
The program was executed with the default parameters, setting the
bandwidth for banded alignment to 600. Samtools 1.3.1 was used to
convert the SAM files into BAM files, to sort them and index them.
Visualization of read alignments was performed using the Integrative
Genomics Viewer (IGV) [60].
4.6. SNP Discovery

Seven variant callers were combined with the two read alignment
tools to obtain twelve different pipelines. The procedure for each pipe-
line is briefly described below.
4.6.1. Freebayes
Freebayes v1.0.2-33-gdbb6160 [44] was executed only from BAM

files generated by BWA, according to the documentation available in
the website. Samtools-1.3.1 was used to merge the VCF file obtained
from each pool and create a final VCF file containing the information
of the eight samples. This variant caller could not be executed using
files obtained with bowtie2.
4.6.2. GATK
To run GATK 3.5-0-g36282e4 [45] a Sequence Dictionary had to be

created using picard 2.2.4, as well as indexing the reference genome
using samtools-1.3.1. The Haplotype Caller option was run to obtain
the SNPs present in each sample, with the default parameters, except
for read downsampling, which was set to 0. At the end, eight VCF files
were obtained, one per sample, with all the information about the
SNPs present in each of them. This was followed by the Merge Variants
option available in this program to obtain a final VCFwith the SNP infor-
mation of all the samples. It's important to mention, that GATK is only
compatible with files obtained from BWA, so it was not possible to use
this variant caller with the alignment information obtained with
bowtie2.
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4.6.3. NGSEP
The NGSEP-3.0.1 [46] pipelinewas used to discover SNPs and indels.

This pipeline was executed with default parameters, except for the
maximum number of alignments allowed to start at the same reference
site, whichwas set to 0. The options tofind repetitive regions, CNV, large
indels and inversions were turned off during the variants discovery and
the genotyping steps of the pipeline. Because NGSEP is compatible with
bowtie2 and BWA, the pipeline was run with the files obtained with
these two alignment programs, with the same parameters mentioned
above.

4.6.4. Samtools
The variant calling was performed according to the documentation

(version 1.3.1) [47]. Mpileup files were generated and the multi allelic
variant caller option was used to detect SNPs. At the end of this process,
eight VCF files with the SNP information of each sample were obtained,
and the programwas used tomerge them to obtain a final VCFwith the
information of all the SNPs present. Because Samtools is compatible
with alignmentfiles obtainedwith bowtie2 and BWA, the same pipeline
was run using the different alignment files.

4.6.5. SNVer
SNVer-0.5.3 [48] was executed according to the documentation

available. To run this variant caller, a file with five columns that
contained the sample name information, number of haploids per pool,
number of samples, minimum quality and maximum base quality
values, respectively had to be created. At the end, a final VCF file with
the information of all the samples was obtained. Because SNVer is com-
patible with bowtie2 and BWA, this pipeline was run with the informa-
tion obtained with these two alignments tools.

4.6.6. VarScan
To run VarScan v2.3.9 [49], the documentation available was follow-

ed. Mpileup files had to be created first using Samtools. With these
mpileup files one of the tools available on the VarScan folder was used
to detect the SNPs present in each sample, so at the end of this process
eight VCFfileswith the SNP informationwere obtained. Thesefileswere
merged using Samtools to obtain a final VCF file. Because VarScan is
compatible with bowtie2 and BWA, this pipeline was run with the
files obtained with these two alignment tools.

4.6.7. VipR
This program was executed according to the documentation avail-

able (version 0.0.16) [50]. First mpileup files had to be created with
Samtools, using the parameters recommended for the documentation.
These mpileup files had to be converted into a vipR files. Then, an R
script was run following the documentation, setting the number of hap-
loids to 536, corresponding to the biggest pool created in the experi-
ment. At the end, a final VCF file with all the SNP information of each
sample was obtained. Because VipR is compatible with bowtie2 and
BWA, this pipelinewas runwith the files obtainedwith these two align-
ment tools.

4.7. Downstream Analysis

At the end 12 VCF files were obtained as a result of the combination
of alignmentfilesmadewith bowtie2 and BWAand the 7 variant callers.
With these 12 VCF files the NGSEP pipelinewas used to do the genotyp-
ing, first merging the variants present in all the VCF files, and then run-
ning the genotyping process with default parameters, except for the
maximum number of alignments allowed to start at the same reference
site, which was set to 0. This was done with the BAM files for each read
alignment tool, generating two final VCF files.

The functional annotation was performed using NGSEP and SNPeff
[61], having the GFF3 cassava file as a reference. NGSEP was also used
to filter this final file, removing the variants embedded in indels first,
and then filtering to keep biallelic SNPs with a read depth of 10000×
or more and those which were present in at least two pools. A custom
script written in java was used to filter variants in which the read
count of theminor allele is less than five times the read count of the av-
erage between the read counts of the third and the fourth allele. Custom
scriptswere alsowritten to calculate statistics related to the coverage of
genes and primers.
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