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Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena
in magnetic materials. It has been recently shown that spin current and associated electric voltage can be
induced by magnetization that depends on both time and space. This effect, called spinmotive force,
provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new
source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in
magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for
the electric voltages that the present system offers a direct measure of phenomenological parameter b that
describes non-adiabaticity in the current induced magnetization dynamics. This spinmotive force opens a
door for new types of spintronic devices that exploit the field-gradient.

S
pinmotive force (SMF) refers to the generation of spin current, which is accompanied by an electric voltage,
as a result of dynamical magnetic textures in conducting ferromagnets1–3. This is due to the exchange
coupling between conduction electrons and the local magnetization. SMF reflects the temporal- and spatial-

dependence of the local magnetization4–9, and thus it offers a powerful method to probe and explore the dynamics
and the nature of magnetic textures. In addition, SMF can be a new source of electromotive force, directly
converting the magnetic energy into the electric energy of conduction electrons. While the classical electromag-
netism tells us that the conventional inductive electromotive force requires a time-varying magnetic flux, it has
been reported that an electromotive force can be generated by a static and uniform magnetic field via the SMF
mechanism10–12.

In the last few years, more attention has been focusing on topologically nontrivial magnetic structures such as
magnetic vortices in soft ferromagnetic nanodiscs13,14 and skyrmion lattices in chiral magnetic thin films15,16. The
SMF offers some insights into and gains benefit from such magnetic systems; the polarity of a moving magnetic
vortex core can be electrically detected17,18, and arbitrarily-large ac SMF was predicted due to skyrmion lattice
motion19. To the best of our knowledge, however, there has been no work on SMF induced in systems that contain
magnetic bubble domains. Magnetic bubbles are observed in ferromagnetic films with out-of-plane anisotropy as
spot-like closed domains, where the magnetization is oriented to the opposite direction to the one outside the
bubbles. The structures of magnetic bubbles are similar to those of skyrmions and vortices in the sense that
bubbles carry a topological number called skyrmion number. Since their first observation in the 1960s, magnetic
bubbles have been showing distinctive and interesting behaviors20–23.

In this paper, SMF due to the motion of magnetic bubble arrays is theoretically investigated based on the
steady-motion model. As the bubble motion may be induced by a spatially-varying magnetic field, our work
reveals that a magnetic field gradient can be exploited to generate a spin current and an associated electric voltage.
By deriving expressions for the electric voltages, we demonstrate their cumulative nature, i.e., they can be
proportional to the number of involved bubbles. An important fact to be stressed is that the present system
can confirm the SMF originating from the non-adiabatic dynamics of the electron spin, leading to a direct
measurement of the controversial, so-called, b parameter.
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Results
Steady-motion model for magnetic bubble. Let us begin by
reviewing the collective-coordinate model for magnetic bubble
dynamics. We consider a cylindrical bubble domain with radius R
in a thin film. This type of magnetic structure can be stabilized by
applying bias magnetic field in the out-of-plane with appropriate
magnitude. The distribution of the magnetization direction m 5

(sin h cos y, sin h sin y, cos h) is assumed to be two dimensional
and described as20 [see Fig. 1]

h r,x,zð Þ~2 tan{1 exp
Q r{Rð Þ

D

� �� �
ð1Þ

y r,x,zð Þ~Sxzy0 ð2Þ

where (r, x, z) is the cylindrical coordinate measured from the bubble
center, D is the wall width parameter, y0 is a constant, Q is the
topological parameter defined as

Q~
1
p

ð?
0

Lh

Lr
dr~+1 ð3Þ

and S is the winding number:

S~
1

2p

ð2p

x~0
dy~

1
2p

þ
dy

ds
ds, ð4Þ

where
þ

ds is the contour integral taken counterclockwise around the

circumference. The domain wall separating the bubble and the
outside, in general, can contain vertical Bloch lines, i.e., there are
many possibilities in the way of distributing the azimuthal angle y
along the perimeter. In Eq. (2) we assumed the linear dependence of
y on x, as we focus on the following two cases. First, when the
magnetization rotates one full turn around the wall of the bubble
with no Bloch line, y 5 x 6 p/2, that is, S 5 1 and y0 5 6 p/2, with
the sign 1 (2) corresponding to left (right) handed chirality. Eq. (2)

is also a good approximation when the Bloch lines are packed so
closely that the distance between the adjacent Bloch lines is
comparable to the wall width, i.e., Sj j^R=D. If one considers a
small number of Bloch lines, the distribution of y would be no
longer as simple as Eq. (2).

When a magnetic field is applied in the z direction with its mag-
nitude varying in the x-y plane, a bubble is driven to move in the film
seeking positions with lower Zeeman energy. In the following the
steady motion of the bubble under the constant gradient =Hz is
assumed, i.e., during its motion with constant velocity v the bubble
stays rigidly cylindrical with constant radius R and the y-distribution
does not change with respect to the coordinate frame moving with
the bubble:

h x,tð Þ~h x{vtð Þ, y x,tð Þ~y x{vtð Þ: ð5Þ

Assuming Eq. (5) and that the magnetization dynamics obeys
Landau-Lifshitz-Gilbert equation, the equation of motion for the
bubble is given by20 (the derivation is shown in Methods)

+Hz~
2S

R2c

Qa

2
R

SD
1z

S2D2

R2

� �
vzẑ|v

� �
, ð6Þ

where c is the gyromagnetic ratio and a is the dimensionless Gilbert
damping parameter. ẑ represents the unit vector along the z-dir-
ection. An assumption that was made when deriving Eq. (6) is that
the spin transfer with the conduction electrons are negligible.
Remarkably, the bubble is deflected away from the direction of the
field gradient at an angle that is determined by the material para-
meters (see Methods for the detail). The extension of the above
discussion to multiple-bubble problem is straightforward.

Spinmotive force due to bubble motion. Let us examine the SMF
induced by the steady motion of bubble indicated by Eq. (5). We
assume that a conduction electron in the ferromagnetic film is
described by a one-body Hamiltonian

H~
p2

2me
zJexs:m r,tð Þ, ð7Þ

where me is the electron’s mass. The second term represents the
exchange interaction between the electron spin and the
magnetization, with Jex being the exchange coupling energy.
According to theory of SMF4–6, dynamical magnetization exerts an
effective electric field + on the electrons via the exchange coupling,
which is called spin electric field since its sign depends on the
electron spin (see Methods):

+ ~+ Az NA
� �

, ð8Þ

with
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�h
2e
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Lh

Lt
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NA~b
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� �
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The upper (lower) signs in Eq. (8) correspond to the electron with
majority (minority) spin. A and NA are referred to as adiabatic and
non-adiabatic spin electric fields, respectively, as b 5 /2Jextsf is the
dimensionless parameter describing the non-adiabaticity in the elec-
tron spin dynamics5,6,8,9, with tsf the relaxation time for the electron
spin flip. The spin electric fields (9) and (10) require both time and
spatial dependences of the magnetization, and this condition is sat-
isfied around the perimeter of moving bubbles.

Figure 1 | Schematic of magnetic bubble structures in a thin film. Red

and Blue arrows in the upper figure and black ones in the bottom indicate

the magnetization.
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The spin electric field (8) induces a spin current js~

{ s:
Fzs;

F

� 	
and a charge current jc~ s:

F{s;
F

� 	
in the sample,

with s
: ;ð Þ
F the electric conductivity for the majority (minority) elec-

trons. These currents generate by-products such as the charge redis-
tribution, the spin accumulation, and the charge/spin diffusion
current. In an open circuit system, the electric field Eind 5

2=w2hA/ht appears to keep the total charge current zero, i.e.,

jcz s:
Fzs;

F

� 	
E ind~0, where w and A are the electromagnetic scalar

and vector potentials. An electric voltage between two given points xa

and xb, which is given by the difference in the electric potential w(xb)
2 w(xa), enables one to detect the spinmotive force electrically. To
determine the gauge potentials one has to fix the gauge, and here let
us adopt the Coulomb gauge, = ? A 5 0. From the above equation for
the open circuit condition, one obtains the Poisson equation

{+2w~+:F : ð11Þ

Here F~{+w~{P is the conservative electric field induced by

the electric potential distribution, where P~ s:
F{s;

F

� 	.
s:

Fzs;
F

� 	
is the spin polarization of the conduction electrons. In the above
argument, we have neglected the contribution from the diffusive cur-
rent to the total charge current as we have metals in our mind as the
samples; once the effective U(1) electric field is given, the problem of
computing the electric voltage induced by the electric field falls within
the classical electromagnetism and the established transport theory,
and it is known that in metals the induced diffusion potential is mostly
negligible compared to the electric potential, unlike in semi-
conductors. Technically, the diffusive current can be taken into
account by replacing the electric potential 2ew by the electrochemical
potential m~{ewz F , where F is the Fermi energy. ( F may be
dependent on the space and the spin electric field in complex ways.)

Eq. (11) can be applied to systems with arbitrary sample geometry
and magnetic texture. In Fig. 2, we show an example of electric potential
distribution by numerically solving the Poisson equation (11) with spin
electric fields (9) and (10), where the steady motion of eight identical
bubbles in a square-shape thin film is assumed [see Methods for the
numerics]. Here the coordinate system is set that the bubble array flows
along the x direction. It is seen that the potential drop occurs at the
position of the bubbles, as is expected. Notice that the adiabatic field
gives rise to the net potential drops only in the y direction (perpendic-
ular to the bubble flow), while the non-adiabatic one only to the x
direction (along the bubble flow), indicating that in this setup the two
contributions can be separately identified by longitudinal and perpen-
dicular voltage measurements. While S 5 1 is assumed in Fig. 2, qua-
litatively much the same profiles are also obtained in the case of jSj5 R/
D, but with height of each potential drop being different (not shown).
The S dependence of the electric voltage will be discussed later.

Next, let us adopt a ‘‘quasi-one-dimensional’’ approximation for
the electric voltage and derive its analytic expression. We limit our-
selves to a rectangular thin film where bubbles move along either of
two sides of sample, as is the case in Fig. 2. Assuming a bubble
moving in the positive x direction, we estimate the electric voltage
Vx along the motion of the bubble by

Vx^
1
Ly

ðLy

0
dy
ðLx

0

Lw

Lx
dx~

1
Ly

ðð
rdrdxP x

^{
R
Ly

P�h
2e

1z Sj jD=Rð Þ2

Sj jD=R
1za2 1z SD=Rð Þ2

2SD=R

� �2
" #{1=2

pcb R+Hzj j,
ð12Þ

where Lx(y) is the side length of the sample along the x(y) direction.
The y-integral operation and the appearance of the factor 1/Ly are for
spatial-averaging of the electric potential along the y-axis. Eqs. (1), (2),
(5), (6) and (8) have been used to carry out the integrals. Eq. (12) gives

the exact solution for Vx in one-dimensional systems: Vx~Ð
Lw=Lxð Þdx. In two-dimensional systems as is the present case, Eq.

(12) is still a good approximation when effects on Vx from hw/hy and
the detailed profile of hw/hx can be ignored. This is often the case if there
are some appropriate symmetries in the system, and the divergence of
the electric field, i.e., the moving bubble, keeps away from the electrodes.
Similar concept for the electric voltage Vy measured in the perpendic-
ular direction to the motion of the bubble leads to

Vy^
1

Lx

ðLx

0
dx
ðLy

0

Lw

Ly
dy

^{
R
Lx

P�h
2e

S
Sj j 1za2 1z SD=Rð Þ2

2SD=R

� �2" #{1=2

2pcQ R+Hzj j:
ð13Þ

The dc electric voltages appear both in the x and y directions, being
proportional to the field gradient for both magnetic configurations S

Figure 2 | The distributions of electric potential w induced in a thin film
due to (a) the adiabatic field (9) and (b) the non-adiabatic field (10),
calculated by solving the Poisson equation (11) numerically, where the
steady motion of eight identical bubbles along the x direction is assumed.
The profile of each bubble is given by Eqs. (1) and (2), with R 5 50 nm, D

5 2 nm, Q 5 1, S 5 1 and y0 5 p/2. The other parameters assumed here

are c 5 1.76 3 1011 T21 s21, a 5 0.02, b^0:0033, P 5 0.5, and the side

lengths are 900 nm. The field gradient makes an angle 75.9u to the x axis

with its strength | R=Hz | 5 10 Oe.
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5 1 and Sj j^R=D. It is seen from Eq. (12) that Vx for S 5 1 is larger
than that for jSj5 R/D under the same applied field, because R . D.
With the parameters shown in Fig. 2, Vx for S 5 1 is about an order of
magnitude greater compared to that for jSj 5 R/D. On the other
hand, Vy has little dependence on jSj.

When there are multiple bubbles, the net electric potential distri-
bution is given by the super-position of all individual electric poten-
tials produced by each bubble. If N identical bubbles move in the x
direction, the simplest extensions, VN

x and VN
y , of the above expres-

sions for the electric voltages, Vx and Vy, respectively, may be

VN
x ~NVx, VN

y ~NVy: ð14Þ

Figure 3 compares Eqs. (14) with the electric voltages obtained by
numerically solving the Poisson equation (11), showing good agree-
ment between them.

Discussion
Eqs. (12), (13) and (14) indicate key features of this SMF. VN

x is
proportional to N/Ly, and thus, roughly speaking, depends on the
‘‘density’’ of bubbles along the y axis and the ‘‘number’’ of bubbles
along the x axis, which contribute to, respectively, the height of each
potential drop and the number of occurrence of potential drop along
the x axis. The dependence of VN

x on the number of bubbles and the
sample geometry is demonstrated in Fig. 3(a). Comparing the con-
figurations i and ii, which share the same sample shape, the slope of
Vx is twice larger for ii because the configuration ii contains twice as
many bubbles, i.e., the sites where the potential drop occurs. It is not
necessarily that the same value of N leads to the same magnitude of
electric voltage; the configuration iii provides twice larger VN

x than ii
does under the same applied field because of the difference in the
factor 1/Ly. Similar discussion is applied for VN

y , see Fig. 3(b). Eq. (14)
indicates that one may control the dc electric voltages by adjusting
the sample geometry and the number of bubbles.

Remarkably, only the non-adiabatic field NA contributes to VN
x ,

while only the adiabatic one A to VN
y . Since in most magnetic

materials b is believed to be smaller than unity and thus
NA



 

= A


 

, it is difficult to identify the contribution of the non-

adiabatic field in the conventional systems. In fact, there has been no
experimental confirmation of its effects. Now, by the measurement of
VN

x one can detect NA free from the larger adiabatic contribution.
This can lead to direct and unambiguous measurement of the phe-
nomenological parameter b; as both Vx and Vy contain in their
expressions P, which may be another uncertain material parameter,
one can be free from P by measuring the ratio of Vx and Vy.

In the present study, we assumed the specific and simple profile of
magnetization, Eqs. (1), (2) and (5), to derive the analytic expressions
for the electric voltages. Although the investigation of the effects of
the bubble shape distortion, local disorder, and etc. must be inter-
esting, it will require systematic study based on numerical
approaches to the magnetization dynamics, which is out of reach
of this paper. The assumption made in the present study is reasonable
when the gradient of applied field is sufficiently moderate22, and our
analytical model will work well in this field range.

In conclusion, We have shown for the first time that a magnetic
field gradient can generate a SMF, i.e., spin currents and associated
electric voltages, by driving the motion of magnetic bubbles. Based
on the steady-motion model, expressions for the dc electric voltages
in longitudinal and perpendicular to the bubble motion are derived,
which turned out to be controllable by tuning the sample geometry
and the number of involved bubbles. An important implication of
our result is that the present system offers an experimental deter-
mination of the phenomenological parameter b that describes non-
adiabaticity in the electron spin dynamics. This SMF can lead to a
new route for basic study of the electron-magnetization interaction
as well as a new concept in spintronic devices, exploiting the gradient
of magnetic fields.

Methods
Steady-motion of bubble. In order to get to the equation of motion for the bubble,

consider the increment of the stored magnetic energy U~

ð
w dV , with the magnetic

energy density w, due to the variations dh and dy:

Figure 3 | The field dependence of dc electric voltages induced by the steady motion of arrays of identical bubbles. Three different configurations

are examined, which are indicated in the top panel. The dynamics of each bubble is described by Eqs. (1), (2) and (5) with S 5 1 [see the caption of Fig. 2

for the other parameters assumed here]. (a) VN
x obtained by Eq. (14) and by numerically solving the Poisson equation (11) correspond to solid lines and

open symbols, respectively, and (b) similarly for VN
y . The electric voltages are proportional to the field gradient, and depends on the number of bubbles

and the sample geometry. See also Discussion in the main text.
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dU~

ððð
dw
dh

dhz
dw
dy

dy

� �
dxdydz

~{
2m0MS vj jpRh

c

a

D
1z

S2D2

R2

� �
dXz

2QS
R

dY

� �
,

ð15Þ

where h is the film thickness and MS is the saturation magnetization. dw/dh and dw/
dy have been expressed in terms of hh/ht and hy/ht by using Landau-Lifshitz-Gilbert
equation of motion without spin-transfer-torque effect, and the time derivatives have
been further expressed in terms of r and x assuming Eqs. (1), (2) and (5). The change
dU in the internal energy is supposed to be balanced by the external pressure on the
bubble due to =Hz:

Q 2m0MS+Hzð ÞpR2h~{
dU
dX

, ð16Þ

where X denotes the position of the center of the bubble. Rearranging the above
equation, Eq. (6) is obtained. The net mobility of the bubble is found by solving Eq. (6)
for jvj in terms of jR=Hzj as

vj j~ Rc

2 Sj j 1za2 1z SD=Rð Þ2

2SD=R

� �2
" #{1=2

R+Hzj j: ð17Þ

The angle r of deflection of the bubble away from the field gradient may be defined
as

r~tan{1 LHz=Ly
LHz=Lx

~cot{1 Qa 1z SD=Rð Þ2
� �

2SD=R
: ð18Þ

With S 5 1, Q 5 1, a 5 0.02, D 5 2 nm and R 5 50 nm, corresponding to the
calculation in Fig. 2, one obtains r^75:90 .

Derivation of spin electric fields. Under the Hamiltonian (7), the Heisenberg
equation of motion for the electron is given by

~ r ,H½ �,H½ �



i�hð Þ2~{Jexs:+m, ð19Þ

with r and denoting the operators for the electron’s position and the force acting
on the electron, respectively. The actual motion of the electron is obtained by
determining the expectation value Æsæ"# of the electron spin with majority (") and
minority (#) states. Notice that m ? =m 5 0 and thus the component of Æsæ"# that is
(anti-)parallel to m does not contribute to the force. Let us decompose the electron
spin as sh i:;~+mzdm:; , where the upper (lower) sign corresponds to the majority
(minority) spin and dm"# represents a slight deviation from +m. The expectation
value of the force is written as h i:;~{Jexdm:;

:+m; what causes non-zero force
due to the exchange coupling is a misalignment between the electron spin and the
magnetization. Assume that the electron spin dynamics is described by

L sh i:;
Lt

~{
2Jex

�h
sh i:;|m{

dm:;

tsf
: ð20Þ

The first term on the right-hand side represents the Larmor precession about the
magnetization, and the damping motion toward the magnetization is phenomeno-
logically introduced by the second term, which describes the non-adiabaticity in the
electron spin dynamics, with tsf the relaxation time for the electron spin flip. By
substituting the above expression for Æsæ"# into Eq. (20), dm"# is expressed in terms of
m, by which one obtains h i:;~+ {eð Þ with given by Eq. (8).

We have considered an open circuit condition. More generally Eq. (20) should
include the divergence of the spin current carried by conduction electrons, leading to
appearance of the spin magnetic field. While we have followed Ref. 9 here, essentially
the same result was obtained by a different approach where Onsager’s reciprocal
relation is taken into account5,6.

Numerical approach to the Poisson equation. In the numerical calculations, the
sample is divided into number of meshes, and a single magnetization vector mi is
assigned to each mesh, where i is the index of the meshes. The time evolution of
{mi(t)} (i 5 1, 2, …, Nm), where Nm is the number of the meshes, is given based on Eqs.
(1), (2), and (5). As the spin electric field if g is updated at each mesh by Eq. (8), the
induced electric potential distribution {wi(t)} satisfies the Poisson equation [see Eq.
(11)]

+2wi tð Þ~P+: i tð Þ: ð21Þ

In two-dimensional discrete systems, the above equation is equivalent to

wi,j~
1
4

+: i,jDxDyzwiz1,jzwi{1,jzwi,jz1zwi,j{1

� 	
, ð22Þ

where (i, j) are the indices for the meshes in two dimension, and DxDy is the area of
the mesh. The potential distribution is obtained by solving the above equation self-
consistently with Neumann boundary condition, where the spatial derivative of the
electric potential is zero at the sample edge.
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