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Background: Several lines of evidence support a role for astroglial pathology in

schizophrenia. Myo-inositol is particularly abundant in astroglia. Many small sized studies

have reported on myo-inositol concentration in schizophrenia, but to date these have not

been pooled to estimate a collective effect size.

Methods: We reviewed all proton magnetic resonance spectroscopy (1H-MRS) studies

reporting myo-inositol values for patients satisfying DSM or ICD based criteria for

schizophrenia in comparison to a healthy controls group in the medial prefrontal cortex

published until February 2018. A random-effects model was used to calculate the pooled

effect size using metafor package. A meta-regression analysis of moderator variables

was also undertaken.

Results: The literature search identified 19 studies published with a total sample

size of 585 controls, 561 patients with schizophrenia. Patients with schizophrenia

had significantly reduced medial prefrontal myo-inositol compared to controls (RFX

standardized mean difference = 0.19, 95% CI [0.05–0.32], z = 2.72, p = 0.0067;

heterogeneity p = 0.09). Studies with more female patients reported more notable

schizophrenia-related reduction in myo-inositol (z = 2.53, p = 0.011).

Discussion: We report a small, but significant reduction in myo-inositol concentration

in the medial prefrontal cortex in schizophrenia. The size of the reported effect indicates

that the biological pathways affecting the astroglia are likely to operate only in a subset

of patients with schizophrenia. MRS myo-inositol could be a useful tool to stratify and

investigate such patients.
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INTRODUCTION

A role for astroglial pathology has been long suspected in schizophrenia (1–3). Astrocytes are
critical for reducing oxidative stress and restoring redox balance in the brain, thus preventing
neurotoxicity (4, 5). Astrocytes enable the crucial glutamate-glutamine cycle that helps clear
extracellular glutamate from synaptic space as well as reduce the deleterious cellular ammonia
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content (6, 7). In addition, two crucial indicators of neuronal
connectivity—synaptic maintenance and myelination—appear
to rely on astrocytic guidance (8–10). Thus, abnormalities in
astrocytic function can produce neuronal dysconnectivity as
well as glutamatergic abnormalities that are known to occur in
schizophrenia (11). Indeed, converging genetic and molecular
evidence now supports the case for a primary role of astroglial
dysfunction in schizophrenia (10, 12).

In vivo imaging of astrocytic integrity holds promise in
clarifying the nature of its dysfunction in schizophrenia.
1H-MRS does not specifically differentiate between brain cell
types; nevertheless, given that myo-inositol is particularly
abundant in astroglia rather than the neurons and other
cells, it can be considered an astroglial marker (13, 14).
The MRS measure of myo-inositol predominantly reflects
astrocytic intracellular compartment, where it has osmotic
functions (15, 16). An increase in MRS myo-inositol resonance
relates to markers of astroglial activation (17, 18), associated
with gliosis (19, 20), and occurs in response to brain injury
(21, 22), thus reflecting an inflammatory response. On
the other hand, myo-inositol also has an important role
as an intracellular second messenger in calcium mediated
glutamatergic signaling (23). Reduced myo-inositol resonance
may relate to astroglial dysfunction and consequently,
aberrant extracellular glutamate clearance from synaptic
space. Thus, low levels of myo-inositol may in turn facilitate
excitotoxic damage and local inflammatory processes that are
currently subjects of investigation in the pathophysiology of
schizophrenia (1).

Many small sized studies have reported on myo-inositol
concentration in schizophrenia, but to date these have not been
pooled to estimate a collective effect size (24). Examining the
state of myo-inositol abnormalities will aid in our understanding
of the role of astroglial cells in schizophrenia. We reviewed
MRS studies reporting myo-inositol resonance in schizophrenia
and conducted a meta-analysis to synthesize the nature of myo-
inositol abnormalities in the medial prefrontal cortex of patients
with schizophrenia. We focussed on the medial prefrontal cortex
as most MRS studies in schizophrenia have placed voxels in this
brain region (24).

METHODS

Search Process
We followed the guidelines set out by the consensus statement
from PRISMA group (25). Our literature search started
with the MEDLINE electronic database to identify journal
articles published until 28 February 2018. We used the
following Medical Subject Headings and freeform search
terms: (schizophrenia OR schizo∗ OR psychos∗ OR psychot∗)
AND (“1H-MRS” OR “1H NMRS” OR “1HMRS” OR “MRS”
OR “Magnetic resonance spectroscopy” OR “Spectroscopy”
OR “proton magnetic resonance spectroscopy”) AND (“myo-
inositol” OR “inositol” OR “myo-inositol”). We noted that in
many reports, myo-inositol was reported as a secondary measure,
and not included in keywords or abstracts. As a result, we used
the terms (“glutathione” OR “NAA” OR “n-acetyl aspartate” OR

“glutamine” OR “GSH” OR “neurometabolic” OR “Glutamate”
OR “Glu” OR “GABA” OR “Lactate” OR “creatinine”) instead
of the 3 terms denoting myo-inositol in order to identify all
eligible studies. We attempted to contact authors whenever
the individual studies indicated that myo-inositol resonance of
adequate quality was measured in the brain region of interest
(see below) but when the data was not published. We also
undertook a manual search of reference lists of review articles
and eligible full text articles. Third, we repeated the search
with Google Scholar to identify journal articles that were not
indexed on MEDLINE. Finally, we also searched the citation
records of Google Scholar for all identified full text articles in
order to locate in press articles that are not yet indexed. Two
authors (AD and PS) undertook independent searches using
the inclusion and exclusion criteria without any exchange of
notes.

Inclusion/Exclusion Criteria
Peer-reviewed articles in English language reporting myo-
inositol concentrations in the brain in patients with
schizophrenia or schizoaffective disorder in comparison
with a healthy control group were included. We did not include
studies that only report on patients with bipolar disorder or
depression related psychosis. We selected studies where the
largest proportion of MRS voxel was placed on the medial
prefrontal cortex, anterior to the posterior commissure, as
per the cingulate boundaries defined by Vogt et al. (26). This
ensured that both caudal and rostral ACC placements were
included, but posterior cingulate voxels were excluded. In line
with Egerton et al. (27), we will use the term medial frontal
cortex (mFC) to describe this region of distributed voxel
placement.

We excluded 1H-MRS studies that reported within-subject
changes in myo-inositol without the required group comparison
contrast and studies that excluded adult samples of age >16. If
a single study was reported as 2 samples, the largest sample was
included. In case of partial overlap, both studies were included
with weighting based only on the non-overlapping sample for
the smaller study (28, 29). We also excluded studies where no
information was available on voxel placement (30) or when
study-specific Cramer-Rao Lower Bound (a measure of MRS
signal quality and reliability) was exceeded for myo-inositol
signal (31).

We extracted the study-specific mean and standard deviation
of 1H-MRS myo-inositol concentration for the control and
patient groups. As the meta-analysis was based on effect size
from group differences, we included absolute as well as ratio
measures of myo-inositol concentrations, as long as both patients
and controls in a dataset had identical metrics reported. When a
study reported on more than 1 demographically stratified patient
group, all contrasts were included in the meta-analysis (29);
when groups were stratified according to clinical characteristics
(e.g., treatment response) but compared against a single control
group, the contrasts were combined to form a single dataset
(weighted mean and pooled SD for a single patient group)
(32). When voxels were split into 2 hemispheres, average values
were computed (mean value from the 2 hemispheres and
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pooled SD). We contacted authors when these values were not
reported or if moderator variables for meta-regression were not
available.

Meta-analysis was conducted using the metafor package of
R CRAN (33). We used a random-effects model to calculate
the pooled effect size, with 95% confidence limits. This
approach enables more robust inferences when there is a
notable heterogeneity among individual studies. We assessed
heterogeneity using I2 statistics for quantification and Cochran’s
Q for statistical significance test. Potential publication bias was
quantified using Egger’s test. Sensitivity testing was carried out
using a jack-knife approach. During each of the iterations of this
leave-one-out jack-knife testing, one study was left out and the
meta-analytical estimate for (n-1) studies was recalculated. Meta-
regression analyses were undertaken to investigate the effect of
(1) age (based on mean age of patients) (2) gender (based on %
female patients) (3) medication status (based on % unmedicated
patients) (4) scanner strength (in Tesla) and (5) duration of
illness (based on mean years of illness).

RESULTS

Search Results
The literature search identified 19 studies (one with 2 eligible
contrasts (29)), published between 2002 and 2018, with
a total of 561 patients and 585 controls (PRISMA flow
diagram presented Figure 1) (29, 32, 34–49). The sample sizes
ranged from 10 to 75 for controls and 9–72 for patients
(Table 1). Mean illness duration varied between 0.49 and 27.4
years.

The voxel placement of individual studies is shown in
Figure 2. MRS parameters for individual studies are shown in
Table 2.

Meta-Analysis Results
The estimate of heterogeneity had a trend level statistical
significance (I2 = 14.61%; Cochran’s Q = 27.64, p = 0.09)
among the 20 datasets eligible for analysis. Random effects
analysis revealed reduced myo-inositol content in patients

FIGURE 1 | The literature search process.
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TABLE 1 | Clinical and demographic features of studies included in the meta-analysis.

Study Year Number of

patients/controls

Patients

mean mI

(SD)

Controls

Mean mI

(SD)

% Female

patients

Age patient

Mean (SD) in

years

Age controls

Mean (SD) in

years

Unmedicated

patients in

%

Illness

duration

Mean (SD) in

years

Theberge 2002 20/20 8.82 (3.92) 8.72 (2.71) 35.00 25.40 (7.20) 25.52 (7.29) 100 1.75 (2.00)

Delamillieure 2002 17/14 0.63(0.19) 0.66(0.13) 17.65 31.25(6.09) 30.14(6.39) 29.41 8.42(5.45)

Theberge 2003 21/21 9.73 (3.1) 8.74 (3.38) 4.76 37.10 (10.60) 33.30 (11.73) 0 15.6 (8.92)

Yasukawa 2005 15/20 0.98 (0.28) 1.29 (0.24) 46.67 32 (4.9) 36.1 (6.8) 13.33 1.7 (2.10)

Ongur 2008 17/21 0.92(0.33) 1.09(0.32) 41.18 41.8 (9.8) 34.3(10) 0 NA

Tayoshi 2009 30/25 6.73 (2.2) 8.22 (2.35) 53.33 33.8 (9.5) 34.9 (10.7) 0 10.3 (8.7)

Ongur 2010 21/19 0.25 (0.03) 0.27 (0.04) 33.33 39 (10.8) 36.3 (9.8) 13.33 21.1 (7.3)

Shirayama 2010 19/18 5.7 (0.68) 5.55 (0.72) 36.84 30.5 (5.6) 31.4 (8.4) 5.26 7.3 (5.2)

Lutkenhoff 2010 9/21 7.90(1.73) 8.26(2.65) 44.44 48.8(11.5) 55.7(3.8) 0 27.4(11.1)

Bustillo 2014 72/75 10.97 (5.47) 11.03 (4.96) 15.28 36.43 (14.25) 35.04 (12.17) 3.7 15.9 (5.5)

Demjaha 2014 14/10 6.88 (1.66) 6.39 (1.07) 54.17 44.8 (10.9) 44.2 (8.9) 0 16.2(9.4)

Chiappelli 2015 59/69 6.84 (0.84) 6.94 (0.60) 30.51 37.1 (10.6) 33.3 (11.73) 5.08 NA

Brandt 2016 24/24 6.36 (1.34) 6.69 (0.88) 20.83 37.5 (16.7) 36.6 (14.6) 0.00 NA

Rowland 2016a 45/53 6.8 (0.9) 6.90 (0.60) 35.56 37.7 (12.8) 37.1 (13.1) 8.9 14.7 (12.1)

Rowland 2016b 27/29 5.8 (0.64) 5.80 (0.42) 37.04 34.4 (13.1) 29.7 (9.4) 18.52 13.1 (12.1)

Chiu 2017 19/14 5.13 (2.65) 7.71 (1.63) 42.11 29.11 (6.68) 27.71 (5.88) 0 1.47 (1.23)

Taylor 2017 16/18 8.4 (1.3) 8.00 (0.80) 18.75 22.7 (2.9) 23.9 (4.6) 6.06 2.46 (1.31)

Wijtenburg (young) 2017 48/54 6.6 (0.7) 6.72 (0.50) 29.17 25.2 (4.5) 25.2 (4.8) 8.33 6.1 (5.8)

Wijtenburg (older) 2017 47/39 6.82 (0.9) 7.00 (0.80) 44.68 49.5 (5.4) 51.2 (5.7) 4.26 25.4 (9.3)

Reid 2018 21/21 4.88 (0.47) 5.03 (0.50) 23.81 23.2 (4.4) 23.5 (4.5) 4.76 0.49 (0.86)

mI, myo-inositol (absolute or ratio measure of concentration).

FIGURE 2 | Voxel locations in medial frontal cortex for 1H-MRS studies of

myo-inositol included in this meta-analysis. Studies from which a sagittal view

of the MRS voxel could not be obtained are not included in this illustration.

with schizophrenia compared to healthy controls (effect
estimate= 0.19, 95% CI [0.05–0.32], z= 2.72, p= 0.0067). These
results are displayed in the forest plot Figure 3.

Sensitivity/Bias Analysis
All the 16 iterations of the leave-one out analyses were statistically
significant, indicating that the meta-analytical estimates were
reliable and not influenced by any single study. Egger’s test for
funnel plot asymmetry (Figure 4) was not statistically significant
(t= 0.77, p= 0.45), indicating low probability of publication bias.

Meta-Regression Analysis
There was a statistically significant moderator effect of the
percentage of female patients included in the samples in the effect
size for myo-inositol (z = 2.53, p = 0.011). With this moderator,
heterogeneity significantly decreased (Cochran’s Q = 21.2,
p = 0.27). Specifically, studies with more female patients were
more likely to report reduced myo-inositol concentrations in
patients compared to controls (Figure 5). We did not find any
statistically significant moderator effect of the proportion of
unmedicated patients (z = −0.60, p = 0.55), scanner strength
(z = −1.21, p = 0.22), echo time (z = 1.59, p = 0.11), repetition
time (z = 0.13, p = 0.9), age of patients (z = −0.05, p = 0.95),
and duration of illness (z =−0.94, p= 0.34).

DISCUSSION

The main finding from this meta-analysis is the observation of
a small, but statistically significant reduction in myo-inositol
concentration in the medial frontal cortex in schizophrenia.
There is a notable heterogeneity across MRS studies; a substantial
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TABLE 2 | MRS parameters of individual studies.

Study Year Field strength (T) MRS fitting model Voxel size/volume

(cm × cm × cm) or cc

MRS sequences TE/TR (ms)

Theberge 2002 4 fitMAN 1.0 × 1.5 × 1.0 STEAM 20/2,000

Delamillieure 2002 1.5 In-house analysis 3 × 1.5 × 2.5 STEAM 30/1,500

Theberge 2003 4 fitMAN 1.0 × 1.5 × 1.0 STEAM 20/2,000

Yasukawa 2005 1.5 In-house analysis 1.8 cc PRESS 30/1,500

Ongur 2008 4 LCModel 2.0 × 2.0 × 2.0 PRESS 48/2,000

Tayoshi 2009 3 LCModel 1.7 × 1.7 × 1.5 STEAM 18/5,000

Ongur 2010 4 LCModel 2.3 × 2.2 × 2.3 MEGA-PRESS 30/5,000

Shirayama 2010 3 LCModel 2.8 × 3.0 × 2.2 PRESS 68/2,000

Lutkenhoff 2010 3 LCModel 2.0 × 2.0 × 2.0 PRESS 30/3,000

Bustillo 2014 3 LCModel 2.0 × 2.0 × 3.0 PRESS 40/1,500

Demjaha 2014 3 LCModel 2.0 × 2.0 × 2.0 PRESS 30/3,000

Chiappelli 2015 3 LCModel 4.0 × 3.0 × 2.0 PR-STEAM 6.5/2,000

Brandt 2016 7 LCModel 3.0 × 2.0 × 1.2 STEAM 28/3,000

Rowland 2016a 3 LCModel, GannetFit 4.0 × 3.0 × 2.0 PR-STEAM 14/3,000

Rowland 2016b 7 LCModel 3.0 × 2.0 × 2.0 STEAM 6.5/2,000

Chiu 2017 3 GannetFit 3.0 × 3.0 × 3.0 MEGA-PRESS 68/2,000

Taylor 2017 7 fitMAN 2.0 × 2.0 × 2.0 STEAM 10/3,000

Wijtenburg (young) 2017 3 In house analysis 3.0 × 4.0 × 2.0 PR-STEAM 6.5/2,000

Wijtenburg (older) 2017 3 In house analysis 3.0 × 4.0 × 2.0 PR-STEAM 6.5/2,000

Reid 2018 7 LCModel 2.7 × 2.0 × 1.0 STEAM 5/10,000

LCModel, Linear Combination Model; STEAM, STimulated Echo Acquisition Mode; PRESS, Point REsolved Spectroscopic Sequence; MEGA-PRESS, MEshcher-GArwood Point

RESolved Spectroscopy; PR-STEAM, Phase Rotation STimulated Echo Acquisition Mode; TE/TR, Echo Time/Repetition Time.

proportion of this heterogeneity is explained by the sex
distribution in individual studies. In studies with higher number
of female patients, the myo-inositol reduction is much more
pronounced. We found no evidence of publication bias, and
the meta-analytic estimates were sensitive to removal of any of
the individual studies. These results indicate that myo-inositol
reduction in medial frontal cortex occurs in some patients with
schizophrenia, especially in a subset that is more likely to include
female patients.

To our knowledge, this is the first meta-analysis of MRS
myo-inositol studies in schizophrenia. Post-mortem studies in
schizophrenia indicate a reduction in frontal myo-inositol (50)
as well as reduced glial cell count (51), of 32–35% in layer 5
(52, 53) and 20% in layer 6 of the prefrontal cortex (54), though
contradicting results indicating normal (55, 56) or increased glial
cell counts also exist (57, 58). In this context, reduced myo-
inositol resonance reported in our meta-analysis, when taken
together with reduced glutamate levels reported in established
cases of schizophrenia (59), may reflect deficits in astrocyte
activation and recruitment [as proposed in (21)], rather than an
actual reduction in the cell count.

Our meta-regression analysis indicates that studies with
female subjects are more likely to report lower myo-inositol
resonance among patients. An association between sex and
myo-inositol has not been reported so far in schizophrenia
(36, 46). Interestingly, Chiappeli et al. reported that depressive
symptoms, rather than sex, are associated with lower myo-
inositol in schizophrenia (36). Both reductions in myo-inositol

(60) and glial loss (61) in the medial prefrontal cortex are
reported in depressive disorder. Given that one-third of patients
with schizophrenia require antidepressant treatments (62), it is
possible that myoinositol reduction is prominent in a subgroup
of patients prone to depression. We were not able to test this
notion, as except for Chiappeli et al. other MRS studies have not
reported on the distribution of affective symptom severity among
patients with schizophrenia. Nevertheless, it is worth noting
that depression is much more common among women, than
men with schizophrenia (63). Sex-specific epigenetic differences
have been noted in the enzymes that regulate myo-inositol
turnover in rat tissues (64). Importantly, astrocytes exhibit sexual
dimorphism during development (65) and in their response to
inflammation in later life (66, 67). Further investigations in larger
samples of female human subjects, and in patients with and
without affective symptoms are warranted.

Meta-analyses of medial prefrontal MRS studies suggest that
glutamate (68), N-acetyl aspartate levels (69) are reduced in
schizophrenia indicating possible dendritic reduction (70), while
no consistent changes are noted in GABA concentration (27)
or pH levels (71). Glutamate levels are higher during early
stages of schizophrenia, but appear reduced in older cohorts
with more established illness (68). We did not observe any age-
or illness duration related effects on myo-inositol reduction,
suggesting that astroglial dysfunction could be an invariant
feature of schizophrenia, possibly contributing to the observed
course of glutamatergic abnormalities. Preclinical studies suggest
that at excitotoxic levels of glutamatergic signaling, inositol
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FIGURE 3 | Forest plot of MRS myo-inositol studies comparing schizophrenia vs. healthy controls.

FIGURE 4 | Funnel plot of MRS myo-inositol studies comparing schizophrenia

vs. healthy controls.

turnover could be notably reduced. In this context, the putative
dysfunction of synaptic transmission in schizophrenia could
share a common origin, simultaneously affecting the neuron-
astroglia network. Similar to NAA, myo-inositol also reflects
cellular membrane integrity. Thus a combined NAA and myo-
inositol changes could reflect the status of dendritic spine
development or loss, as shown in preclinical studies (72). While
the existing MRS literature cannot be taken as conclusive due to

several technical limitations (as highlighted in the meta-analyses
cited above), the observations to date make a compelling case to
consider astrocytic dysfunction in further detail in schizophrenia.

There are several caveats that need to be considered when
interpreting the results reported here. We limited our analysis
to medial prefrontal cortex, as the number of studies examining
other brain regions is limited and voxel placements are more
diverse. As a result, the observed myo-inositol reduction may
not be generalizable to other brain regions. In fact, an increase
in MRS myo-inositol signal has been reported in regions such
as basal ganglia (73) and parietal lobe (74) in patients with
schizophrenia, while a reduction occurs in medial temporal
white matter (75). Secondly, mood stabilizers acutely deplete
inositol levels (76). None of the included studies reported on
the use of mood stabilizer drugs in the patient samples. The
effect of antipsychotics on myo-inositol concentration is hitherto
unknown. Antipsychotics can reduce astrocyte count, and thus
contribute to reduced myo-inositol concentration (77), though
regional differences can be expected from existing data (78).
We did not find any systematic association between either
unmedicated patient numbers or duration of illness (which
often relates also to cumulative antipsychotic exposure in
clinical settings) to the reported effect sizes. Furthermore, both
schizophrenia and antipsychotics can affect metabolite relaxation
rates (mostly T1, but likely also T2) (79–81). Therefore, the
choice of acquisition technique, at a given field strength, could
affect the ability to detect a difference between patients and
controls. Nevertheless, we did not observe any linear relationship
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FIGURE 5 | Association between proportion of female patients included in individual MRS studies and the effect size of myo-inositol resonance.

between echo time, scanner strength, repetition time and effect
sizes reported in individual studies. We noted several studies
where MRS sequences were suitable to extract myo-inositol
concentrations alongside other metabolites, but myo-inositol
levels were not measured or reported. Though our estimate of
publication bias was low, it is likely that MRS myo-inositol
concentration is largely underreported in the literature. Finally,
we did not include analysis that primarily contrasted bipolar
disorder or depression with psychosis with healthy controls or
patients with schizophrenia. Thus, the observed changes in myo-
inositol cannot be taken to be specific for schizophrenia.

Prenatal exposure to maternal immune activation (MIA)
reduces cingulate cortex myo-inositol in mice, which in turn
relates to physiological markers of schizophrenia phenotype such
as deficits in pre-pulse inhibition and reduced glutamic acid
decarboxylase (GAD67) levels (82). These changes were reversed
when the offspring were exposed to a n-3 polyunsaturated fatty
acid (PUFA) enriched post-weaning diet (82). Consistent with
this observation, healthy human subjects who have reduced
omega-3 fatty acid profile (measured from erythrocytes), show
reduced medial prefrontal myo-inositol and exhibit slower
reaction times in a continuous performance task (83). We
speculate that these observations, considered alongside the
reported reduction in myo-inositol levels in schizophrenia, may
indicate a specific developmental perturbation. It is worth noting
that dietary replacements may not have the same intended
effect across disorders; for example, in major depressive disorder
where myo-inositol level is reduced, inositol supplementation
appears to be beneficial (84, 85), though similar effects have
not been observed in schizophrenia (86, 87). Studies that
investigate the effect of dietary interventions on brain myo-
inositol levels in specific diagnostic subgroups are warranted
to further understand the translational potential of such
approaches.

It is important to note that both increased (21, 22) and
reduced (88–91) brain myo-inositol levels have been noted in
various inflammatory states. Thus, the reduced myo-inositol
level noted in schizophrenia does not contradict the role of
neuroinflammation in this illness. In fact, this observation
adds an important clarification that the inflammatory changes
observed to date may be secondary to a permissive astrocytic
environment, whereby reduced myo-inositol levels in astrocytes
facilitate osmotic damage, as well as glutamatergic excess.
Without longitudinal data that tracks pre-psychotic and post-
psychotic changes in same individuals, this notion of primary
astrocytic dysfunction should be considered to be merely
speculative.

In summary, in patients with schizophrenia, a small but
statistically significant reduction in medial prefrontal myo-
inositol resonance is observable. The size of the reported effect
indicates that the biological pathways affecting the myo-inositol
system are likely to operate only in a subset of patients with
schizophrenia. In this regard, MRS myo-inositol could be a
useful tool to parse heterogeneity as well as to explore treatment
stratification in schizophrenia. Furthermore, combining MRS
myo-inositol measurement with in-vivo probes of astroglial
function (e.g., PET ligands selective for the astrocytic imidazoline
binding sites (92)) could take this investigation further in the near
future.
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